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Model for Turbulent Transfer and Turbulence Dynamics
in a Stratified Shear Flow

. L. A. OSTROVSKIY AND YU. I. TROITSKAYA
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A kinetic approach has been used to obtain équations for turbulent flows
for momentum, mass, energy and other hydrodynamic quantities in a stratified
medium whose type is uniquely determined by the assumption that the probability

distribution function is close to Gaussian.

The behavior of turbulence is dis—

cussed in a stratified shear flow, and also in the field of an inertial-gravity

internal wave.

It is shown that taking into account the mutual transformation

of the kinetic and potential fluctuation energy makes it possible to explain
the possibility of maintaining turbulence in weak shear flows typical of inter-

nal waves in the main part of the ocean.

Small-scale motions occur practically every-
where in the ocean and in the atmosphere. De-
spite the relatively small amount of energy in-
volved, they play an important role in emergy
transfer for geophysical processes, in particular
providing a source of energy for flows and wave
motions on larger scales.

The approach that has been most widely used
in describing the interaction between turbulence
and large-scale motions is associated with the
use of a system of Reynolds equations [1, 2].
Because of the nonlinearity in the hydrodynamics
equations this system is open: the equation for
any moment contains a higher moment. It is
therefore necessary to bring in a closure hypo-
thesis; the ones usually used are gradient ap-—
proximations for momentum flows, buoyancy and
other quantities introduced in analogy with
molecular transport transfer theory [2]. Al-
though in many cases this approach turns out to
be effective, it has obvious shortcomings. 1In
particular, these approximations are introduced
independently for different physical quantities
that are related, generally speaking, to the
fquations of hydrodynamics. This in turn leads
to a significant indeterminacy even in relation
to the qualitative conclusions of the theory.

In the kinetic theory of gases there is a
well-known mathematical series procedure for
Obtaining equations for the viscous stresses
ad molecular heat flows across velocity and tem-
Perature gradients. In this way the equation for
the single-particle distribution function is
Solved [3]. Anm analogous approach has already

e used for quite some time in the theory of
?ydrOdYnamic turbulence [4 — 6]. Here also there
I8 the equation for the single—point distribution
;mCtiOH f> the kinetic equation. Then, using
"y the one closure hypothesis in the equation
T f, it is possible to obtain the equations
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consistent with each other for the flows for vari-
ous hydrodynamic quantities. In order to do this
it is necessary, having written the equation for
fs to find an adequate approximation for the "col-
lision integral” (here its role is played by terms
related to pressure fluctuations and fluctuating
viscous force compoments [4]), solve the resulting
equation and, finally, knowing the distribu-—
tion function, to calculate the Reynolds stresses
using well-known equations from probability
theory. R

The present paper uses this kinetic approach
to describe turbulence in a stratified fluid and
its behavior in the field of current shear and
internal waves.* In order to obtain here the
general equations for the turbulent flows for
momentum, density, energy and other hydrodynamic
quantities it is not required, generally speaking,
that any approximation for the collision integral
be used. It is only required that the external
turbulence scale be small in comparison with the
average motion scale and that the-distribution
function differ slightly from a Gaussian one.
However, the corresponding calculations are ex-—
tremely cumbersome (see [18]). Here we restrict
ourselves to a simpler approach related to the t-
approximation for the "collision integral,” in
which the term associated with the pressure fluc-
tuations is the equation —(f - fb)/r, where fb is

a Gaussian function. This approximation was not

*We have already used this approach to de-
scribe the interaction between internal waves and
the random current field [7] im a "collision-free"
version, where the velocity field can be assumed
"frozen" over the interaction time. Here a
"strongly collisional" model is comsidered which
adequately describes hydrodynamic turbulence.
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validated in problems on hydrodynamic turbulence,
and was introduced in [9] by analogy with the
kinetic theory of rarefied gases. However, as
has been shown in [8], it gives the same struc-
ture for the equations for the turbulent flows as
also the more rigorous procedure, from which fol-
low analogous results pertaining to the behavior
of turbulence in a shear current field.

