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TOMOGRAPHIC RECONSTRUCTION

OF BUBBLE CLOUDS IN RANDOM
INHOMOGENEOUS OCEANIC ENVIRONMENT

L.P. Smirnov, J.W. Caruthers, and A.I. Khil’ko

Introduction

Various types of spatially-localized inhomogeneities practically always
exist in real oceanic environment. The examples of such a kind of inho-
mogeneities are the bubble plumes, entrained by breaking wind waves [1],
fish shoals [2], icebergs, ships etc. The observations of such inhomogeneities
make it possible to solve some practical problems.

The location and sizes of such inhomogeneities can be reconstructed by
the acoustical tomography methods [3]. Another reconstruction method is
associated with the distant measuring of the noise emitted by the observed
inhomogeneities [16, 22]. This method can be not effective for long distances
due to losses of acoustical signals in oceanic environment. In this case,
the tomographic¢ reconstruction can be based on the diffraction of probing
acoustical waves by the observed inhomogeneities [3, 4, 6]. But besides
the additive noise background, in diffraction tomography method there is
reverberation noise. An a priori information about the observed object
and the oceanic environment is needed for the effective procedure of useful
signals filtration. Otherwise the solution can be unstable and not uniquely
defined.

The peculiarity of the discussing problem is the random nature of the
observed objects (bubble plumes, fish shoals etc.). The traditional problem
of oceanic tomography. [3] is directed to reconstruction of the regular pertur-
bation of the sound speed profile. Tomographic reconstruction of random
perturbations of oceanic environment must be formulated as the statistical
problem. The measurements of the scattered field statistical moments (for
example, the moments of the random time delays) can be used for solution
of this problem.

As it was shown [5, 6, 16], the space/frequency/time structures of sta-
tistical moments, in particular, the coherence structure, are inhomogeneous
and have different scales of changeability. Such phenomena can be associ-
ated with the layered structure of ocean environment.

The random spatially-localized bubble plume image construction was
investigated in this work for refractive randomly-inhomogeneous layered
oceanic waveguides. The models of an observed random cloud of bubbles
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and uniformly distributed in space random perturbations of oceanic envi-
ronment were introduced. The influence of the noise level and other param-
eters of the problem on the result of the tomographic image construction
was analyzed numerically.

1 Reconstruction of image in inhomogeneous
environment

1.1 Analysis of integral equations

Generally, the problem of bubbles cloud image reconstruction in the re-
fractive oceanic waveguide with the sound speed profile cp (r) can be for-
mulated as follows. Let we assume, that the cloud of bubbles has not
sharp boundaries, the concentration of bubbles n is not great, so it is pos-
sible to neglect by the collect oscillations of bubbles. Thus, we consider,
that there are many bubbles on the scale of wave length of an illumi-
nating field )\, and the incident field of frequency fo does not initiate of
the nonlinear effects. In such conditions, the acoustic field in the environ-
ment with bubbles is possible to describe by the wave equation with effec-

tive sound velocity ces = co (1+ Bc2)™/* , where 8 = 4man (w2 — w?) 7,

wo = 2mfo = (3puc/ paz)l/ 2. pu,cy are the density and the sound velocity
in bubble gas, respectively.
Let us introduce

P=w? | i - L
s =e (c%(r) c@(r))’

where cp is the local sound velocity in the unperturbed environment. The
equation for complex amplitude of sound pressure of scattered by local in-
homogeneity acoustic wave can be presented [3] in the following form:

p(r) =po(r) + / Go (r,v')e(r')p(x') dr’, (1)

where po (r) = [Go(s,r) f(s) ds is the field of the illuminating source
S

f(8), Go(r1,r2) is the Green function of unperturbed environment with
c(t) =co(r).

The scattered field p, = p— po is random due to randomness of the bub-
bles parameters. The py is also random due to the waveguide environment
fluctuations.
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The equation (1) is the basis for the classical tomographic problem for-
mulation. If we consider the magnitude € (r) as the unknown value, and the
scattered field in the left part of (1) as the measured data, we obtain an in-
tegral Lipman-Shvinger equation (8] in respect to the unknown environment
perturbation ¢ (r). This equation is nonlinear.

The important stage of the solution of such equation is the solution in
the Borp approximation, where the value p(r) in integral is replaced by
Po (r). Under this approach, the discussed equation becomes the linear first
kind Fredholm type integral equation for unknown function ¢ (r).

Where the measurements are carried out on rather large distances from
the observed object, the kernel of an integral equation can be reduced to
the Fourier or Fresnel integral equation, which can be conversed analytically

3]
2y = n‘zlvﬂ / / / ADPE - @) +n@]EE D d, (@)

where || N|| is a normalizing term, A (r) is aperture of measurements, ® (r',r)
is the kernel of the inverse transformation, n (r) is an additive noise. In (2)
the distribution £(r') is the image of the original distribution ¢ (r). The
image differs from the original because of the aperture distortions A (r)
influence of noise and other factors [3].

The Green function Gy (r1,r2) has the more complex form in an inho-
mogeneous environment. The model of environment structure is necessary
to use for correct reconstruction [3].

For overcoming of difficulties associated with an discussed ill-posed prob-
lem it is possible to use the regularization algorithms, and also to realize of
the reconstruction using different point of viewing and different frequencies
[12, 13]. In the case of an inhomogeneous environment, the random object
tomographic reconstruction problem has some features [3]. According to
first of them, it is necessary to assume, that the time of observations t,ps
essentially exceeds the coherence time of fluctuations, T' < t,p5, SO thers is
the possibility for the average values measurements. We also assume, that
during the observation the object can be consider as the stationary one.

The equation for the image reconstruction can be reduced from the equa-
tion for propagation of the coherence functions [10]. It can be also formally
obtained by averaging (1). Assuming the statistical independence of the
fields, we receive for tomographic image from (1) the following expression:

¥ (r1,r2) = 9O (ry,12) + (3)
+ [+ [(Go (r1,7]) G§ (r2,15)) ¥ (v}, 13) E (r},13) drydri,
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where ¥ (r1,m2) = (p(r1) p* (r2))
¥ (r1,12) = (po (r1) p§ (r2))

are the coherence functions of the fields, E (r},r5) = (e (r})e* (rh)) is the
correlation function of spatially-localized random inhomogeneity. The av-
eraging of Green functions is associated with the presence of the randomly-
distributed sound speed vplume and ocean surface fluctuations.

As for the regular madel of ocean, the equation (3) can be reduced to
more simple integral equation if restrict the considerations by only Born
scattering. From the equation (3) we receive in this case

1/’("'1’1"2) = ¢(0) (rl’rZ) + (4)
Lo [ B (1,72, 7, 75) 90O (34, 14) B (51, v3) dirh i,

where the kernel &, defines of the Fourie or Fresnel transformations. The
solutions of such equations can be found with

f“’fA(rl)A‘ (r2) (¢ (r1Lr2)+0(r1,13)) X (5)
x®g" (r1,12,1),15) dridry = 5o (v}, r5) + E (r},13),
where &;! is the inverse transformation, % is the illumination source image,
E is the image of the inhomogeneities. One can see from (5), that the
image of the inhomogeneity is formed as the convolution of the measured
data with pulse characteristic [10], that defines of the image as the distorted
original distribution of the observation object. These distortions are caused
by measurement limits. The reconstruction can be complete if we assume,
that the measurements are carried out in an infinite plane and that the noise
is absent. Such tramsformation can be seen as the ideal one [10]. All kinds of
distortions can be formally included into the aperture function A (r). The
specified separation of operations underlies the radio-optical approach for
understanding of the image construction [10)].

For future analysis it can be useful to define the concept of an image
(10, 11]. Namely, by the image we consider the distribution of intensity,
constructed by the imaging system. We also assume, that the image is
approximately characterized by the mutual-univalent correspondence with
original distribution of the field in near region of the observed object surface.
The image is characterized by a field of vision and a spatial resolution. In
general case, the spatial resolution depends from the location in the field
of vision [10]. Besides, the field of vision can be essentially inhomogeneous
with the complex form and nonuniformity in respect to the space resolution.
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It is necessary also to consider these values as the statistical because of the
influence of the background of additive noise and reverberation.

Usually the objects of observation have the complex three-dimensional
structure. If the observation is carried out through the systems with the
limited input aperture, the reconstructed image can be build only like the
planar (or shadow) image. For example, for the Fourie or the Fresnel im-
ages the longitudinal spatial resolution (along direction, perpendicular to
measuring aperture) is practically absent or on an order less (respectively)
in comparison with an appropriate space resolution in the image of cross
plane distribution of observation object. It can be use a tomographic prin-
ciple for elimination of the specified distortions. Such approach consists of
the joining of the information about separate partial planar (shadow) im-
ages (tomographical projections), which ace obtained, under different point
of viewing in a.summarized image [12]. In layered oceanic waveguides the
concept of tomographic projections can be more complex, because the each
of partial waveguide waves can be considered as the additive tomographic
projection.

In conclusion of this section we would like to mark the rather important
circumstance. The tomographic image reconstruction requires of an a priori
information about the observation object, the refractive environment, ran-
dom inhomogeneities of an ocean and the construction of the observation
system. All these models are multiparametric. Due to this the hypothe-
sizes about the location and form of the object can be complex problem.
The searching of a global extrema associated with solution (reconstructed
parameters of observed inhomogeneity) can be difficult [9]. Thus there is a
problem of the hypotheses searching optimization. The optimal trajectory
in the parameters space can be found by the use an a priori information
about of all features of concrete problem. Such information can be detected
from the natural and numerical experiments. It is possible to test the global
structure of solutions by a preliminary investigation. It allows to realize the
rough review of a field of vision as the first stage of reconstruction. The
detail analysis of the problem solution with needed quality can be realized
during the second stage [16]. The specified algorithms can be built only by
rendering concrete physical and mathematical models of observations.
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2 Development of the models

2.1 Model of oceanic environment

Consider the oceanic volume as the layered refractive waveguide with a given
profile of the refractile index n (r) = n (2). If the frequency of the probing
waves is sufficiently high, the approach of geometric acoustics can be used
(see [15]).

Pulse signals distribution in refractive waveguides has a series of features,
which are important from the point of view of the tomographic reconstruc-
tion problem. First of them, is the ”depth - time delay” structure of pulses.
In fact, that the pulse signals, coming on separate rays, draw in the plane
“time delay-depth” the structure, similar like the saw tooth pulses with a
varying phase (see Fig. 1).

17\
\

25

-

Depth, km

Dastance 100 km
Bilnear waveguide

669 67 671 672 673 674 6/.5 676 677 678 67.9
Pulse time delays, sec
Fig.1. The depth-time delay dependace for pulse calculated for the
bilinear oceanic waveguide [5].

The group of pulses, associated with signals propagating in region near
the waveguide axes are not resolved in time and, interfering, form the certain
summarized "bunch”. Each of one-half oscillations cycles of summarized
pulse in {7,z} plane can be corresponded to an ”inhomogeneous wave”
(Fig. 2) [5, 6]. Besides, it is known [18, 16],
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" The first wave The second wave

Fig.2. The intensity of the refracted waves
(logarithmic scale)

that the presence of smooth local extrema in dependencies of ray cycles of
exit ray angles leads to the creation of the weekly divergent bundles of rays.
They form an interference peaks (or pulses)

N W e O N DO

-

10 20 30 40 5 60 70 8 9D
X

Fig. 3. The distribution of CPC in the oceanic volume

in the plane {7, 2z}, having rather large intensity and coherence.
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The local inhomogeneities reconstruction is possible only in regions,
where the intensity of the probing waves are large. Analogously, because of
the symmetrical situation, the receiver does not ”feel” the inhomogeneity,
if it is situated in a region associated with the week sensitiveness of the re-
ceiving system. Such effects in summary can be described by translational
characteristics of the waveguide [17]. The distribution of one of the transla-
tional characteristics - coefficient of the power coupling ( CPC), - calculated
for bilinear oceanic waveguide is shown in the Fig.3.

The regions, where CPC is large (dark in the Fig. 3), are sensible in
respect of the local inhomogeneities existence. In fact, that the CPC dis-
tributions, generally, define of the inhomogeneity of the field of vision for
observation system. The use of CPC in integral equation as regulating fac-
tors permits to reject of the regions, where the reconstruction is practically
impossible.

2.2 The local inhomogeneity model

Let we consider the localized in space bubble cloud as the observation object.
The plume can be represented as the local perturbation cf the refractive
index where the bubble sizes are small in comparison with the wave length.

We describe the stationary local perturbation € (r) of the refractive index
in the neigborhood of point r* by the moment functions

E(r)= (5(1')) =g (r—r* ),
® (r1,r2) = {(e(r1) = E(r1)) (e (r2) — E(r2))) = (6)

=elp (82 —r*,r; - 15),

where values ¢, ? are the quantitative, and 9 (R) ,  (Rz) are the functions,
describing the spacial distribution of the local inhomogeneity. The local
character of such description is reflected in the following properties of the
functions:
4(0) =<p(0 0)=1,
9(R) — 0, 0
B jritseo & © BLBR) o soo

Integral parameters

1 Heo 1 N
03=72—"—L0(3,0)d3’02=72_"_{° 19(0,2)d2;

poo (7
=4 ’51;!‘1'0(1{) dR
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- the generalized scales of the inhomogeneity - describe its spatial sizes.
The Gaussian functions can be used for this purpose:

J(R) = exp (-“%43) ,

2 2 8
¢ (R1,Ry) = exp (- [RlHRal’ ) ®

Asymmetric local inhomogeneities of scales 05,0, can be described by the
Gaussian functions:

o - (57 )

2 2 2 2
¢ (R1,Rs) = exp (_ lnlzlzténz_.d_ _ |m.|2-:’iag_) .

By this way we constructed the parametric model of the local inhomo-
geneity with parameters {o,¢%,02,02,7*}.

Generally, the set of the diffracted waves appears due to scattering by
the local inhomogeneity. In Born approach, where the inhomogeneities are
relatively weak, these diffraction waves are small in comparison with the
incident wave. The Born approach corresponds to the complementary time
delay 7¢ [14] for the same ray trajectories in terms of geometric acoustic.
The mean value (7€) and dispersion 72/2 may be found using the moment
of functions of the refractive index

1
()= [ E(@)dl=¢g [I(x—1*)dl=¢ [ I(r(l)—1*) dI,
[zoe=a] / 0

T2/2 = ji@(l’ (ll) ,l‘(lz)) dlydl,.