1. XKinetic Equation for a Stratified
Turbulent Flow

We will proceed from the following form for

—the equations—of hydrodynamics for a stratlfled

fluid:

du 1
a_t+(uyv)u+ 00

0p +g fo —vAu,
(D

"—;’+(u, V)o=xAp, div u=0,

where p.(z) is the hydrostatic demnsity distribu-
h O( ) is the hyd ic d i di ib

tion, v and % are the molecular viscosity and
molecular density diffusion coefficients, respec-
tively, and p is the deviation of the pressure
from hydrostatic pressure. In this case the
stratification is assumed to be quite weak in
order for the Boussinesq approximation to be
valid; in addition, for simplicity,we are re—
stricting ourselves to the equation for the total
density balance (without separately including the
temperature and salinity balance).

We introduce the distribution function. as
the probability demnsity for the velocity and
density distribution at a given point at a given
time. By definition

Fv, 2,1, 1) =8 (u(r, )—v) 6 (p (r, ) —A) ), (2)
:6”is the Dirac function, and the angular brackets
denote probability averaging. Differentiating
(2) with respect to ¢, substituting the expres-—
sions for Ou/d¢t and Jp/d! from the system (1) and
making simple transformations, we obtain (as yet
open) an equation for f

af - of I 9<p> (A —po) oF
—+V“+(‘§T o €) 5=
=2 <6(u—v}6(p—-?\,)( L9 vaw )>+ (3

+57(5(U—V)5(9— M) (—%49)).

Here p'=p—(p), w=u—(u) and o’=p—p) are. the
fluctuation components for the pressure, velocity
and density. The pressure fluctuations are de-
scribed by a Poisson equation easily following
from the initial system (1):

o R
Ap'=—py [div (u, V)l —g 2,

whose solution has the form

P =p4p,= T v e, Ve, '+

PoSd

+Zn— dry : —IP' (ry, 9). (4)

[r—n] oz

Here [div(u, V)ul’=[div(u, V)ul—{[div(u, V)ul). It is
seen that Eq. (4) breaks down into two terms hay-
ing different physical meaning. The first term
represents pressure fluctuations due to the c¢ha-
otic motion of the particles of the fluid, and the
second term represents their random displacement
from the equilibrium-level in the stratified
fluid. The corresponding terms in Eq. (3) are
expressed through the two-point distribution func-
tion:

8/ ap; 1\ 1 9
o= v \6(“-")6( )Or P T T v |
5
o r_rlljd (wee )/ttt )
J
H=2 \a ()8 (o— 1) 72 t>= o

=& (g0 1 0 — 0 (Ty, 1)) fordh
4“905‘ Yor |r—r| 0z (A —p (11, 1) fandhy.
The terms in (3) that describe the effect of the
viscosity and molecular diffusion on the single-
point distribution function f are also expressed
through the two-point functiom:

JV=_‘?_(—vAu’6 (u—;/)ﬁ e—N)=

=‘V%3$E*555“ i o)
JZ=F<—nApB(u—v)6(p—7»)>=
.9 2 T, ®
———%—5}:-1‘12_8;31‘5xl[fzh_ffl]dxr

—ce

In Eqs. (5) - (8) we obtain the distribution func-
tions, the two-point distribution function with
respect to velocity

fov (v, vi, &, 1, 1y, £) = (8 (u—v) 8 (u,—v,) § (p—4) ),

and the two-point distribution function with re-

spect to demsity
(VA Ay, 1y 1 1) =8 (u—V) 8 (p—A) 8 (p,—11) )-
In addition, we have the notation

Fo(ve, i, ) =C8(u(ry, ) —v.) ), falhs, 1y, ) =(8(p (ry, 1) —A))-
The derivation of Egs. (5) - (8) has been given
in [8]. The terms J?, Jﬁ’ Jv, and J% are analo-

gous to the collision integrals in the kinetic
theory of gases. Straightforward estimates show
that J,~f/7, where T,=pU/g{p?)%, U? is the velocity
dispersion, {p”) is the density dispersion, /=
and J,~f/t., where 1,~U?%¢ and e is the turbulent
energy dissipation rate. The terms on the left

— ___ﬁ____rd_
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side of the kinetic equation (3) are om the order
of f/T and Uf/l, where T and 7 are the time and
spatial scales for the mean motion. Finally,
Jo~f/7, where t ~v L/U, with L being the turbulence
scale.