Finally for the Gaussian models (8), it is possible to obtain the following
approximate formulas

) =eo [ exp (L5510 ) @
T?/2 ~ \/2_1r:e§ /exp (—HL;—};JE) dl

o}

(10)

2.3 The reverberation model

The random inhomogeneities of the oceanic waveguide can be classified
as the three types: volume inhomogeneities (turbulent pulsations, inter-
nal waves etc.), surface inhomogeneities, generated by the wind and bottom
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inhomogeneities. For the simplicity, we focus on the deep sea model ne-
glecting by the bottom inhomogeneities influence. For the first two kinds of
inhomogeneities we use the following models.

Volume inhomogeneities Let we consider the distributed in the volume
space fluctuations of the refractive index n(r) as the homogeneous in space
fluctuations with stationary Gaussian statistic [1, 19] and the coherence

function _ L
®(ry,r2) = (n(l‘lz),n(l‘z)) =
—_ Z1— 2
=636Xp(“% [(1102@2) +(19;2) ]))

where €3 is the dispersion of fluctuations, g, , are scales of coherence.
As it was demonstrated in [16], for the pulse signal with the coherence
function

[o o]

Ve (1) = / exp (iwTt) dS¢ (w)

—00

the coherence function of received signals under the geometric acoustics
approach has the form

kq (r1,r2;7) = z 2 <A§-I)A§~'2)> exp (iwjj') ki (r+ Tjjl) ,

j€J1 j'€J;
+90 ‘ T\ 2 11)
kij ()= [ exp (zw'r - (—“2—) ) dS¢ (w) .
—00

Here the translation function Tj;: is the statistical difference of times (SDT)
between the rays - the geometric characteristic of the waveguide, describing
the correlation of waves, brought by different rays. SDT properties are
studied in [16]. In particular, for small horizontal scale g, of fluctuations

2 i+ 1 Y
T2, ~ 421 R, | 2128 _ —_— |, (12)
7 @ 2 z?sinlO{—-G{'

where I; are the lengths and 0{ are the slide angles of the rays, respectively.
For example, if the correlation function of the signal is

2
ke (1) = ke (0) exp (—%2- - iwor) ,
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where 7¢ is the pulse duration, wp is the central frequency, then

T2 iwoT
kjj (1) = kjjr (0) exp (“m) exp (— m) -
i’ i3’

In nonperturbed by the local inhomogeneities environment the time de-
lay of the pulse is a random value with statistic, which depends on the
statistic of the stationary refractive index fluctuations.

The surface scattered field It is well known, that the spectrum of the

surface wind waves can be described by the empiric Pierson-Moskovitz spec-

trum [20]. The spectrum of scattering signal in this case can be expressed
by the following formula:

ﬂo 0.74g2

WelK) = ga o | ~agr |

where |K| = |Kp| = |Ks cosa — K, cos 8] is the wave vector, corresponding
to resonance Bregg component, K is the horizontal projection of incidents
under the angle a ray, K, and § are the same parameters for the scattered
wave, v is the wind velocity, g is the gravitational constant, 8o = 6.4-1074,

Ky = ﬁ’ Q, is the characteristic frequency of the Pierson-Moskovitz spec-
trum. Taking into account of the wind waves movement and also the large-
scale surface waves movement, we can represent the normalized frequency
spectrum of scattering signals in the form

W () =

0.74¢% (Q £ Q,)~° o | 07407 (@ % Q)"
viK2 2w P viK2 27 )

Every element area of the scattering surface gives the contribution into
the result signal. It can be described by the coefficient of the surface scat-
tering for fixed Doppler frequency Q:

myga = 4K3K,2.W( (9) sin® (93 + a*) sin? (©r +a*) x
|cos "AIN
7
X T dAIN 7,44’

9
are vertical incident and scattering angles of rays, respectively, a* is the

where N = 21.75 - exp (—0.74v/ \/ £2i93 ’, dA is the scattering element, O, ,
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mean square slope of the sea surface, that can be taken from the Cox-Munk
spectrum

a" =107 /15 +254-0(2),
N = 16.095 %=,

494 is the angle between vectors k and v, N is the coefficient of the spectrum
anisotropy.

For the result intensity of the scattered wave with the frequency w we
have

Drev (w) \/I—O/ bs (rs» ra) Tda b, (rm 1‘,-) dA, (13)

where b, , are the transmission losses from the source to the element area
of scattering dA and from it to the receiver, respectively, Iy is the intensity
of the wave near the source.

2.4 Model of probing signals

As it is well known [15], the acoustical signals in the refractive waveguides
are formed as the interference of the partial waves and have the complex
structure. The success of the tomographic reconstruction depends especially
from the possibilities for separation of different wave components.

As the probing signals, the short pulse signals with complex modulation
are necessary to use for better separation of partial wave pulses (rays pulses
in our case). In our future discussion we will use the signals with linear
frequency modulation (LFM-signal):

. 1/4 [ 2
- (-8
() = (_”'Te ) exp \——;}e ) cos (wot + at?/2), (14)
where (aT; <« wp) and the coherence function

¥ (1) ~ exp (—{-;) COSWoT,

72 =213/ (1+ 2T¢/4). 19)

2.5 The signal filtration

Let we consider the source S, radiating the periodic sequence of pulse signals
(14)

E(t) =) &(t—kTo).
=0
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We put the receiver with the uniform diagram in point R. The received
signal consists of the pulses, refracted in the oceanic volume or reflected
from the waveguide boundaries.

Accordingly to our approach,we divide the boundaries of the waveguide
into regular (the bottom) and irregular (the ocean surface). The surface
parameters have the random time fluctuations (due to influence of the wind
waves). In this association, we call of the received pulses as the regular
pulses, if they arrive to the receiver after refraction from the bottom. The
another kind of pulses, are the irregular pulses which reflected from the
surface of ocean.

In unperturbed environment I-th regular pulse arrives to the point R
with the time delay 7. If there are the random fluctuations & of the re-
fractive index n in ocean volume, the time delay of regular pulse becomes
random and has the form

n=1+7 =
= [nds+ [eds,
G G

where C; is the trajectory (ray) of the I-th pulse. According to our approach,
we neglect by the random fluctuations of the amplitudes A; and trajectories
of the regular pulses.

Irregular pulses arrive to the receiving point after reflection from the
random surface. Their number M, amplitudes a,, and time delays7,, are
random and mostly defined by the irregular boundary fluctuations statistic.

The interval of observation [0,T] is assumed to be sufficiently large in
comparison with the period Ty of thé probing pulses, so the number of
pulses is large: [T/To] > 1. Also we assume that the period Ty exceeds
significantly the pulse duration T and the time of coherence of the random
fluctuations of the waveguide parameters, so the realizations of this values
for different pulses can be regarded as independent fromn the each other.
Assume, however, that the statistics of all parameters of the wavegmde are
the same in the observation interval.

The receiving scattered pulse signal can be written in the form

)= 3 (Z Ao (t - kT - TW)

k=0

M
+ Zk as,'f)ﬁo (t—kTo - 7;-5; ))> +ﬁ(t),

m=1

where the parameters are as follows:
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1. r,(k) is the time delay of the pulse number & for the ray number [; the
2
mean value <‘r,(k)> = 7| = 70 +1f and dispersion o7 = (T,(k - 7",) >
depends on the ray and doesn’t depend on the pulse number k;

2. M, is the random number of irregular pulses, which are generated by
the pulse k; the mean value (M) = M doesn’t depend on k;

3. aﬁ,’f), m = 1, My, is the random amplitude of the irregular pulse num-
ber m; the mean value of the amplitude is determined by the irregular
boundary and doesn’t depend on the pulse number: <a$,'f’ > = @&;

T(k), m = 1, M}, is the random delay of this pulse; the mean value
(T8) =T,

Finally, the mutual coherence function of the received signals and the
replica is defined for the periodic pulse sequence by the formula

K(r)= lim %f{o(t)n(t+‘r) dt =
= lim %0}' ?‘; & (t — nTo) (Z (Z Ak (t +7- 'r, kTo) (16)

M;,

+3 a ag, (t+T—kTo— Tk ’)) +n(t+1'))

The contribution of additive noise Let we consider

Tf E & (t—nTo)A(t+7) dt =

0 n=0
| tmym M
= Lum X &o (t — nTo)#i (t +7) dt
nTo

N—

Cn

For big number of pulses [T'/To] > 1 and small time of correlation of the
additive noise T; « Ty the terms (,, in the last sum are statistically inde-
pendent from the each other and have zero mean values. So, by Bernoulli
law with high probability

1 1 [T/To)

LN Loeyv=
To [T/ To) n=0 bn = To (G} =0
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According to more real model [19], the influence of additive noise is
associated with finite noise coherence in the pulse and time of observation
scales.

The contribution of irregular pulses Supposing that the following
conditions are hold
T>>To>>T§, To>» v —"To,

consider the expression
'-}'f vo&’ (t = nTo) z 2 ald g (t+1’ kTo — T(k)) dt =
0n

(/7o) My (17)
DS

as,'f)\ll (‘r - 7;(,.")) .
Let we transform the sum for a fixed k:

ok (1) = % a(k)\ll (T—T,,(f‘)) =

m-—l

= M- z: a(k)\Il( -7).

o

N~

k=0 m=1

If we assume that the numbers of 1rregu1ar pulses M}, are large for all
k, and also statistics of random values My, ok , ), T4E) are independent from
the each other and don’t depend of n, k (i.e. are the same in the interval of
integration), then accordingly to Bernoulli law we have

o (r) = (M) (o)) (¥ (7 - T) ) =

=Ma(¥(r-T7)),

where M, & are the corresponding mean values.

Finally, for the sum (17), describing irregular pulses contribution to the
coherence function (reverberation), we obtain the following approximate
expression

[T/To] [T/To] My
FEL X el (r- T - (k-mD)

n=0 k=0 m=1

> M5 (3 (r - T)) = Kq (r)

Note, that the mean values M, a, 7o, or?;— are (for fixed locations of the
source and the receiver) defined only by the random surface perturbations.
They can be calculated for given parameters of the random boundary.
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The contribution of regular pulses Let we consider the first term in
the sum (16), which is responded for the regular pulses correlation. Assum-
ing that for all rays

T>>T0>>T§, T0>> T_‘T-la
we receive

lT
+f
0

2 06— o) 5 T Ao (1477 - bTy) e

n=0 k=0 (T/To]
L)
k
E;Azﬁw—” T kz—:o v (7‘ 7 )).

According to the Bernoulli law (as values T, ( )

ferent k), we have

are independent for dif-

1 [T/To) .
/70 > ‘I’(T—Tz( )) = (¥ (7 -m)),
k=0

le]

§ éo (¢t — nTo) Z EAtﬁo (t+7' - 7™ kTo)

n=0 k=0

=4 EAt (‘I’(T n)) = Kz (7).

L
T

oy

(19)

For given statistic of the refractive index € of the fluctuations we can
find the statistic of time delay 7; fluctuations, and then (for given coherence
function of the pulse) the function K (1), containing the information about
the fluctuations can be calculated. Similarly, we can get the function K; (1)
using of the statistic of the irregular boundary fluctuations.

Finally, we receive the following representation for the mutual coherence
function of the receiving signals and replica

T
. H 1 o
K (1) —:lly»%o?ofé(t)n(t-i-r) dt =
= Ky (1) + Kz (1) = (20)
>~ Tl- [Ma(‘l’ T-TH+ Zl:Ag (P (7 - Tl))] .
This formula shows that formally the irregular boundary can be inter-
preted as the complementary ray, through which the pulse signal passes with

random time delay 7 and the amplitude Ma. It differs from the regular
pulses the essentially large dispersion of the time delay and small energy.
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Gaussian model of fluctuations Let the time delay of irregular pulse
T has the Gaussian statistic with parameters (7o, T2,/2).

For the normal distribution of the refractive index fluctuations &, the
time delays of the regular pulses 7; will be also normal with the parameters
(7,T?/2), where the mean delays 7 and their dispersions T}?/2 could be
calculated (see sections 2.2, 2.3), using the statistic of ¢ (r).

For the functions K 2 (7) we receive in this case

Ky (1) = 4;Ma(¥(r-T)) =
1 _Ma +eo z?
=T e _{o ¥ (1 —To — z) exp (—7.3-) fi:c,
Ky (1) =g X A(¥ (T~ 7)) =
too !
=1 A — & _ _z?
= Zl:ﬁ_{o‘ll(r A z)exp( %-;) dz.
In particular, for LFM-pulse (14), using of Poisson integral we obtain

jf:exp (—Q’—T}'ﬁﬁ) coswp (AT + z) exp (_%;) dr =

_ i (AT, /T)+(wore /2)> (1¢/T)?
=\ T Gre/T® P (’ TH e T )°°S“’°A71+(fe/r) :

So, for the pulse with the coherence function (15)

TE
x coswoPBnr (T —To),
2
Ky (1) = % ;Ax\/ﬁfexp (—ﬁl ((T—;ﬁ) + (“""21‘)2)) X (21)
x coswofBy (T — 71),

g2 _ 2
Bar = ;z:gfz:) Bi= ;e!__:T"Z

From this formulas it can be seen, that the maximal value of the correla-
tive moment K (1) for one pulse is achieved where 7 = 7. If the differences
in pulses time delays are greater then the time of pulse correlation ¢, then
the function K (7) has the sequence of local extrema at points 7:

K (n) = 42 Biexp (~5; (448)")

K1) = Moy Boresp (~fur ((52)" + (F)7) ) x
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The only exception of it is the range of delays, that are closed to the mean
time delay of irregular pulses 7 = 7, when these pulses contribution into
the correlative function is compared with the regular pulses contribution.
So, we can get the information about time delay fluctuations of pulses
with different time delays by the searching of this function local extrema
(that are disposed in different pulse volumes). The similar way to extract of
the information about the local inhomogeneities, situated in these volumes.

3 Tomographic schemes

Let we assume that the vertically-distributed receiving array with
n  hydrophones. Suppose that we know of the time delays

n
T= {1‘,50), i=1 zk} for all pulses arriving to every hydrophone. Ran-
dom perturbations of the refractive index lead to small random variations
of these delays T°= {r,ﬁf), i =T,4},_,. Because of small sizes of the ob-

served local inhomogeneities the variations will be received only by finite
number of hydrophones (which are situated on the rays passing of the in-
homogeneities). Due to this, it is possibilities to reconstruct of the local
inhomogeneities.

The process of reconstruction can be presented as the procedure with
the following steps:

¢ the determination of the number of local inhomogeneities;
o the localization of the probable regions of their concentration;

e the estimation of the parameters of each inhomogeneity.

3.1 Discussion of the equations

According to the mathematical formulation of the problem, for the statisti-
cal moments Z (r), ® (r1,r3) of the time delay random fluctuations we have
from (9) the following systems of the integral-functional equations

17y

(r5) = / = (s (1) dl,
0

Ui Lpes
Ta/2= [ [ ® (ki (), ki (I2)) dhdly (k=T)n, i=
0 0

—
o,
Ll
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(index k relates to hydrophone, 7 - to the ray, connecting it with the source
{l‘ =Tk (l) ,l = l,lki}).

Consider the first of the systems. In more general case the ap-
propriate mathematical problem can be formulated as follows: let
{re(®):[0,l;] = R®, iel} be a given set of continuous functions,
{Bi,li >0, i € I} - given set of real numbers (I - finite or infinite index
set); it is necessary to find the continuous function E(r) : R® - R}, for
which

1
[emmya=p,ier
0

The formulated system of the equations are of integral-functional fype.
In the above general formulation the solution of the problem is unknown.
But if we restrict the set of all possible solutions to only set of analytical
functions, then the problem can be reduced to the classical problems of the
functional analysis.

Consider the case r € R? for the simplicity. After parametrization of
the ray by the longitudinal coordinate

r; (:B) = (2), 2; (Z)) » T € [0) X]
the equations (27) can be rewritten as

X

/E(w,zi (@) ai (z)dz = i, i € 1,
’ ai(z) = 1+ 22.

By expanding of unknown function Z (z, z) into a power series
oo
E(z,2) = 2 tuzkz! (22)
k,1=0

we can reduce system (27) to the linear system with infinite number of
unknowns {tx;} and the set of equations, numbered by index i € I:

< ()
z tklpkl = ﬁi’ 1€ I7

k,l=0
)T (23)
ol = [ 244 (0) s (@) da.

0
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This problem is well known in functional analysis [21, p. 264] as the "mo-
ments problem”: to find a linear functional (vector) t = {tu} € l2, taking

given values B;, 1 € I on the given set of vectors P = {p(i)E {sz)} € lz}:

(t,pw) =p i€l (24)

Dividing if it is necessary each of equations (24) by the norm vector p® and
making the corresponding change §; to §;/ "P(')", we can always consider

. 00 A\ 2
the set of these vectors as normalized one: ||p(')||2 =3 (pf:l)) =1,
k=1

i € I. Next, applying if necessary, the orthogonalizing process, we can
always consider this set as the orthogonal one P.

. The geometrical meaning of the system (24) is in searching of vector
t € 5, -having the given projections on the given directions p{(*). As we can
easily see for orthonormal set P of the solution it has the form

t=> BipW +ty, (25)
iel
where t is an arbitrary orthogonal to the set P vector. So, if the closure of
the linear span of this set doesn’t coincide with the hole space, the problem
solution is unique. Otherwise, where the set P is full in l2, the only solution
of the problem has the form

i€l

From theoretical point of view it gives the complete solution of the prob-
lem (23). The unknown vector is represented by the formula (22), where the
coefficients tz; form the vector t, which can be found from (25). The vector
set P must be preliminary normalized and orthogonalized. The problem
solution is unique, if this set is full in ;. Particularly, it must be infinite.

As for the initial problem (27), for the determination of function Z (z, z) ,
we need to have an infinite number of rays for the time delays measuring. As
it is impossible in practice, one must refuse to solve the problem in general
form (27) and focus to more special formulations, using the information
about the problem solution.

Let, for example, we consider the local inhomogeneity model (6). The
equation system (27) in this case can be reduced to

X
€ / 9 (xs (z) —r*) o (z)dz = By, i € I. 27)
0
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Unknown parameter ¢ can be easily excluded from the system after
dividing of the equations by one of them, the first, for example,

X
[@o0E@ -1 0@ -BIE @) @) do=0, o
0

i€l

The unknown in this system is the function 9 (r), describing the inhomo-
geneity spacial distribution in respect of its central point r* = (z*,2*)
(which is also unknown). Taking into account the local nature of the inho-
mogeneity, we can easily approximate this function in the neighborhood of
zero by the function with small number of free parameters. The simplest
case of such approximation is Gaussian one (8) with only one parameter o
- the spherical inhomogeneity size:

2
?(r) = exp (—”2—1212-) .

For this approximation the functional system (27) converts to nonlinear
algebraic system for o and r*

© Bi®1 (o,r*) = 1% (0,x*), i€ 1,1 1
X B
®; (o,r*) = /exp (_lls_(%);-;_lﬁ) a; (z) dz. (29)

0

The solvability of the last system depends from the number of equations.
If it less than three, the solution is not unique. If it greater than three, the
system becomes overdetermined and (as B; are known only approximately)
does not have solution in general case. So one can find only the generalized
solution of the system. It can be constructed by means of different schemes.
For example, one can find parameters, for which the residual function

flor) =Y (Bid1 (0,7*) - Bi&: (0,1"))
iel
is minimal.
Also one can chose from the set of all equations (29) only three equa-

tion, which are corresponding to maximal values of the right parts f;, for
example. The solution of the resulting system can be obtained with the
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following transformations. If neélect with the ray horizon variations on the
inhomogeneity scale, then after calculating of integrals in (29),

Bion (z%) exp (— T = g, () exp (- Lilegdel)

1=2,3,4.

Taking the logarithm of both sides and excluding o2 one can receive the
equation
PCREREN +)742z§4)z§4)z§1) +vs2) 4745 =0,
z; (2*) = 2z (z*) — 25 (%),
Yii (:L") = lnﬁja.- (:z:‘) - ln ,B;aj (2‘)

for the coordinate z*. After numerical solution of this equation one can find
other unknowns by formulas
=)+
o= ya1287) 28 —yas 22 ) o2 = 7 (AP -2
Ya1253 —7V43215 ’ Y41 ’
— *
€o = P1/®1 (o,2*,2%).

3.2 Local inhomogeneities parameters estimation

Presented in the previous section methods assume the full reconstruction
of the moment function 9 (r). But in practice the considerations can be re-
stricted only by more special questions. They are, for example, the number
the location of the inhomogeneities and their sizes. Some of the results in
this direction are represented in next sections.

Geometrical method of localization The problem of the local in-
homogeneities number determination is, really, of pure geometrical type.
Initially, the ray trajectories in nonperturbed volume can be calculated in
advance. Neglecting of its variances in perturbed volume, one can find the
regions, associated with intersection of the rays, which bring the pulses with
perturbed time delays of pulses. These regions are suspected for containing
of the local inhomogeneities.

This problem is of not trivial kind in multiray situation, whe¥e the num-
ber of inhomogeneities is also unknown. Further obstruction is the random
mistakes in time delays. Consequently, this problem solution can be ob-
tained only in probabilistic form. For example, one can choose the probabil-
ity density (the localization function Fj,. (r)) of the inhomogeneities presence
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in the region. Modes (i.e. the local extrema) of this function can be ac-
cepted as possible regions of inhomogeneities localization. Accordingly, the
modes number gives the estimation of the local inhomogeneities number.

Consider the following estimation procedure of the described above pa-
rameters. For every hydrophone of the receiving array (on the horizon z)
and every arriving to this hydrophone pulse let p; (2) be the probability
of the time delay variation (in consequence of the volume perturbation by
local inhomogeneities). This probability depends from the local inhomo-
geneities size, its location with respect the pulse trajectory, the intensity of
pulse, the antenna systems etc. Methods of this probability estimation may
be different and do not affect on the described procedure. The matrix of
probabilities ||p; (2)|| is the base on which the localization function Fj,. (r)
will be calculated.

The calculation of this function is performed as follows. Let we separate
the observation region on the set of small elements Q;;. For central point r*
of the element 0* let calculate all energetic rays passing through it and find
its horizons z; in the receiving array cross-section. Then we can determine
the number of rays, for which the corresponding probabilities p; (z) are
larger than some fixed level (0.5, for example) and subtract from it the
number of the rays, for which the probabilities are less than this level:
B; (r*) = 3;(=1)". After normalizing of the received function B; (r), we
can obtain the function

max (B (r),0)
J[ max (B (r),0) dr’

Froc (l‘) =

At points of local inhomogeneities location this function would have the
local extrema. Really, for all rays passing such points the probabilities p; (2)
would be high, so with high probability the function B; (r) in these points
would be equal to numbers of passing rays.

There can be the local extrema of this function, which is not associated
with the local inhomogeneity. For all points of inhomogeneity, which are
intersecting by the ray, the value p; (2) is the same. So, for all such points
the localization function will have the local extrema. But the probability,
that other rays, passing these points, intersect of local inhomogeneities are
not big. Hence, the corresponding extrema would not be the same large,
because these other rays will give a negative contribution to the sum B;.

As the false local extrema are situated on the rays, connecting the source
and the receiver, then after summation of the localization functions for the
different sources the main extremum (wich are the same for all functions)
would increase, while the other extrema (because they are different) would
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decrease. The other possible criterium is associated with the local extremum
movement while the source of probing waves location changed.

Estimation of the generalized sizes Let the ray connecting the source
with a fixed hydrophone, propagates through the central point r* of local
inhomogeneity of the space scales o, 0. For the hydrophone o1 the vertical
distance h from this central point we have from (6,7) the time delay shift

X
7 (h) = & / 9 (rn () -1) \/1+ (2} (2)) dz =
0

X
= / 9 (z—2*, 21 (8) =) /1 + (2} () dz =
0

X
= goy/1+ (25 (z*))z/.ﬂ(x——z",zh (z*)—2*) dz = (30)
0
X
& eoy/1+ (2 (x‘))zfﬂ(z—m*,q(z*)h) do =
0
+o0
& eg/1+ (2 (2))? / 9 (z-2*,q(z*) h) dz,

-0

where the vactor-function rj, () descrives the trajectory Cj, of the ray, con-
necting the source and the hydrophone at point h, X is the distance between
the source and the receiving array system, g (z*) = f,—;zh (2*) . In particular,

+o00
7 (0) 2 e04/1 + (29 (z*))? / 9 (z—z*,0) dz =
= eo\/1+ (25 (z*))*v/270,

- By integration of the function

+o0
_rh 1 ot (gt
6T(h)=‘r€(0)——\/'_2-1?a;';/19(2 a:,q(a:)h)dz
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in the neigborhood of h = 0, we obtain

+00 +00
+00
or ()= [ 67 (k) dh e 7,:,-}7;/ /19(:c—z*,q(z*)h) dzdh =
= T I P ®) R = s,
= 2#%.

The value g (z*), depending only on the central ray, one can express with the
focusing factors of the beam F' and F™* at distances X and z*, respectively.
Really, for small h

|hf = |A0I ,

where |Ad) is the difference of ray angles at the source, cs g are the sound
speeds at the corresponding points, Similar,

cs =¥

* — * o~
jon (%) — 2 2 S22 1),
SO
jon (z") - 2| & ST BTy = Ry
c* F‘c X X"
d o) = B Ex
q z* E-‘}FY
= &F . E = (X)) u(a"),
where
() = SEEF @)
- z

is the function of the current point of the ray.
For homogeneous environment c(z (z)) F (z (z)) = Const, so |g(z*)| =
z* / X.
If the coordinate z* is known (it can be estimated by the geometrical
analyzing — see the previous section), then it is possible to estimate the
generalized size of the local inhomogeneities by formula

& =g (z*) (6r ().

The similar formula can be used also for the local inhomogeneity co-
ordinates determination. For example, measuring of this integral values
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for two, passing trough the local inhomogeneity (67 (h)), , = o/q1,2 (z*)
different rays, it is possible to exclude the unknown scale &:

Gry_a . .
Gy, — e ).

If we know the ratio of focusing factors as the function of z, we can find
from this equation the unknown coordinate z*.

If the local inhomogeneities is unique, then after integration of function
o7 (h) over the vertical cross-section of receiving array system we obtain
the integral value

g

Zq @)~ a6,

(07 (h)) =

where

‘7(93',2*)521:41 (z*) =
* XNFi(X

is the summary value for all rays I, passed trough central point (z*, z; (z*) =
= 2*) of the local inhomogeneity. For the given source, the function
g(z*,z*) can be calculated previously as the waveguide parameter. For
excluding of the unknown parameter o non depending from it ratio

61 (h), _ @ (a2
@A), ~ @ (@)’

two different receiving array systems can be used. The right part of the
next equality

(31)

Q2 (z*,2%) = =

also depends only from the source and can be calculated a priori. So, (31)
can be used for the rough estimation of the coordinates (z*, 2*) of the local
inhomogeneity.

4 Computer simulation

Numerical experiment, realizing the described above procedure of inhomo-
geneities localizing, were made for bilinear waveguide with the sound profile

1Here and below all linea values are presented in kilometers, the time - in seconds.
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[z [c@
0 | 1.50
-0.2 | 147
-3 | 1.55

After splitting of the waveguide into elementary cells the calculation of
rays, passing trough center points of the cell, was made. The matrix of
probabilities ||p|| of the local inhomogeneities were defined for rays detected
in the receiving array cross-section. The probability p for the concrete ray
was defined by formula

el
@ = r=(rfl.;r)lec ((%) + (z—;—&) ) ’

where d is the distance of the ray C to the central point (z,, 2,) of the inho-
mogeneity, 0,0, are the sizes of the inhomogeneity in the axes directions.
If there are many inhomogeneities, then maximal of values (32) was taken
as probability p.

Then the matrix elements p;; were disturbed by random values for the
following rule: pi; = ® (pij + 0¢éij), where &;; are independent realizations
of the random uniformly distributed in interval (—1,1) value, o is the noise
amplitude

1, z>1
d(z)=¢ z, 0<z<1
0, z<0.

Finally, the calculation of the localization function Fj,. (r) ‘was made.
Its local extrema were compared with the disposition of the local inhomo-
geneities.

Some results of the numerical simulations are shown in the figures 4 — 6.
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Fig. 4. One inhomogeneity localization by the system with one
source for different noise levels o,

At the first one,” the local inhomogeneity with the central points
(60, —-0.1), the horizontal 2 and vertical 0.4 sizes was reconstructed. The
first series of pictures (see Fig 4) corresponds to graphs of the localization
function for one source which was situated in the horizon z; = —0.1.

« », ’
R
NS . ET
u " w
-0
.nnnl'?ﬂmﬂﬂ‘m‘n wm:nn?ommmlm
z; = {~0.1;-2.6} z; = {-0.1; -1; -1.5; —2.6}

Fig. 5. Localization of one inhomogeneity by the systems
with several sources

As it should be expected, it is possible to improve the quantity of re-
construction (saving other parameters) increasing of the number of source.
This result illustrated by the second series of reconstructed images (Fig. 5),
where the observation systems are taken with different numbers of sources,
but the noise level is fixed o = 0.5.
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The similar result of reconstruction was received in the case with the
several local inhomogeneities. At the third series of reconstructed im-
ages (Fig. 6) where the reconstruction of two inhomogeneities with centers
(35,-0.1),(60,—0.1) and sizes (3,0.4),(2,0.4), respectively, is represented
for the systems with different numbers of sources and zero level of noise.