Similar to [9], we use the T-approximation

for J?:
— Ty=—(—f0) /.
Here
1 1 (v—<m)® (A —(pd)?
Y S - _p=on,
T / fo (QnU,,Z)‘% (o <pr2>‘/z g ] 2U2 ) 240

= j vidvd, {py= f Afdvda,

are the mean values for thé“velocity and density,
and U2=‘/3S (v—<u?)*fdvdh, and (p™ >=j‘ (A—<p>)2fdvd

are respectively the dispersions in these quanti-
ties.
The equation for f then becomes

By (—li® e d

ot ar P Or Po ov
9
—L=h s dy e Ty T,
where J Jv’ and J are given by Eqs (6) - (8).

We cons;gggrppw those processes for which
1 {1, T T, 1/U}. These inequalities are often
characteristic of geophysical situations. They
signify, as has already been noted, the small
nature of the external turbulence scale as com—
pared with the scales for the mean motions, and
also with the shortness of the relaxation time
for the distribution function for the turbulent
flow to a Gaussian one in comparison with its
characteristic variation times due to viscous
damping, the operation of buoyancy forces, and
transfer to the mean flow. We shall make some
estimates of the applicability of these inequal-
ities for typical ocean turbulence parameters
[21: L =10 em, U = 0.5 cm/sec, and {p”)"=10"*°
g/em3, so then T = 50 sec and Tp = 500 sec. The

condition t<1T, is automatically satisfied in
developed turbulence. The time scale for the
averaged processes should exceed 50 sec, and the
Spatial scale should be greater than 10 cm.
These conditions are nearly always satisfied for
internal waves in the ocean.

In this case all the terms in Eq. (9), ex-
cept for —(f—f.)/T. are on the order of the small
Parameter u=t/{tv, To, [} and it is possible to find
a solution of (9) in the form of an expansion

F=fO 04 . (10)
In the kinetic theory of gases this is the well-

known Chapman-Enskog method [10]. In the expan—
sion (10) the ratio of each succeeding term to

the preceding one takes on values on the order of
us f (0) satisfies the equation for the zero approx-
imation, following from (9): f 0) = fb, i.e., the

solution of the zero approximation is a Gaussian
function. The solution to the equation for the
first approximation has the form

W [0 O  f L 3> h—oo )\ O
= { T v g ¢)

_Jp [foyfozh] —Jv [fo, fozv] _Ju[fo,fozh]}-
B (11)

The-integrals Jp, Jv and Jy in Eq. (11) contain
the two-point Gaussian functions fbk and fbv'

Substituting them in (6) - (8), we have

O (foh—<p B\ &
Jo=—(—" )=,
v ( "% ) 0o

IS a 1 2
_— —_— 4 4 t
b= g T o @ 600 (D),

hm e (0= L),

3U% av
=-11rnv—a——<u; (l' f)u,, (r11 t)> (12)
e Orp On
J -—
= (6= L),
= —limu (e (1,00 (10 ).
r=r ary
Thus, f(1) is expressed in terms of fb w551ng the

well~-known distribution function it is possible to
find an equation for all the single-point moments
using standard equations from probability theory

<p:m‘HuL N g(f(")-]—f(l))(?\, <p>)m«H (@ — (u))™dvd).

i=1

We write the equations for the second and third
moments in explicit form. Thus, the turbulent
momentum flow is

(13

(uu)—UZGL,-—LU<a<u> +8<uj->>.