] i k]
o . i as| -
L ~N-1§)
12
2 . n 2|
4 0
28 : 25|
z; = {-0.1} z; = {-0.1;-1.7; -2.5}

Fig. 6. Localization of two inhomogeneities by the systems
with several sources

5 Cornclusions

The possibilities for random spatially-localized inhomogeneities (such as the
cloud of bubbles or the fish shoals) were investigated in this work for ran-
dom inhomogeneous oceanic environment. It was assumed that the surface
of ocean was perturbed by the wind waves and the volume of ocean is char-
acterized by the uniformly distributed random fluctuations of sound speed.
As the probing signals, the LFM-pulses were used. The receiving system
was constructed as the vertically distributed array of hydrophones.

The result of investigations can be formulated as the following: Tomo-
graphic reconstruction of spatially-localized random

inhomogeneity parameters can be reduced to solution of the system of
the integral-functional equations. The solution of such equations can be
effective only by using of a priori information concerns of the problem in
form of the models for: the observed object, the oceanic environment as well
as the observation system. In our investigation the appropriate physical
model of observation object was developed as the three dimension cloud of
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random perturbation of oceanic environment refractive index with statistical
characteristics differ from the similar characteristics associated with the
uniformly distributed fluctuations of oceanic volume.

It is shown that the presence of localized inhomogeneities leads to the
appearance of the additive random shifts of the time delays of received
pulses. The measurement of the statistical moments of the random time
delay shifts gives of the possibilities for tomographic reconstruction.

It was demonstrated that, in fact, the reconstruction is impossible if the
inhomogeneities are located in the region with small values of translation
function. Translation functions, the small parameters models of problem
and the additive tomographical projections arising due to movements of
probing signals source were used for solution of the problems associated
with optimal searching of solution.
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ACOUSTIC TRANSMISSION FLUCTUATIONS
FROM THE BARENTS SEA:
OBSERVATION AND NUMERICAL MODELING

A. L. Matveyev, A. G. Sazontov, and N. K. Vdovicheva

Introduction

During the recent two decades extensive theoretical attention has been
focused on the problem of acoustic coherence in deep water environments
Analytical predictions have been compared with relative success to a number
of experimental results. The state-of-the-art in this field of knowledge was
summarized in the review article by Gorodetskaya et al. [1].

The shallow water acoustic propagation is known to face the difficulties
that are not encountered in deep—water waveguides [2, 3]. The most striking
feature here are the bottom interactions. These interactions cause signifi-
cant mode stripping: after sufficiently long range higher modes have been
attenuated by a loss bottom and only the first mode propagates. Therefore,
the behavior of the acoustic mutual coherence function (MCF) in shallow
water may be fundamentally different from the corresponding MCF beha-
vior for a deep—water situation. Since bottom effects radically modify the
acoustic transmission, any realistic propagation theory in shallow water en-
vironments should include them. It is worth commenting that there are a
few papers [3-5], which give predictions only for modal intensity fluctuations
in such a situatiori. Moreover, no detailed comparisons between measured
and predicted shallow water acoustic coherence has been reported.

A considerable progress in modeling acbustic propagation in a shallow
water channel where bottom interactions are important has recently been
achieved in Ref. [6]. Here, a general computer program based on the ra-
diation transport equation technique has been developed to implement the
theory for describing the fluctuation phenomena caused by fully developed
wind seas. In this context, experimental data are of a great interest for
validation of the theoretical estimations presented in' Ref. [6].

In this paper we report on the fluctuations observed in the Barents Sea
and compare the measured vertical coherence with theoretical predictions.
The body of this paper is organized as follows. In Sec. 1 we give a short
description of the experiment conducted in the Barents Sea, including mea-
sured environmental information. Next, in Sec. 2 we report some experimen-
tal results of CW measurements of acoustic transmission fluctuations in the

region of the experiment. In Sec. 3, using a modal formulation we present
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a basic numerical model that allows for estimation of the MCF of vertical
separation. Here, the observed spatial coherence of the received signal is
compared with the theoretical predictions based on wind seas scattering.
Finally, in Sec. 4 we summarize the key results.

1. Description of the experiment

The experiment was performed in the Barents Sea in October of 1990
during the 7-th expedition of the scientific research vessel “Academician
Sergey Vavilov” and the 4-th expedition of the scientific research vessel
“Academician Ioffe”. One of the objectives of this experiment was to mea-
sure and determine the nature of acoustic transmission fluctuations in rea-
listic shallow water environments in the 100 — 250 Hz frequency range.

The experiment was conducted in the area characterized by a flat bot-
tom covered with sand—clay sediments. The propagation conditions were
downward refracting conditions. A typical season sound speed profile in the
region of the experiment is shown in Fig. 1.

120

150 1 L
1.46 1.47 1.48 1.49

Sound Speed (km/s)

Fig. 1. Sound speed profile from the Barents Sea in the region of the expe-
riment

As seen in Fig. 1, the water sound-speed profile is a summer profile,
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almost isovelocity down to 40 m with a subsequent strong thermocline ex-
tending to about 60 m.

The acoustic interactions with the bottom caused significant sound at-
tenuation. The measured bottom attenuation coefficient in the region con-
sidered was about 0.4 dB/). The wave roughness (wind speed) during the
experiment was about 10 + 2 m/s.

The geometry of the experiment is shown in Fig. 2.

r=13.82 km
AIR
L] SEA
H~160m ’ . T
SOURCE .
) ARRAY
SIS S S S S S S S

BOTTOM
pp = 1.8 g/cm?®, ¢, = 1.78 km/s

Fig. 2. Experimental geometry (not shown to scale)

Signals of 107 Hz and 240 Hz in the form of continuous waves (CW) from
a fixed sound source (located at the depth about 148 m) were employed. The
transducers provided the output level referenced to 1 m approximately of
200 dB (1 kW). The signals were received at two vertical arrays separated
by approximately 90 m in line perpendicular to the direction of acoustic
propagation. The distance between the source and the arrays was 13.82 km.
The water depth was measured to be approximately 170 m at the array site.
The bathymetry at the source location was measured to be 150 m.

One array (array 1 in what follows) was suspended from board (fixed by
anchored barrels). The second one (array 2) was bottom mounted, stretched
vertically by an underwater buoy, and covered the channel only partially.
Array 1 covered the channel almost completely. However, some of its ele-
ments were switched off for some technical reasons. The interelement dis-
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tance d was 8.5 m for array 1 and 7.3 m for array 2. The bottom hydrophones
for the array considered were at the depths of 155 m and 148.5 m, respec-
tively. For additional details on experimental setup, see Ref. [7, 8].

2. Signal processing and data analysis

For experimental study of the received-signal fluctuations, a characte-
ristic 30 min interval was singled out from the record available. The re-
ceived CW signals were amplified, filtered with a bandwidth of £0.5 Hz,
and recorded in the quadrature form.

The sensor signal set at each carrier frequency may be represented by a
complex valued array signal vector

x(t) = [z1(t), z2(&), -, 2n(@)]7, for 1<I<L,

where z(;) designates the value of the k-th sensor signal at the sampling
time instant ¢;, L corresponds to the number of the time samples, and the
superscript “T” denotes the operation of vector transposition. The sample
rate was 1 Hz and there were L = 2056 sample points. In the analysis to
follow, it is assumed that the second-order statistics of the sensor signals
do not change significantly in the measurement time interval.

Figure 3 depicts portions of the original graphic recordings of the 107-Hz
and 240-Hz CW signals, respectively, showing acoustic pressure (in arbitrary
units) versus time. Each portion includes 30 minutes of data for 4 channels
of array 1. Figure 4 represents similar graphs for array 2. Analyzing these
curves, we can see that in a number of cases there exists a slow, pronounced
(in magnitude) variation at the signal level over the time interval selected,
which illustrates the nonstationary nature of the propagation conditions.
Moreover, the increase of the signal level at one hydrophone can be accom-
panied by the decrease of the signal level at the neighboring hydrophone of
the same array. Note that the temporal reception stability at the higher
frequency is somewhat worse.
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Fig. 3. Time series of the CW amplitudes for 4 channels of array 1 in the
30 min intervals at two selected carrier frequencies: (a) fo = 107 Hz, (b)
fo =240 Hz
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Fig. 4. Time series of the CW amplitudes for 4 channels of array 2 in the

30 min intervals at two selected carrier frequencies: (a) fo = 107 Hz, (b)
fo =240 Hz
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An intensity time series is formed by
Li(tt) = |=a(t) -

The graphs shown in Figs. 5, 6 illustrate the behavior of the normalized
mean wavefield intensity

L
. <It> 1
i = —Nk—, <Ii>= ‘EZka(tl)lz
L s« 1=1
N k>
k=1

versus sensor depth for the array considered. (The angular brackets < --- >
indicate time averaging).

A quantity of some importance is the fluctuation index 7. The definition
for n is

CVLIE> - <Ip>?
T = <Ii> ’

(1)

Parameter 7 is zero in the absence of fluctuations and is equal to 1 in the
case of Gaussian statistics of the intensity. The experimental fluctuation
indices 1%, Eq. (1), computed as a function of depth sensors are listed in
Tables 1 and 2.

In Fig. 7 we plot the power spectra, Sk(f), of the fluctuations observed
for the carrier frequency fo = 240 Hz and two selected array sensor depths.
The corresponding quantity is defined as

Sk(f) = |FFT{zk (1)},

where “F FT” stands for the discrete Fast Fourier Transform. A Hamming
filter was used to smooth the spectrum. It is seen from this figure that
the frequency spectrum consists of a central peak (at the carrier frequency)
corresponding to the coherent component of the registered signal and two
lateral peaks corresponding to the scattering component. The spectral den-
sity is expressed in dB with respect to the coherent component. The shape
of the frequency spectrum is typical of a shallow water environment where
rough scattering effects are important.
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Fig. 5. Magnitude squared of the pressure versus depth along array 1 at
(a) fo = 107 Hz, (b) fo = 240 Hz
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Fig. 6. Magnitude squared of the pressure versus depth along array 2 at
(a) fo =107 Hz, (b) fo = 240 Hz
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Table 1. Fluctuation index 7 versus receiver depth for array 1

Receiver depth (m) Experimental 7
fo=107 Hz | fo =240 Hz

44.5 0.22 0.29
61.5 0.11 0.64
70 0.16 0.21
87 0.23 -
129.5 0.36 0.57
138 0.18 0.30
146.5 0.36 0.45
155 0.50 0.36

Table 2. Fluctuation index n versus receiver depth for array 2

Receiver depth (m) Experimental 7
fo=107Hz | fo =240 Hz

80.8 0.13 0.77
95.4 0.10 0.22
110 0.39 0.67
124.6 0.16 -
131.9 0.13 0.18
139.2 0.16 1.1
146.5 0.53 0.85
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Fig. 7. Spectral density of sound pressure level in dB for two selected
receiver depths: (a) 2 =80.8 m, (b) z=139.2m
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The spatial correlation properties of the received field in the vertical
plane are fully determined by the-complex coefficient of the correlation
between the signal fluctuations at the k-th and j-th- hydrophones in the
corresponding array. The quantity of interest is defined according to -

3 ault) -55(0)
Cij = = =1 = ) 2)
\/l;l |(zx (t)? El [N

where the asterisk denotes complex conjugate. If the data are second—order
ergodic, this estimate provides an asymptotically unbiased estimate of the
N x N array correlation matrix. The magnitudes of Cj;, Eq. (2), computed
between all pairs of sensors are listed in Tables 3 and 4.

Table 3. Absolute values of the cortelation coefficient for array 1

fo= 107 Hz \

Depth (m) | 155  146.5 138  129.5 -87 70 . 6L5 445

155 | 1.000 :

146.5 | 0.892 1.000

138 0.877 0.958 1.000

129.5 0.831 0.896 0.956 1.000

- 87 0.906 0.893 0.966 0.933 1.000

70 0.898 0.934 0981 0934 0.986 1.000

61.5 0852 0.915 0974 0934 0.980 0.985 1.000

44.5 0.883 0.877 0.946 0.909 0.984 0.975 0.982 1.000

fo =240 Hz

Depth (m) | 155 1465 138 1295 70 61.5 44.5
155 1.000

146.5 | 0.934 1.000

138 0918 0.914 1.000

1295 | 0.758 0.728 0.831 1.000

70 0.783 0.838 0.861 0.661 1.000

61.5 0.545 0.438 0.486 0.202 0.535 1.000

4.5 0.687 0.588 0.646 0.434 0.730 0.830 1.000
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Table 4. Absolute values of the correlation coefficient for array 2

fo =107 Hz

Depth (m) | 146.,5 139.2 131.9 1246 110 95.4 80.8
146.5 1.000
139.2 0.965 1.000
131.9 0.931 0.975 1.000
124.6 0.925 0.969 0.998 1.000
110 0.970 0.941 0.948 0.940 1.000
95.4 0.927 0976 0.981 0.982 0.917 1.000
80.8 0.950 0.976 0.986 0.985 0.955 0.988 1.000

fo = 240 Hz

Depth (m) | 146.5 139.2 131.9 110 954 80.8
146.5 1.000

139.2 0.833 1.000

131.9 0.765 0.614 1.000

110 0.822 0.761 0.933 1.000

95.4 0.752 0.641 0.964 0.940 1.000

80.8 0.224 0.271 0.582 0.517 0.602 1.000

Several conclusions may be drawn from the results presented. First, the
vertical coherence depends essentially on the depth location of the sensors
because the signal field in shallow water is not constant in the channel and
depends on the receiver depth. It is clear that, as the frequency increases,
the rate of the coherence loss increases too. This fact, of course, indicates
that high frequency scattering occurs at a more rapid rate.

3. Numerical modeling of vertical coherence

In this section, to interpret the measured vertical coherence of acoustic
field, a modeling effort is undertaken using a radiation transport equation
for multimodal propagation. In this calculations we assume that the ran-
dom field of wind seas is the dominant source of transmission fluctuations.
We suppose the rough surface spectral distribution to be presented by the
Pierson—-Moskowitz spectrum [9]:

8.1x107% _ g’
Fn(&, Q) = T x 4 €Xp (—074m) 6 (Q - \/gee’ N (3)
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where g is the acceleration of gravity, and v is the wind speed over the ocean
surface.