9x; Ox;
The equation for turbulent mass flow has the form
. a<p> <> &
'u;)= —LU [ —= —_—]. 14
) ( Pt (14)

The equation for 8 is given by Eq. (12). For a
statistically homogeneous density field Bx =B =

Y
0, and B-={0"> R, where

N T
R= 4w _Sldrl

Here Bp is the correlation coefficient for the

b _1 9
0z |r—ry| 0z

Bp (r—r3). (15)

density field, R depends on the correspondence of
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Fig. I. Phase plane for the system
: (20).

the vertical Lz and horizontal Lr scales for

density field correlation, and in fact R~~1 for
L.<L., and R~ (L,/L.)* for L,>L,.

In Eq. (14) there is an additional term
(9:<0"™> —Big) o, U? for. {p’u/) as compared with the
gradient hypotheses. We compare it with the
"gradient" term 9{p)/dx; for values for the par-
ameters characteristic of the main water column
for the ocean [2]: d{p}/0z=9-10-" g/em3em, (W =

3 x 10-3 sec-1], and (p'% =10-° g/em3; U = 0.5
cm/sec; then the additional term will be of the
same order (v4 x 10-7 g/cm3+m) as the gradient
term. From what follows it is seen that the pres—
ence of an additional term in the mass flow equa-
tion as compared with gradient hypotheses leads
to a number of important differences in the re—
sults given by these models.

The equations for kinetic energy turbulent
flows and for the density fluctuations have the
ordinary "gradient" form:

SN\ — sy O 16

\élu, u, e 5LU o (16)

(0%uy=—LU 2% (17)
Ox;

The system of Reynolds equations, which is closed
according to Eqs. (13) - (17), has the form

9 <up> 9 <up 1 a<p> P> — o
—_— u; _ ; =
=+ () P e
) = O<upy  F<ud |\
=-—(LYb — )
ax]- ( V ( Ox; + 0x;

a<p> a<p>
—_— U; =
o T ox;

O r R[OS 8
2 %Lw( 2 g €0 gﬁt)),

b b — [ O<u 3 wp \2 g LVE
2 NGB ocup | owp N g -
TR 0%; t Vb( 0x; * bx; ) [ v
o< 4 3 oy CE 5 9 (L 5ﬂ>
X( 0z +2bpo CAC gﬁz)) L 3 ox; v ox; )’

d<p'? 3<p® d<p> =
A TN FALRN NA (23 S
e T or, o LV

A

9 <p> IO B U N T Tar A e
(52 + e GG | = LVIEE2 . )

Here b = 3U2/2, and the summing is carried out
using the repeating subscripts.

2. Evolution of Turbulence in the Field
of a Stratified Shear Flow

As an example for the application of the
developed theory we consider the problem of the
evolution of homogeneous turbulence in which all
the moments higher than the first are independent
of the coordinates in a stably stratified steady
shear flow with_the velocity profile u=U,(2)x,,
where U’s,=const and a constant Brunt-Viisils fre-

d o N — — i ————— S
quency ‘(N2="“§—$=COHSJE>. As is well known [1], the
v U
condition for the turbulence to increase in such
a flow has the form

Ri<<1/x,, (19)

where Ri=N?*/UZ, and %, is the ratio of the. turbu-
lent transfer coefficient to the turbulent vis-
cosity coefficient [1]. 1In the gradient semi-
empirical hypotheses for closure %, is ordinarily
assumed to be constant, and the condition (19)
places a limitation on the growth of turbulence in
terms of the Richardson number Ri. However, as
field and laboratory experiments have shown [11,
%y 1is a decreasing function of Ri. If this de-
crease is rather rapid, so that Rin,<<! everywhere,
the condition (19) is satisfied for any Ri. The
model developed here gives precisely such a de-
creasing relation for x,(Ri).

The turbulent energy balance is determined by
the equations for the mean kinetic energy b and
for the mean potential energy I = p?>g*/2N%p,2:

db _ gpe b—NefLvh (130 __Co”
L —ULLYE NL]/b(l__b (1 R)) —

(20)
dn = 311 Dy
—=N2L I—=—(1— )-—————n
dt Vb( b ( R) L
We assume the external turbulence scale to be con-
stant (I = const). This simple assumption is
often made in solving problems on the evolution
of turbulence in the ocean [2]. The parameter R
is determined by Eq. (15). - The Kolmogorov approx-
imations €, = Cb:/L. and T,=Db"*II/L (where C and D

are empirical constants) are taken for the turbu-
lent energy dissipation rate & =<{v (0w [ox;+0uy |
0x;)*> and for the diffusion rate for turbulent
density fluctuations T,={x(dp’/dx,)%).

Under these conditions the phase plane for
the system (20) has the form shown in Fig. 1.
Independently of the value for Ri on the phase
plane there are two equilibrium states. One of
them (Hl = bl = 0) is an unstable equilibrium

state of the saddle type, and the second @, bz)

is a stable state of a node type. All of the

phase trajectories approach the point HZ’ bz,

i.e.; an equilibrium state for the flow with non-
zero fluctuation emergy is established independ—-
ently of the initial conditions. According to

SR G o b

IO oottt o -t o iy e .

N T e — e — e
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Fig. 2. Variation of the dimensionless

kinetic B=05/Us?L? and potential n=II/U,%L

energies of turbulence in a steady state

as a function of Ri: 1) R = 0.3, 2) R =
0.5.

[11], the numerical values for the constants
appearing in (20) are C = D = 0.09. The equation
for the turbulence energy in the steady state has
the form ’

by =

12%2_9_ (1—Ri (4 — 3R) 4 [(1— Ri (4 — 3R))* - 12 (1— R)Ril*),

¥
The variation of the steady-state values for the
normalized kinetic and potential energies as a
function of Ri is shown in Fig. 2. The character—
istic time for establishing this steady state is

~1/(UsYC).

Let us consider in more detail the role of
the additional term in the equation for the buoy-
ancy flow (see Eq. (14)).. As seen from (20), the

gradient term —N2LVb in the mass flow equation
describes the transfer of the energy from kinetic
to potential. The additional term i%; (1—R)N*®
has the opposite gradient sign and describes the
transfer of energy from potential to kinetic due
to the operation of buoyancy forces.  If the
Reynolds number is large (Ri>1), then for a suf-

ficiently short time (VB/(LN?)) the energy value

is equalized for emergy transferring from kinetic
to potential energy and conversely, due to the
operation of buoyancy forces. In this case, a
correspondence b=3II(1—R) is established between
the kinetic and potential turbulence energy, and
the kinetic energy satisfies the equation

82 (3(1—R) C+D)
4—3RL

di - — 2 -
T?=L1/b3(l R) U2, —

2
4—3R ! 21

which. does not contain Ri. Thus, for large Ri

the evolution of turbulence is independent of
the Richardson number.

We calculate the turbulent Prandtl number
for the steady-state case.

By definitiom

a,01 g1 1,0 77 Ri

Fig. 3. Variation in =(Ri) with £ = 0.3
(1) and R = 0.5 (2). The experimental- o

diagram in [1].

Kp'w'> dU,/dz 31
o= L2200y ST (R
e w'w'y dpy/dz b ( )

We have fﬁom‘the system (20)
vy (4—3R+1/Ri— ((4—3R)+1/Ri)*—4/Ri)*) /2.

The function %,(Ri) is a decreasing one, and for
Rix>1 it is

% (Ri) =1/[ (4=3R)Ri].

The condition for turbulence generation (Ri<C1/x,)

is satisfied for any Ri, i.e., there is no thresh-

old for turbulence generation according to the
Richardson number. The variation %,(Ri) is shown
in Fig. 3. The experimental points have been

taken from [1]; we see that the theory correctly
describes the trend in the behavior of %, as a
function of Ri.