In Ref. [3] the range-independent geoacoustical model was constructed
for the experiment considered using only the receiver bathymetry and the
sound-speed profile shown in Fig. I. The environments selected consist
of a layer of water &~ 160 m deep overlying a seml-mﬁmte bottom with a
constant sound speed of 1780 m/s, density of 1.8 g/cm and attenuation
coefficient of 0.4 dB/A. Below, we present for the given model transport
results for a typical wind speed of 10 m/s.

A modal solution for an acoustic pressure field P(r, 2,t) in the random
oceanic channel far enough from the source can be formally represented by

M
P51 =Y = pa(rt) pnlc). 4

n=1

Here, r = (z,y) is the horizontal two—dimensional position vector, z is the
vertical coordinate, ¢ is the time, ¢, (2) denotes the n-th vertical eigen-
function of the deterministic background medium, and M is the number
of propagation modes. Each normal mode is modulated by a random am-
plitude p,(r,t) indicating the effect of the surface on acoustic propagation.
The normal mode depth functions ¢, () satisfy the eigenvalue problem

d? .
E;'z'pn(z) + [kzng(z)—'cfz;] ‘pﬂ(z) =0’ n= 1:2)"~My (5)

together with an orthonormality relation and appropriate boundary condi-
tions. Here, ng(z) is the refractive index and k is the reference wavenumber.

In what follows we will be interested only in the behavior of the MCF
of vertical separation. The corresponding quantity is defined as

L'(r, 21, 22) =< P(r, 21,t) P*(r, z2,1) > . (6)

The angular brackets < --- > denote ensemble averagmg Substituting
Eq. (4) into Eq. (6), one ﬁnds that .

I(r, 2, ”)=§: ﬁ Lo (F)n(21)0m (22); (7)

rnm(r) = <pn(r) p:n(r) >.
In a multimodal channel, where the rough surface scattering is important,
for Ty (r) we can employ the results presented in Refs. [10-12):!

Fpm(r) =<pa(r) ><pp(r)> +[Tan(r) = <pn(r) ><pi(r) >]dnm. (8)
1 For more details see the paper by Gorodetskaya et al. [6] in this issue.
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Here, <p(r)> is the coherent field of the n—th mode

_ —ipn(20) .1 .
<pn(r,w,t)>= ———-—\/8_“.; exp [(mn 20,,) |r] 14] , (9)

where oy, is the total modal attenuating parameter and I'spn(r) is the self-
modal MCF. It is not difficult to show for the case of cylindrical symmetry,
that equation governing the change of I'n,(r) as a result of random surface
scattering may be written in the form:

(t—id; + % + a:) an(r) = Z‘: Anm [rmm("') - rnﬂ(r)] ’ (10)

with the following initial conditions:

1
Tan(r)l-=o = g2 ¥a(20)-

We introduce in the right-hand side of Eq. (10) an additional loss term o3
resulting from sediment absorption. An explicit expression for o can be
found in Ref. [3]. The coupling matrix a,y, is given by the expression

_ 7 [ (0)¢h O

nm
2 KnKm

00
//dﬂdae,, Fo(kn — £m, 22y, Q).

-00

Equation (10) is commonly known as the coupled master equation (see,
e. g. [13, 14]) describing the range dependence of the energy transfer between
the modes as a result of random scattering:

For the Pierson-Moskowitz distribution, Eq. (3), the calculation of the
matrix a,, is given in [13]. The result is:

8.1 x 10~3v/2r [}, (0)¢} (0))
Qnm = 8Km'¢mkg f(znm)'
Here, k% = 0.74¢%/v*, zpm = 0.5 k3/ (kn —\:cm)z, and
f(z) = 2*%* [Io(=) - L(z)],

where Iy and I; are the modified Bessel functions of order zero and unity,
respectively.

The exact solution of Eq. (10) can be written in terms of eigenvectors
and eigenvalues of the matrix

M
ham = dpnm (0',‘: + Z anm) = Qnm

m=1
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in the form

rnn(r) Z yﬂm(r) ‘pm (Zo), (11)

81rr
with

M
gam(r) = D Uni exp(—di 7) Uimn,
=1
where Uy is the matrix whose columns contain the eigenvectors of ||hnm||
with eigenvalues dj.
Note that the total modal attenuating parameter oy, entering Eq. (9) is
a combination of absorption and scattering losses:

a $
Op =0, + 0y,

where
M
3
Un -_ E anm.
m=1

All quantities in Eq. (7) are now calculable: I'y,(r) are found from the
solution (11) of the master equation and the normal mode depth functions
¢n(2) are found from solutions of Eq. (5).

The plots of correlation versus sensor separation are given in Figs. 8 and
9 for the two arrays considered. (The origin along the z-axis is the depth
of the first element in the corresponding array) The vertical coherence
function predicted from the wind seas model is in qualitative agreement
with presented measurements.

4. Summary and conclusions

In this paper we presented the experimental study of acoustic transmis-
sion fluctuations through the Barents Sea. The theoretical calculations of
the vertical coherence based on wind seas scattering are compared with the
observed spatial coherence of the signals received by vertical arrays oper-
ating in realistic shallow water environments. It has been established that
the vertical coherence function predicted from the wind seas model is in a
good qualitative agreement with the presented measurements. It is clear,
however, that a more general consideration based on the range-dependent
model is required to test our predictions in detail.
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Fig. 8. Computed coherence function of vertical separation along ar-
ray 1 as compared with observed correlation versus sensor separation:
(a) fo = 107 Hz, (b) fo =240 Hz
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ray 2 as compared with observed correlation versus sensor separatlon:
(a) fo =107 Hz, (b) fo = 240 Hz
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EXPERIMENTAL CHECKING OF THE MODE THEORY
OF ACOUSTIC SCATTERING
IN AN OCEAN WAVEGUIDE WITH ROUGH SURFACE

B. V. Kerzhakov, V. V. Kulinich, M. A. Raevskii, A. A. Stromkov
INTRODUCTION

Along with the methods of acoustic diagnostics of regular oceanic
processes (ocean temperature variations, streams, eddies, etc.), the
methods of remote sensing of fluctuations of the ocean medium are also
of interest. In this case, we use mathematical models of the scattering
theory, which relate the frequency-angular spectra of the acoustic fields
to the oceanic fluctuation processes (surface waves, volume
fluctuations, and random bottom irregularities). In addition to the ray
methods of the scattering theory, an alternative approach, which is
based on the transfer equations for the coherence functions of the
amplitudes of normal modes, has been proposed recently. In this case
we have presented a uniform description of scattering by the volume
fluctuations and an irregular boundary of the ocean waveguide. Within
the framework of the mode formalism, a number of algorithms for
remote diagnostics of surface waves and volume fluctuations were
proposed. However, the proposed methods of diagnostics as well as the
initial relations of the scattering theory should be checked
experimentally. In this paper we discuss the results of approbation of
the mode theory of acoustic scattering by surface waves for the
stationary acoustic path Sakhalin—Tturup (a Kuril island) with a length
of 345 km. The source was located in the Sakhalin coastal shelf at a
depth of 100 m. The receiving hydrophone was located .in the shelf
region of an Iturup island at a depth of 250 m. Radiation frequency was
J=387 Hz. Below, the theoretical model of the signal in the ocean
waveguide with rough surface and the results of its experimental
checking are discussed.

239



1. THEORETICAL MODEL OF THE TONE SIGNAL
IN A SUBSURFACE WAVEGUIDE

_In the case of signal propagation along a stationary path with
acoustic channel, which is open (fully or partially) toward the surface,
we must allow for the influence of both volume and surface phenomena.
Theoretical models describing the influence of the volume processes
(internal waves, tides, streams, and eddies) on the sound propagation in
the ocean were discussed many times and compared with experimental
results (see, for example [1]). Experiments were carried out on the
stationary paths with acoustic channels whose axes were at a depth of
from 500 to 1000 m where the effects of surface waves are negligibly
small. If the channel axis is located near the surface, or at a small depth
(100—200 m), the channel becomes totally or partially open toward the
surface under any seasonal conditions. In this case, in addition to the
action of volume nonstationary processes, acoustic are subjected to the
scattering by surface waves (and by the ice cover boundaries in a
number of cases). Experiments on such a stationary path provide
material for constructing a signal model, which can simultaneously
allow for the scattering from volume and surface nonstationary
inhomogeneities, whereas the existing theoretical models consider these
phenomena separately. Therefore, the probleny of selection of the above
phenomena when analyzing experimental data is timely. Such a
separation can be very demonstrative for tone signals if we use the
difference in the characteristic time scales of volume fluctuations and
surface waves. The characteristic frequencies of surface waves vary
from 107 to 1 Hz, whereas the internal-wave spectrum in the ‘ocean
ranges from 10 to 10° Hz, not to mention slower volume processes.
Therefore, it is natural to assume that fluctuations of the tone signal in
the frequency spectrum 10 Hz < Af < 1 Hz are due to the scattering
from surface waves, while the slower fluctuations in the range Af < 107
Hz are mainly caised by internal wavés and other nonstationary volume
processes. Accordingly, it is natural to present the fluctuating signal as
a set of the high-frequency component (HFC) with characteristic
fluctuation frequencies in the range 10> Hz < Af < 1 Hz, which is due to
the scattering from surface waves, and the low-frequency component
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(LFC), which is related to the low-frequency factors of the type of
internal waves and corresponds to the spectrum range Af < 102 Hz. In
this case, surface waves do not influence the shape of the spectrum of
the low-frequency component, but influence directly its integral energy.
The corresponding phenomenon is described in the theory as decay of
the coherent component of the signal in the case of scattering from an
irregular boundary of the waveguide. Some effects of the surface-wave
influence are discussed below.

2. AMODEL OF THE HIGH-FREQUENCY COMPONENT
OF THE SIGNAL

There exist several approaches to describing the scattering of
acoustic waves in a refraction waveguide that is open fully or partially
toward the surface. Some of the above approaches are based on the ray
representation of acoustic field. In this case, the scattering indicatrix of
the quasiplane wave propagating along the ray trajectory is calculated
depending on the Rayleigh parameter value or using either the method
of small perturbations or the method of tangential plane (Kirchhoff’s
approximation [2]). The concept of the latter approach is close to the
method that is based on the simplified presentation of an irregular
boundary as a set of local horizontal planes, which are shifted randomly
along the vertical [3]. It is obvious from the theory that scattering is
resonant for small (compared with unity) values of the Rayleigh
parameter, i.e., the frequency-angular spectrum of the reflected wave is
determined by the conditions of resonant scattering and the type of the
frequency-angular spectrum of vertical shifts of the boundary. For large
values of the Rayleigh parameter, the scattered field is formed by the
mirror points of reflection from a smoothly irregular surface. The
advantage of the ray approach is its obviousness. Unfortunately, in this
case it is rather difficult to describe the phenomena of multiple
scattering.

For small values of the Rayleigh parameter it is also possible to
describe the scattering phenomena within the framework of the mode
representation of acoustic field. In this case, the energy distribution of

- the scattered component of acoustic waves over the frequency and mode
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numbers is described by the transfer equation, which allows us to
analyze uniformly the phenomena of both single and multiple
scattering. Since numerical simulation of the frequency spectrum of the
HFC will be performed within the framework of the mode approach, we
offer a preliminary description of the basic relations. It is assumed that
the waveguide with profile C(z) has an upper boundary z=£(r,f). The
pressure field of the quasimonochromatic wave with central frequency
ay is expanded in terms of orthogonal eigenfunctions of the waveguide
with plane boundary z=0, i.e,

P=§jbnw exp( iwt)da)-¢n(z)H( )(k r) )

Here the eigenfunctions @, and the wave numbers k, correspond to
the radiation frequency a,

We can show that for multiple scattering the coherent component of
the amplitudes of normal modes <b,,> corresponding to the frequency
an, (<.> denotes averaging over an ensemble of random shifts &(r,t))
decays exponentially, i.e.,

< bnwo >= bnwo (0)exp(=y p7)

In the case of a waveguide with smooth profile C(z), for the decay
decrement, we obtained a comparatively simple expression [4]

2 k 2 .2
0 mkny —
() Jalamir

s yThﬂl—B(ko ~hpky) ()

Yn="
n k,,

—00
where dg,/dz is the value of derivative on an unperturbed (£=0) surface,
k=arc(0), hy=(m*|k/)'"?, and B(k,k,) is the spectrum of vertical shifts
of the boundary & Let us introduce the specp‘al density of the mode
energy N,,in accordance with
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<b,b.,>=N,d(0-0".

no“no'

On the basis of the transfer equation for the frequency-angular
spectrum of normal modes [4], we obtain the closed transfer equations
for N, in the form

dN (P
—ﬁ& = )ng [do'Wng Ny =27 nNpg » (3)

where W® is the transition probability, which characterizes the

energy exchange between the modes as a result of scattering from an
irregular boundary. We take into account that the space—time spectrum
of waves has the form

B(E,Q) = BR)S(Q £ gk +k2).
Then for the transition probability W,,':,',“" we obtain [5,6]

2 2
Wnlwv _ T d¢)n d¢nl «
no= =
2kpk, \ a2 ) \

L Blo-o',p)+B(w-a',-f)
J{w —0) 182 —(ky -k )?
k, -k,
B= arcco{-(-—"--——'L-‘),,'E sign(o - o' )) .

(v-a')

@

In this case, we must fulfill the conditions (@@’)>glk,-k.1;
otherwise we have

wre' -,
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In the above expression B(|Q],@) is the frequency-angular spectrum
of waves that is normalized according to

(I)an (I)B(IQI,¢)d¢=<f >.

Along with the direct numerical integration of transfer equation (3),
it can be solved approximately using different methods.

The expansion in terms of multiplicity powers of scattering is the
most demonstrative

Nno(r) = N (5@~ @) + 15, W@ N (0) +

)

w n'o
+r212 3 [doWCW W ON () +... .
n'n"

where the monochromatic signal with frequency @, and distribution
over modes N,(0) is assumed to be initial.

To obtain explicitly the frequency spectrum of the scattered -
component, we write an approximate expression for the first terms of
this series in the case where the frequency-angular spectrum of waves is
concentrated near oy, such that the angular width of the spectrum A and
the frequency of maximum ¢, satisfy the condition

ap . 2
Al—llsma0|9* /g<<P*,
p

where P, is the characteristic scale of variation with respect to the

d
mode number of the quantities —iﬂ s Np(0).

In this case, for the singly scattered field component, the
approximate summation in Eq. (5) yields
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m [d 2 do 2 d
(Y] Pn ' n'
N Q= N_(0)B(Q), 6
.00+ 4knkn'( dz ) ( dz J ldkn.| n (OB ©

2r
B(Q) = (I) B(| Q|,p)do
The value of n' is obtained from the equation
k. =k, -Q%g Lcos jgnQ)
n = En - g ao Sig .
In a similar manner, for the doubly scattered component we have
4 2 2
(2) 71'2"2 d¢n d¢nv d¢nn
Mog =02 e )\ e J e )"
n n" n'
dnt d”"

x| ——

dk,

)

| | B(@'-Q)B(@'")de'

Here n" and n"” are related by the equations
ko= ky +(@-0)? cosag )z~ sign(@'—Q)
n ~°n 08 sign ’

ko =k~ e cas(ag )g’lsign(w').

From the above expressions it follows that the shape of the spectrum
of the singly scattered component of acoustic field for waves with
relatively narrow frequency-angular spectrum is close to the frequency
spectrum of waves. In this case, the signal spectrum is generally
asymmetric, i.e., the amplitudes of the side maxima of thé spectrum are
different in the regions Q>0 and Q<0.

The presence of maxima near the zero frequency Q~0 and the

doubled central frequency of the wave spectrum |Q|~2 Q, is typical of
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the spectrum of the doubly scattered coimponent, however, again, the
spectrum is asymmetric, i.e.,

VP @) = v?(q).

The complete symmetry of the spectrum of acoustic signal (under
the condition of symmetry of the angular spectrum of waves with
respect to o) appears only for oy=n/2. In this case, as is obvious from
Eqgs. (6) to (7), the spectrum of the singly scattered component repeats
the wave spectrum, while the spectrum of the doubly scattered
component is a convolution of the wave spectra.

3. NUMERICAL SIMULATION OF THE SPECTRUM
OF THE HIGH-FREQUENCY COMPONENT OF THE SIGNAL

The use of the mode formalism for description of the scattering
phenomena on the stationary path requires the presence of a waveguide
whose characteristics are uniform along the path. In principle, it is
possible to generalize the above results to the waveguide with regular
variations of the sound velocity and bottom depth with distance, but’
their numerical realization is rather difficult. However, it is obvious that
an efficient transformation of the energy of normal modes occurs in the
region of continental shelf near the transmitter and receiving
hydrophones, where the bottom slopes of the order of 0.1 rad are
observed. As a result, the coefficients of mode excitation in the shelf
differ significantly from the coefficients of excitation by a point source
in a waveguide with plane bottom. This phenomenon must be allowed
for in numerical simulation. At the same time, on the basic part of the
path the bottom is assumed to be plane with the depth #=3200 m. In the
modeling, the sound-velocity profile C(z) for the channel with winter
hydrology measured near Iturup island and close to the linear one was
assumed to be constant along the path (due to the absence of other
data). The channel profile C(z) for the fall hydrology (except for the
Iturup near-shore region, where the channel axis depth was zy~400 m)
shows no significant variation along the path and has the axis depth
2;=100 to 140 m. Therefore, we assume that the profile C(z) is constant
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on the main section of the path and corresponds to the profile measured
at the distance =320 km. On the path section 0< r <50 km, the profile
C(z) is also assumed to be constant and corresponding to the
measurements for 7=40 km. To simulate the field of the point source in
the coastal shelf, we use a set of mode programs KRAKEN. In this case,
the shelf is presented as a set of a large number (of order of 100) of
homogeneous waveguides. In each waveguide, the field is calculated
within the framework of the mode program, while when crossing the
interface between adjacent waveguides the elements of the matrix of
mode transformation are calculated. As a result, at the shelf output we
obtain the acoustic-field distribution P(z) for the fall and winter
hydrology. In the case of winter hydrology, directly from the above
distribution, we obtain the mode excitation coefficients in the shelf

ap = [ (D)o (2)dz . ®

Correspondingly, N: =| &’ |* are the initial conditions in solving the
transfer equations on the uniform section of the path. In the case of fall
hydrology, we have a similar situation but it is taken into account that
the profile C(z) varies at the distance =50 km (the exact value is
unknown). Therefore, the field distribution P(z) in Eq. (8) was
calculated for different distances 45 < r < 55 km, and the obtained

values of N!=|a’|® were averaged over the corresponding interval

Ar=10 km. In the similar manner (using the reciprocity theorem), we
calculated the coefficients of mode transformation in the shelf near the

receiving (deep) hydrophone (’and the corresponding values of
N, 4C,*- It was assumed (on the basis of the data available) that main

type of soil in the shelf was sand with density p = 1.6, longitudinal
sound velocity C=1600 m/s, and damping coefficient # = 0.1 dB/mHz.

The calculated normalized values of N, and N}, for the fall and winter
hydrology are shown in Fig.1.
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Fig. 1. Normalized coefficients of mode transformation in the shelf
regions near the transmitter and receiver.

Strictly speaking, when modeling the spectrum of the high-frequency
component of the signal, we must use the data on the frequency-angular
spectrum of surface waves obtained synchronously with the
measurements of signal fluctuation. Since we did not perform such
measurements, in the modeling we used the averaged spectra of surface
waves, which generalized the results of multiple full-scale experiments.
Therefore, the surface waves were usually a superposition of wind
waves due to wind in this water space (with scales of orders Ar~100
km) and ocean swell arriving from remote stormy regions and thus
weakly correlating with local wind parameters. The frequency spectrum
of wind waves B(() is studied most perfectly. For this spectrum we
shall use the generally accepted model JONSWAP [7] corresponding to
the developed wind waves:

B,y (@) =8.1-107 g0 exp| -125(00/0)* ]x

®

exp[ —(Q—w.)2 /(262013) ]
xy
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Here 0.=0.84 g/v is the frequency of the spectrum maximum, v is
the wind velocity, g=9.8 m/s, y characterizes the degree of the wave
development, and the following values are used for o:

0.07 for Q <,
77309 for Q> w,

The following relaiion is traditionally used for the frequency-angular
spectrum of waves:

B,,(Q,a) = B,,(Q)c0s>" (a - a,,)0(n) . (16)

Here the normalizing coefficient Q(n) has the form

o) =7~ 122" P2 iy r@n+ 1),

where I(x) is the gamma function. The index »n depends on the wind
velocity and frequency but since the known approximations of these
dependences differ significantly, fixed values of n are often used. It is
" assumed that »=4 and i$ independent of the frequency Q in the range of
wind velocities under consideration. We use y=2, which corresponds to
the average degree of wave development.

The ocean swell spectrum is studied to a lesser extent. It is known
[7] that when propagating from stormy regions, the frequency-angular
spectrum of sweil becomes much narrower than that of developed
waves, however, there are no generally accepted model spectra of swell.
In accordance with [8], in the modeling it is assumed that the
frequency-angular spectrum of swell is similar to the spectrum
JONSWAP, where we use the os-frequency of the maximum of the
swell spectrum and y=10, which corresponds to the narrow frequency
spectrum of swell. For anisotropy index of the angular spectrum of
swell ng we use the maximum observed n=6. As a result, the frequency-
angular spectrum of swell has the form
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B, (Q,0) = Qng)Bg () cos>"™ (a - arg),

Bg(Q) =18<g5y >co;‘ exp[ —-125(a)9/w) ]
an

exp[ —(Q—w,)"/(‘la’s(vg) ]
xy 't

Here < gf > is the variance of the surface shift, o=27/T;, and T, is
the swell period

_]0.07 for Q<awg
$ 71009 for Q> wg

As a rule, in the ocean we observe superposition of wind waves and
ocean swell. In this case, when calculating the scattering phenomena as
the function B(Q2,a), we should use a sum of the model spectra of swell
and wind waves. Now let us discuss directly the results of numerical
simulation of the HFC spectrum on the stationary path. From the
current spectra of the signal, which are averaged over six-hour
realizations, it is obvious that the singly scattered component that is
concentrated near f,x of the order of 0.1Hz (below we speak of the
frequency value with respect to radiation frequency) is dominating over
the doubly scattered component.

For definiteness, it is assumed that the spectrum region
0.5/max<|fI<1.5fmax corresponds to the singly scattered component, while
the regions <0.5fmax and 1.5fpa < |[f|< 0.4 Hz correspond to the doubly
scattered component. Since the signal spectrum is mainly formed by the
singly scattered component, numerical simulation is performed in the
single approximation of the scattering theory. As the main
characteristics of the model spectrum S(f), we consider the asymmetry
coefficient of the spectrum (except for its qualitative form) determined
by the relation of maxima corresponding to the positive and negative
frequencies and the integral energy of the singly scattered spectrum
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component. In this case, for the quantitative estimate of the scattering
intensity it is convenient 1 introduce the ratio of the energy of the
singly scattered component to the energy of the coherent component.
With allowance for the above discussed phenomena of mode
transformation in the shelf region near the transmitter and receiver, for
this q we have
1 o
gn2-E_P . (12)

Z") N p N p

Let us consider the calculated results for winter hydrology (the
second stage). In Fig. 2 we show the normalized spectra of the HFC for
the scattering from swell with parameters 4, =Im and T,=10 s and
different propagation angles o.;. Here and below we have

Ag =< g? >1/2 .

Obviously, the spectrum is narrow and repeats the shape of the
frequency spectrum of swell. For a=n/2, the spectrum is symmetric, and
for 0=0 and a=n we have K= 4 and K=0.25 for the asymmetry
coefficient K. Since, theoretically, for a=0,r the spectrum asymmetry is
maximal, the coefficient K has intermediate value for other values of
the angle o. Similar results for the wind waves are given in Fig. 2 for
the wind velocity =12 m/s.

In this case, we have k=2 for a=0, K=0.5 for o=n, and K=1 for
o=n/2. On the basis of these results (and similar results obtained for
other parameter values), we conclude that under the conditions of
winter hydrology the typical asymmetry of the spectrum is small and
does not exceed several dB, which agrees with experimental data. The
calculated results for swell with parameters 4,=1 m, T:=10 s, and
o=n/4 are shown in Fig. 3 to represent the type of the spectrum and
HFC energy for the case of simultaneous scattering of sound from swell
and wind waves. The following values for wind velocity are used: V
=10 m/s and V=15 m/s for a.,=n/4.
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Fig. 2. Angular dependences of the signal frequency spectrum for the
winter hydrology.
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Fig. 3. Signal spectrum for the co-scattering of sound from swell and
wind waves (winter hydrology).
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For these cases, we calculate ¢g=0.3 for V=10 m/s and ¢=0.8 for
V=15 m/s. For comparison, in Fig. 4 we show experimental values of q.
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Fig. 4. Experimental values of q for a fall hydrology (a) and for a winter
hydrology (b).

It is obvious that typical experimental values of q are in the range
from 0.4 to 1, i.e., the modeling results agree with experimental data.
Unfortunately, a more specific comparison with experiment can be
performed only for the observation interval in which the data on swell
(December 28) are available. In this case, with allowance for a certain
spread of the meteorological data along the path, in the modeling we
used the following swell and wind parameters: 4,=1 m, 7:=10 s, a,=70°,
V=10 m/s, and o= 270°. It should be noted that in the meteorological
data we have the swell amplitude H;, which is measured from the wave
trough to the wave crest (in our case we have H=3 m). For the
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quasisinusoidal waves we have 4,=H,2*”. In addition, we should take
into account that in the meteorological data the angles are read from the
direction to the north, and the path is oriented to the north at an angle of
290°. (from source to receiver). In Fig. 5 we show the results of
calculation of the HFC spectrum and a typical experimental spectrum of
the signal as of December 28.
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Fig. 5. Typical frequency spectrum of the signal at the second stage:
theoretical results are presented by the solid curve and experimental

results are given by the dashed curve.
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In this case, to compare the spectral levels in the theory and
experiment, the experimental spectrum was normalized to the LFC
energy. It is obvious from the comparison that the shape, asymmetry
character, and the level of the spectrum obtained from the modeling (in
the frequency range that corresponds to the singly scattered component)
is in good agreement with experiment. The value of g=0.5, which was
obtained from model calculations, was also close to experimental data
as of December 28, 0.4 <¢<0.9. Let us discuss the results of modeling
for the first stage (fall hydrology). In Fig.6 we show the results of the
spectrum calculation for the scattering from swell with parameters A4,
=1 m, 7,=10 s, and propagation angles o.,-=0,m.
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Fig. 6. Frequency spectrum of the signal for the scattering from swell
(fall hydrology).

The asymmetry coefficients corresponding to these spectra are K =1,

K = 0.2, and K =5. Therefore, in this case, the spectrum asymmetry for
intermediate values of angles is also several dB. It is of interest that for
acute angles of swell propagation (Jo|<n/2) the side maximum of the
spectrum corresponding to f >0 dominates for the winter hydrology,
whereas the side maximum with f <0 is dominant for the fall hydrology.
In the case of scattering from wind waves, the spectrum asymmetry
character is similar. Since in the first stage of experiment we have no
data on the parameters of swell (which, mainly, determines the type of
the HFC spectrum), we use the results of modeling for different values
of swell parameters and the wind velocity range observed in the first
_stage. Since the west wind was observed in the course of the first stage
(with changes to the north—west wind), it is assumed that wind and
swell propagated- at the same angle of 110°, which corresponds to
o=a,=7. The typical values of V=10 m/s and ¥ =15 m/s were used for
the wind velocity (according to the meteorological data). Since the data
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for the swell amplitude H; are absent, it was assumed that H; =2 m and
H, =3 m. The swell period was 7.=10 s.
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Fig. 7. Frequency spectrum of the signal in the case of co-scattering

from wind waves and swell (fall hydrology).

The calculated spectra are given in Fig. 7. The following values

were obtained:
q W(m/s) Hy(m)
0.05 10 2
0.45 15 2
0.1 10 3
0.5 15 3
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On the whole, these values are in fair agreement with experimental
data (see Fig. 4, where the time dependence of g is given for the first
stage).

The model spectrum of the HFC for V= 12 m/s, H=0.7 m, and T,=8
s are compared with a typical experimental spectrum in Fig. 3. In the
calculations it was assumed that wind and swell propagation were from
the west, i.e., a.=a,~160°.
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Fig. 8. Typical frequency spectrum of the signal in the fir st stage:
theory is shown by the solid curve while the dashed curve represents
experimental data.

It is obvious that not only the type but also the level of the HFC
spectrum are in fair agreement with experiment. The value of ¢=0.14,
which was obtained from the modeling, is also close to the experimental
g=0.17. Therefore, the preliminary results of numerical modeling are in
good agreement with the observed acoustic data. Under these conditions
it is of interest to perform further improvement of the theoretical model
using synchronous measurements of the frequency-angular spectrum of
surface waves and the frequency spectra of the signal on the stationary
path. In this case, we hope to check not only the theory of single sound
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scattering from surface anisotropic waves but also the theory of
multiple scattering.
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FUNDAMENTALS OF THE HIGH-FREQUENCY
FORWARD-SCATTERING SONAR

V.V. Borodin and M.Yu. Galaktionov

1. INTRODUCTION TO THE FORWARD-SCATTERING
ACTIVE BISTATIC SONAR

In the eighties the idea to use forward-scattering (FS) acoustical methods to detect
underwarer objects was proposed independently by several authors. In fact, this ap-
proach is a particular case of the general active bistatic sonar (ABS) approach. For
the FS-ABS scheme objects to be detected and localized are placed in the vicinity of
the vertical plane containing the acoustical path from the emitting to the receiving
arrays. A hypothesis is that the object strength (TS) should increase considerably in
this case (in comparison with the common ABS scheme). This should improve es-
sentiai characteristics of ABS systems — range and probability of detection — when
they are working in the FS mode.