3. Evolution of Turbulence in the Internal
Wave Field

The variable velocity shear in an internal
wave can also support small-scale turbulence.
Suppose that in the absence of a wave the fluid
is stratified with a constant Brunt-Vdisdld fre-

quency NO. We consider a harmonic internal

inertial-gravity wave whose horizontal velocity
field has the form

w:UNMW—M—mL%=%%&MM“M—ML

For simplicity, we assume that k< %; then
Ou,

0z

Ou,, ow . : .
S §>‘?r , which makes it possible to
4 Z

take into account only the vertical turbulent
flow of the horizontal component of the momentum

Ou,,
2

, - , -0
(uw' y=—Lyb P (uﬂ)’):—»LV’b%,
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VB, cu/sec
1,6 =

0,5 —

| i
g 10
U, ,cm/sec

Fig. 4. Variation in the maximal value for

¥6 in the field of an internal inertial-
gravity wave as a function of the amplitude

for the horizontal velocity in the wave UO:

1) using the model (13) and (14); 2) ﬁsing
the gradient hypothesis (x,=0.1).

g

The wave disturbance of the Brunt-Vaisili fre-
quency has the form

N2 = — NiUklo sin (of — kx — %2).

Neglecting turbulent diffusion, the equation for
I and b can be written as

=LV U Pﬁw—m-m+—ﬂﬁw—m—w—

. SES
_Rio(l—k—g" sin (of — kx — %2) (1_%(1_@)]_21___”
=LV5U§x2Rio(l—

Uo 2o sin (mt~kx—-nz)(1_—_(1_R)) Cb’_/zn" }
(22)

Here Riy=N/(Ux)>
In order to solve the system (22) numerical-
ly, values were chosen for the parameters that

were close to those measured in the field experi—

ments by Sanford [13]: N =5 x 10-3 gsec~l, x =
5% 102 m-1, 9 = 1.1 f, f =7 x 10-5 sec~ 1, and
L =1m, and UO varies in the range 1 ~ 10 cm/

sec. The selection of the wave frequency close
to the inertial one is due to the fact that it

is precisely in this low-frequency range the vel-
ocity shear is greatest and, consequently, the
mechanism for maintaining small-scale turbulence
which is related to the direct transfer of vel-
ocity shear energy by. turbulent fluctuations is
most efficient. The variation in the maximal

value for VE in the field of an internmal-gravity

" gradient hypotheses also follow from Eqs.

wave as a function of amplitude for the horizontal
velocity in the field UO is shown in Fig. 4. This

figure also contains for comparison the curve for
the variation of Jb(U,) obtained when the same

parameters from the gradient hypotheses are used.
We see the strong difference in these two func-
tions™in the region of small values for Uo.

Qualitative differences in the behavior of
turbulence in the field of an internal inertial-
gravity wave as compared with the results using
(13) and
(14) used to. close the Reynolds equations. Thus,
it .follows from the gradient hypotheses that for
Plo*<<u#,Ri<<1 there is a "break' in the turbu-
lence: " at certain times its energy becomes zero,
and a weak turbulent "injection' is needed for a
new "burst." The break is due to the fact that
for certain values of the wave phase the velocity
shear is not sufficient to satisfy the condition
for maintaining turbulence. The possibility of
a break in the turbulence was noted in [12]. As
has been shown above, the model (13) and (14)
does not give a threshold value for the Richard-
son number, so therefore the break in the turbu-
lence does not occur for any value of Ri. Actual-

(Ri>1, Ri> o/xU,JC) the turbu-

lence energy satisfies an equation amnalogous to
(21):

1y, for large Ri

=L ]/b szg (cos? (of — %z — kx) +
y (23)
2o b’/
—]——m?smz(cot—kx—%z)) -

in which Ri does not enter. If the wave period
is long compared to the time for the increase in

the turbulence (i.e., for :o/xU,/¥C<k1), it is easy

to write the quasistationary solution for Eq.
(23):

Lzung
b=2 @—3R) 30—

R) (c052 ot —[— ~—sin® mt) (24)
We see that the turbulence energy given by Eq.
(24) does not go to zero, and thus there is no
break here.

In our view the conclusions of the theory
developed here which takes into account the dual
exchange between the kinetic and potential ener-—
gies acts in favor of the explanation for the
universal absence of turbulence within the ocean,
which is related to the possibility of maintain-
ing it by internal waves and shear flows at all
Richardson numbers.

Received May 13, 1986
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