1.1. General presentation of the forward-scattering method for ABS

The principle difference between the FS and the classic ABS methods consists of the
fact that for the FS scheme the useful signal scattered by the object propagates prac-
tically in the same vertical plarie where the probing signal from the emitting array
does. So, they both come to the receiving array very close to each other in the time
and space. In particular, some of them come by the same ray paths. Therefore, for the
FS scheme it should be assumed that there is no the possibility to do time selection of
scattered signals from probing signals by the same way as it’s done for the classic
ABS scheme. Thus, there is the problem to distinguish the scattered signal not only
on the noise background but also on the background cf the strong probing field radi-
ated by the sonar source.

To formalize the FS-ABS approach let consider some realistic random sea environ-
ment where fluctuations of signals are due to relatively "slow" fluctuations of the
medium being effects of various hydrodynamic wave processes. In this case, the
Green’s function (GF) of the waveguide, which depends on propagation time delay
T, is also slowly depending on current time £ since the environment is depending on
it. Thus, it’s possible to consider the "instant" spectrum G(r,r';@,7). Under the
common supposition that the correlation time interval of the interference (sea ambi-
ent noise and reverberation) is rather smaller that the stability period of the environ-
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ment, the interference may be considered as quasi-stationary. It means that its spec-
tral density depends "slowly" on cumrent time: Ky(r,,r;;0,?). When a localized inho-
mogeneity is introduced in the environment due to the presence of some object, GF
G,(r,r';0,7) differs from that of the initial environment, but it rests "slowly" de-
pending on time ¢. The interference may change also because of the effect of this
inhomogeneity, but it’s usually possible to neglect this effect since the sources of
interference (the waveguide’s boundaries and volume) are much more homogeneous
in time and space that the sonar source. On this way, it’s possible to consider the
functions G, and G, as realizations of two random processes having different sto-
chastic properties. So, one can design signal processing algorithms that will use this
difference to detect and localize the object.

So far as the FS-ABS is a particular case of ABS systems, one can formulate the un-
derwater detection and localization (UDL) problem in this particular case by using
the classical (for ABS) term of echo-signal. In this case the object is considered as
secondary source of scattered signals. One has to detect the signals on an interference
background, to determine their characteristics and then to answer the question about
the type and location of the secondary source. By this way the three main problems —
detection, localization and classification — composing the underwater object survey
(UOS) problem will be resolved.

In the general case, characteristics of echo-signals depend on:

1) parameters of signals having been radiated by the sonar,

2) location of the object with respect to sonar's emitting and receiving arrays.
3) propagation conditions and corresponding propagation loses,

4) scattering properties of the object; which can be characterized by TS.

TS is determined by the sound scattering (difiraction) on the object’s body as well as on
medium perturbations that are created by its motion and activity (for example, by the
scattering on air baubles in the object's wake). In principle, the object may be also con-
sidered as particular case of such a perturbation. Increasing of the TS when using the FS
scheme is based on the fact that scattering lobes of bodies and hydrodynamic inhomoge-
neities are very narrow in the horizontal plane and are focused to the incident direction.

The classic ABS scheme is as follows. Incident field radiated by the emitting array at
the location rg (the source) is captured by the receiving array at the location ry (the
receiver). Hereafter arrays arc considered as point objects having some patterns.
There is a scattering object located at point ry (the object) with which the incident
field interacts and creates a scattered field. The scattered signals are also captured by
the receiving array. For the classic ABS scheme it’s possible to do window separa-
tion of the scattered and probing signals in time since there is the difference of
propagation times for the paths "from source - to receiver" (S-R) and "from source —
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to object — to receiver" (S-T-R). The difference is due essentially to the non-zero
horizontal angle between the directions S-R and S-T-R (so, the echo-signal arrives
always after the source signals). The figure 1.1a presents schematically the time
structure of signals at reception when using the classic ABS scheme. The task of the
signal processing system at reception consists of detecting the echo-signal on the
interference background due to ambient sea noise, reverberation, system noises and
signals coming from point noisy sources.

The figure'l.1b shows sche-
matically the time structure of Levef
received signal in the FS-ABS
case. In despite of possible a b
appearances of new ray paths or
normal modes due to scattering
by the object's body or accom-
panying hydrodynamic inho-

mogeneities, their arrival times J |
will be in the same time win- i of rays of 1 o i et T
dow where are the arrival times direct” field ~ echo-signal direct” field  echo-signal

of the source field. So, the €asy  Figure 1.1. Time structure of signals in classic ABS

time selection as that of the mode (a) and in FS-ABS mode (b).
classic ABS case is not more

possible for the FS-ABS case.

1.2. Rough estimation of echo-signal level for the FS-ABS

Different authors proposed and considered various principles of functioning of UOS
systems when using the FS-ABS approach. Some principles and methods to solving
the detection problem were based on the supposition that the spectral density of the
process G, is greater (in some frequency interval) than that of the process G;. In this
case one may talk about a supplement "modulation” of source fields that arises in this
{requency domain and therefore about detecting this modulation. It may be inter-
preted as result of interference between the source and the scattered field on the re-
ceiving array. For this approach, the problem consists of distinguishing the "useful”
modulation on the background of “noise” modulations being effect of natural envi-
ronmental fluctuations.

To see an interest to use FS-ABS systems to solve the UOL problem at least for ob-
Jject detection under the approach based on the detection of SLF modulations of
probing signals, one can make a rough quantitative estimating of medulation levels
that can be principally reached.
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In the case of a free homogeneous medium the complex amplitude of the source field
at reception is

ry — I

3, (1.1)

0, ikRe p-1 - =
P = Bg(eg, —€5;0)e™* Ry, Ry =rg — 1], er =
SR

where Bg(...) is the emitting array's lobe, e‘s’ is its compensation vector. Values
having double subscripts are determined by two things: the fist subscript corresponds
to the first thing and the second subscnpt corresponds to the second thing. For exam-
ple, Rgp is the range from source to receiver and egp is the direction from source to
receiver.

The field scattered by some object is a directed spherical wave in the “far field” zone.
Its directivity is determined by the scattering amplitude of the object f(e1g,eqr) (the

dependence on ® will be usually omitted). Thus, the complex amplitude of the scat-
tered field is

Pr = fr(er €5 ) R’T_ll( ‘Bg(egr — eg Ye st RS_'I! . (1.2)

The arising modulations of signal envelope and of signal carrier are characterized by
coefficients:

2 2
|P+ _l_____IPS| .100%:[14-%— —l]-lOO%’ (1.3)
|&f 5
K, =] 100% = _|fr(em eI B(e —e)| R 100% . (14)
A Bs(eg — es) |RTRRST

If| P, /By| <<1 then

K 2RePI‘ 100% = 2R€(f (eTR’eST)Bs(eST es) il:(Rsr**Rn'Rsk)) )
F Bg(esy —€5) (1.5)

s 100% < 2K, .
Ry Ry A
It follows from (1.4) that the modulation level of signal envelope is determined by

three factors:

1) by the difference between emitting array's lobe for S-R-and S-T directions,
2) by the target strength (TS) béing determined by the scattering amplitude,
3) by relative positions of the object and of the emitting and receiving arrays.
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The minimum modulation level is reached when the object is on the same range from

the source and the receiver: RST = RTR = RSR ~ &&. In this case
2cosang(eg; e )
B
K, 2 4)f; (exg 651 )| —i‘iS-T—i RS -100% - (1.6)
B (e — € e)

Thus, the minimum modulation level will be proportional to the total length Rgp of
the FS-ABS system. Note that the modulation coefficient of the signal envelope de-
pends also on the difference of ranges RST + RTR - RSR.

If the source has no pattern (Bg = (47)), then

2 4|f; (eg-esr )| Rog -100% . (1.7)

It is common to characterize the scattering strength of objects by using the term of
equivalent radius (ER) Ry. By definition it is equal to the radius of a perfectly re-
flecting sphere creating in its “far field” zone a reflected signal of the same level that
the object. For the high frequency limit ER is related to the scattering amplitude f;
by the ratio |fy| = Ry/2 [1]. For some objects whose ER for the classic ABS is
equal to several meters and for the- range Rgg'= 100 km = 105 m the estimate of the
modulation coefficient is

K, «107%, (1.8

that is too small value for using the effect to solve UdS problems being of practical
interest '

Nevertheless a waveguide environment offers supplementary opportunities. In this
case, one may express the source and echo-signal fields as follows

P =Y By(el D) e RS, (19
u

Py =Zf'r(e';k’e§r) Frpe"®™ -Bg(eg —e3) Fs?reiw;rR'l_'llx p - (1.10)
9,v

where one makes summation over all possible ray paths lying three points. R is
some range-where the sound propagation comes from the sphencal law to the cylin-
drical one. For shallow water environments it may be éstimated as 1 km. Values F
with different indexes are products of focusing factors of corresponding rays with
amplitude coefficients that take account of coherent field weakening due to sound
absorption in the water and to scattering from boundaries or volume perturbations.
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For every three paths such estimate of the modulation coefficient follows:

B, (es; - °s)m S.100% - (L11)

Bg (e —
It's known that the focusing factor in the ocean can reach the value 100. Assuming
that the propagation conditions are those where many caustics of field are formed
(the shallow water conditions are of this type) and assuming that there is small prob-
ability that the receiving array is placed simultaneously near caustics of two between
three ray paths in (1.11), the following estimate derives:

K'® «107'% . (1.12)

Another opportunity to increase the modulation coefficient is to elaborate such a
sonar scheme where the TS grows considerably. Such an opportunity is offered by
the fact that for frequencies exceeding several hundreds of Hz, scattering amplitudes
of common underwater objects and of accompanying medium perturbations are very
narrow and focused on the direction of propagation of the incident field. An ABS
_system’ operating in the FS mode is realizing this opportunity. To estimate the
modulation coefficient in this case one may use the fact that the integral TS of an
object in the high frequency limit of geometrical acoustics is equal to the area S~ LD
of projection of the object on the incident wave front. For common underwater ob-
jects it may be assumed that S ~ 103 m2. As to accompanying inhomogeneities, the
integral TS can practically reach values about 10* m2. Since the angle width of the
main lobe of the scattering amplitude may be estimated as ~ A/2L for the horizontal
plane and ~ A/2D for the vertical one, then while considering secondary lobes to be
small, one can approach the main lobe by the gaussian function
(#-90)° _ (6-6,)°

2 2
e 4(A/2L)° 4(A/2D)

b V2n(A/2JLD)

an opportunity to design a FS-ABS system so that the modulation coefficient would
be about tens of percents:

K, x10% . (1.13)

Spectral density of such a modulation may be compatible in some frequency interval
with the background modulations which are due to the sound scattering from natural
fluctuations of the environment (e.g. from free internal waves or ocean turbulence).
Such modulation levels were observed in sea experiments and were also obtained. in
computer simulations of the effect by one of the authors.

uvd
K P

and to estimate Ry ~28/\. Therefore there is (in principle)
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2. SIGNAL AND INTERFERENCE MODELS FOR ABS

As for the determinist sea environment (DSE) model, as well for the stochastic (SSE)
model, the signal model for some ABS system is as following. Electric signals at
exits of Ny, receivers of the receiving array are proportional to acoustical pressure at
points r, where the receivers are located. If the hypothesis H, is true (¢ = 1 if there is
a object and € = 0 if there no object) one may express the signal as a sum:

p(r,t) = ps(r, ) +epr(r,,0) + py(r,,t), s=1,..,Ng, t € (0,T) , (2.1)
where

Ds(rg,?) is the pressure of the incident signal, which is coherent with the signal
emitted by the sonar’s source array.

P1{rs,?) is the pressure of the echo-signal which is also coherent with the signal
emitted by the sonar’s source array.

PN(rs,t) is the pressure of the multi-component incoherent interference, which is

a mixture of 1) system noise, 2) sea ambient noise, 3) noise of local sources and
4) reverberation noise.

- 2.1. Model of source field

Let model a sonar’s source as omnidirectional point source radiating narrow band
signals (Aw/® << 1) with normalized spectrum Sg(w). When dealing with linear
problems, the general Green’s function method may be used to calculate spectrum of
the field created by the source:

ps(r,0) = G(r,r';0)8, (0)\Wpy ey [4n 22)

where G(.) is the waveguide’s frequenocy GF, W, y, pwatc are respectively the radi-
ated acoustic power, concentration coefficient of the source array (pattern factor) and
wave resistance of the medium.

Modeling of GF depends on what kind of waveguide is used to model sea environ-
ments. In some cases the environmental modeling by a determinist waveguide where
space-time distributions of all physical fields are perfectly known can be applied. In
this case sound field values can be predicted for any time-space point by using some
mathematical model. One of such models, the mostly often used for applications,
where high-frequency sound fields are used, is the ray model and is presented below.
Nevertheless, modeling of sea environments by a deterministic waveguide is not
acceptable in most cases. Ocean surface is practically always rough, and its:shape
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can not be controlled exactly. There are also hydrodynamic motions in the water
layer: internal waves, large-scale turbulence, and inhomogeneities of fine structure,
which can not be controlled in most cases t0o. Also, the boundary of the water-
ground interface is generally rough and there are inthomogeneities in the bottom as
well as in the water. Usually, nothing is known about all these roughness (boundary
and volume) from the deterministic point of view. All these reasons lead to the ne-
cessity to use a statistical description of ocean parameters effecting the sound propa-
gation. Those parameters are shapes of surface and bottom boundaries described by

functions g, (X,1), Cp (X), fluctuations u(x,z,t) = c(x,z,#)/c(z) of sound speed (SS)
field in the water column (cq(r) is reference sound velocity field), and fluctuations
B(x,2), pr(x,2) of longitudinal and transversal wave velocities in the bottom. It’s
supposed in this section that the full statistical description of all acoustic and hydro-

dynamic properties of some ocean area is known, which is needed for developing a
sound field model.

In the case where there are random volume fluctuations of the effective sound speed in
the waveguide or where the boundaries of the waveguide (surface and bottom) are
rough and can be described only statistically, GF is also random and the statistical
description shall be applied to it. The most interesting for applications are the two first
moments of GF: the mean (“coherent”) field G (r,r';0) = E[G(r,r';0)] (the averaging
E[.] of GF of current waveguide realizations is done over the fluctuation ensemble)
and the second moment (“coherence function”)
I'(r1,r2,r';01,02) = E[G(r1,r;01)G*(r2,r';02)], or the local angle spectrum M(e,»;R)
related to the second moment of locally homogeneous fields:

I(r,,r,r;0,0)=G(r,r;0)G"(r,, r;e) + K(r,,r,,r;e),

r +r, (2.3)

K
J c*("l r)

K(r,r,,r"0)= ‘f N(e,0;

Zlel=1

Ye dQye).

In the most cases fluctuations p are effect of hydrodynamic motions in the water
layer and of thin vertical fluctuations in the water stratification. Some spectral mod-
els of such fluctuations are well-known [2].

Effect of various random factors on sound fields depends on the ratio of the rough-
ness space scale to the field’s Fresnel radius and also on the ratio of the roughness
time scale to the signal processing period of a sonar on which the real averaging of
signal data is done. The scattering from roughness whose scale is smaller or similar
to the Fresnel radius gives birth to scattered fields, which are incoherent with the
emitted signal. Those fields form the incoherent reverberation interference. Its statis-
tical model based on the ray theory is described below in the section 2.4.4. For com-
mon long-range underwater acoustics problems where sound fields of several kHz or
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lower are considered the sea free surface may be treated as small-scale roughness
from this point of view. Some different situation is for the bottom case. Real bottom
surface may contain roughness of various scales. As for the free surface, there is
roughness, which creates the incoherent reverberation, but there is also large-scale
roughness. The scattering from large-scale bottom and volume roughness creates
sound fields which are coherent with the emitted signal but whose parameters (travel
times and arrival angles) are random and should be described statistically.

Mostly general and frequency invariant mathematical model for the two first moments
of GF is described in [3]. The model is developed for regular stratified (mean-layered)
environments with taking into account the multi-time scattering from rough boundaries
and large-scale volume inhomogeneities. In the frame of this model, the single-
frequency second-order moment that determines the field's space correlation and in
particular its angular spectrum, satisfies to some integral Fredholm equation of the sec-
ond kind. The kernel and free term of the equation are describing the wave scattering
from volume and boundaries' inhomogeneities. However, the numerical implementation
of this comprehensive mathematical model is rather difficult. Simpler mathematical and
numerical models can be built if roughness having different space-time scales and na-
ture (boundary, volume) can be considered separately and do not effect each other.
Hereafter, such a model for the two first moments of the SSE GF is presented. The
model is based on geometric (ray) approximation that is applicable in the case of high
frequency sound fields. For volume roughness the ray model takes into account the
multi-time scattering from large-scale volume SS inhomogeneities. This model provides
the two first moments of GF when it is averaged on large time-space intervals. It may be
applied to predict statistical characteristics of ray structures in SSE. For boundary
roughness the ray approach provides two models. The first one shall be applied for
large-scale bottom roughness and predicts statistical characteristics of ray structures in
waveguides having such roughness. The second model shall be applied for small-scale
boundary roughness (bottom as well as free surface) and provides the two first moments
of GF when it is averaged on small time-space intervals. It may be applied to predict
statistical characteristics of incoherent reverberation.

2.1.1. GF model for deterministic sea environments

Let use the common ray approach to sound propagation modeling in sea environ-
ments [4]. In despite of its well-known defects it rests one of the most powerful
mathematical and numerical methods allowing to solve the most part of sound
propagation problems as in layered as well as in irregular 2D or 3D OWG for fre-
quency range hundreds of Hz - several kHz. Under the ray approach, GF of the
waveguide is developed as a sum of quasi-plane wave fields arriving along ray paths:
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M(rr)
g(r,r';7) = A“(l',l")-S(‘t—t" (r,r)), 24
=]
M”r,r') o )
G(r,r'o) = A, (r,r0)e 0 =

= @49
M(r,r') ,
= <j' A,(rro )e' * 8 (e - e, (r,r"))dQe),

u=l

where M(r,r') is the total number of rays connecting the observation point r and the
point r' where the incident source is located, 4,(r,r';0) = = (f,(r,r) V,‘(r,r';o)))l/zllx—
x| is amplitude of the p-th ray path, f(r,r') is its focusing factor, the factor
Vurro) = [V (co)lzn"“ le @) e 107 1Bwectu (¥ s field weakening due to
propagation along the p-th ray path with n,Syurf and n,Bot - numbers of reflections
on ocean boundarieg with reflection indexes Vgyrf(®), VBot(®), BWat is dB/km ab-
sorption of acoustical energy in the sea water, t,(r,r') is the ray’s travel time.

Taking into account all advantages of using high frequency range in the FS-ABS
acoustic systems to increase the object strength and decrease ambient noises, fol-

lowing theoretical developments and numerical simulations will be based on the
above described ray model of the sea waveguide’s GF.

2.1.2. GF model for stochastic sea environments
with slow large-scale volume roughness

In the presence of large-scale volume roughness in the waveguide being SS fluctua-
tions p(r,f)=c(r,)/cy(r) on the background of mean SS field cy(r), the mean GF under
the ray approximation is

N’

G(r,r';0) = E[G(r,r;0)]= E[ > )Av (r,r';o))exp{im t, (r,r')}] , (2.5

where E[.] is the averaging on the ensemble of SS fluctuations, G(.) is GF of per-
turbed waveguide, N(r,r') is the total number of ray paths connecting the points r and
r, A(r,r';0) is the amplitude of the v-th ray path, t, =t (r,r') is the travel time for
the v-th ray path.

If SS fluctuations are relatively "slow”, current GF realization under the ray ap-
proximation is computed [5] as:
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N(r 1)

G(r,r';o)= Z A,(,r’ co)exp{(o(' t,(r,r)+3t,(r, r’))} 2.6)

where fv‘is the mean travel time of the v-th ray path, it is equal to the travel time in
the reference waveguide where ¢ = cy(r), §t, =t -t is the travel time fluctuation
of the v-th ray path.

Thus, SS fluctuations effect only ray travel times and resume as phase perturbations
to be computed by integrating the field p(r) along reference ray paths:

st =—[ PO g @.7)

’ ~ €y (l')

Ray amplitudes and the number of ray paths remain the same as for the reference

waveguide. After averaging the exponent, the well-known equation for the coherent
field derives:

_ N(rr) _ 1

G(r,r';o)= 2 4, (r,r';m)exp{ico t,(r,r’) -—-ico ’D,v (r,r')} > 2.9)
v=

where D, = E[(S t, )2] is the travel time variance for the v-th ray path. It is com-

puted from the covariance function Kp(rl,rz) =E[u(r,)u(r,y)] of the field u(r) by

integrating along the reference v-th ray path connecting the points r' and r:
" K, (x(s"),r(s") . z (r(S))
2= Lk e ®® ™ ke

Z,(r)= L B, (r,st)ds,T= ;is) , 2.9)
3,

B,(r,p)=K,(r+p/2,r-p/2).

,

The meaning of Z, is the integral correlation interval of the field p(rf along the v-th
ray path. Thus, the effect of the scattering from large-scale volume inhomogeneities
is manifested as additional attenuation of the coherent field in comparison with the
case of propagation in the reference waveguide. For some field of fluctuations u(r),
this additional attenuation is determined by corresponding travel time variances
along ray paths and by the frequency. Numerical evaluations show that in the case of
scattering from inhomogeneities due to Harret-Munk's internal waves, RMS of ray
travel times may reach units of ms (millisecond) for ranges of tens of kilometers. So,
in this case at frequency 1 kHz the factor of the additional weakening of the coherent
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field due to the scattering may be ~ exp{—(2m)%/2} ~ exp{-20} <1078,

For the coherence function (the second order moment), the following equation de-
rives after averaging:

L(r;,r;,r0,,0,) =

K(tyx0) N(ry 20) (2.10)
= l ZAx(rl To30,) A (T, aro;mz)e"p‘ﬁml t (@ .r)-o,t,(r, ,ro)}x i
o/ @,
X €Xpy — TD;, (rl o) = B D, (r,,ry) +0,0, R, (r,,r558) ¢,
where
L KEEE -
Ry (6,53ik0) = L -L co(r(s'))CO(r(s"))ds @", Ry(r.xity) = D, (£x0) G-1D

is the cross-correlation of travel times along the K-th and V-th ray paths. Thus, the
cross covariance function R (r,,r,;r,) defines, as one can see, the two first moments

under the geometric (ray) approximation.

If the distance between the points r; and r, is much larger than the correlation inter-

val of inhomogeneities, then the correlation of travel time fluctuations is defined,
firstly, by the source vicinity whose contribution is

IR, G e

where e, (r;), e(r,) are the unit vectors tangent to the k-th and v-th ray paths at the
source point. This fact is evident if the observation points r, and r, lie in some hori-

zontal plane because the reference ray paths have a constant divergence in the hori-
zontal plane, so that if they pass through volumes of medium with not correlated
fluctuations after the first cycle, they do the same further more. If the otservation
points lie in some vertical plane, the vicinities of reference rays' intersection points r,

give also contributions into the travel times' correlation:

Zq: f J,, K (e (r,)s e, (r,)s")c;’ (r,)ds'ds" -

However, for the Harret-Munk's spectrum, as for any other one vanishing to zero
when the wave number tends to zero, this integral is equal to zero.

Let it be rj+rp = 2r, p = ry—rp for small separations of observation points. Let the
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point r is connected to the source point ry by N ray paths in the reference medium.
Let also consider such separations of observation points that are not larger than the
characteristic width of reference ray beams. That means that if a reference ray con-
necting the points rq and r is described by a function r,(s), then the corresponding
reference ray connecting the points rg and r+p/2 is described by the function
r(s)(p/2)A(s,L), where A(s,L) is the matrix solution of the problem

FOA,(.)=0,A,0,D=0,A,(LD=P, [P =5 -czef,

. ,d( d 8%nn) _d( d @12)
F(s):dlag{n 'a;(nzs-)+(x2 =5 J,n '-c-ig-(nav—)}

The operator Pv does projection onto the subspace that is orthogonal to the tangent

vector e, = {e%} of the v-th ray path. Under the above conditions, the correlation of
travel time fluctuations along a single reference ray path is computed as follows

R, (r,p;ry) =

_pr(r’O)(e’p)z _lw l»l-,s (S, (S)) B
=D, (mr0) 5= 53 j VDT SO AY (5 Dpyds
Mg (s,1s)=fo 2, Bu(u,p,)lp _du @.13)

and the correlation for any two different reference rays can be written as follows

K, (e (r)s', e, (1g)s") Usds" + ”K w8 (1)s',e, (r)s")

R, (r,p;r,) = '” (r,) ci(r) ds'ds” -
_B,(r0) :
) {e. 2.0, 0.0)- (e (e, ke, 1,007 +e, 10 B @.14)
1

(] [Ku (e (0)s',e, ())s")ds'ds"(p} +pY), (P +pY )}
4c )

It follows from the equation (10) that the matrix
Hys (5,1(s)
¢ ()

may be understood as the covariance matrix of ray paths' arrival angle fluctuations.
In force of the space symmetry of the internal wave spectrum and thanks to the lay-
ered model for the deterministic part of the SVF, this matrix is diagonal: arrival angle

AP (@ ,50) = c2(0) AT (s, ) A® (s, D)ds @.15)
0

271



fluctuations in the horizontal plane are not correlated with those in the vertical plane.
The travel time fluctuations and arrival angle ones are also not correlated.

In the equation (2.15), the two first terms describe the correlation of travel time along

the K-th and V-th ray paths, and the last term does the same for the correlation of ray
arrival angles. Cotrelation of arrival angles of different rays is only determined by
the vicinity of the receiver, and the correlation of travel time fluctuations is deter-
mined by the vicinities of the source and the receiver (the vicinities of the intersec-
tion points of any two different reference ray paths do not contribute to the correla-
tion). As the variances of ray travel time and arrival angle fluctuations should grow
with the distance from the source but theirs correlation for different ray paths should
not globally grow, hence they may vary from one cycle to another, the correlation
coefficient decreases when the number of ray cycles grows, though the correlation
coefTicient for one cycle can be considerable.

One can transform the equation for statistical characteristics of arrival time and angle
fluctuations to express them via the spectrum of inhomogeneities. Then using the
Harret-Munk's internal waves' spectrum, equations derive that are not present here
because of their volume [6]. Those equations allow computing of variances of travel
time fluctuations and modeling of correlation functions of arrival angle fluctuations
in the vertical and horizontal plane by means of simple integrating along ray paths. It
follows from the equation that the main contribution to the correlation functions in
the deep ocean case is given by ray turning points. Expressions for time correlation
intervals of ray travel times and of grazing arrival angles were also obtained in [6].

The equatior{ (2.9) for the variance of ray travel times can be simplified under the
supposition that the covariance function of sound velocity fluctuations can be ap-
proximated by a gaussian function

K (r,r)= Du‘(z)exp{— %(r -MR;\(r \—,r')} , (2.16)

where R:! = diag(p ;2(2),p ;2(2),p (2)): PH() and py(z) are horizontal and

vertical correlation intervals for the field p. One integration in (2.9) can be done by
the Laplace method and the following equation derives:

\/—2? Lv D,.(Z)P v(2)

Dlv (l’,l’o) =7

ds .17
G cos’ )(\/sin2 Y +€%(z)cos’

£(2)=p (2)/p u(2), ¢, = ¢ [/cosy, (cv is sound velocity at the returning point

of the V-th ray path). By the same way similar equations derive for variances of
fluctuations of ray arrival angles:
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V2n D, (2)e(2)R(r(s),1,)

D, (r,r)= ds » 2.18
h (52To) R (r,5) S p (2)cos® ysin’ y +& ((z)cos’ x e

2
D, (r,x)= Von D.@e@A ()5 ds - (2.19)

K(r,5) < p (2)cos? g (sin®  +€ X(z) o8’ x)m

where A = (6 R/0 x(,}in %, - Time correlation interval of fluctuations is

tv(r,ro)=‘/ [ J°°s_2 K@@ 4 / [ J°°s_ B@PvE 4 220y

sin® x +¢& %(z)cos® %, sin®  +¢& *(z)cos’

In the case where sound velocity fluctuations are effect of free internal waves they
are related by a simple equation:

p(r,) = DN2(2)&(r. 1) , @.21)

with &(r,7) the function describing the field of internal waves, N(z) the frequency
profile of free gravitational waves: N2(z) = d Inpwat(z)/dz, with pwat(z) water den-
sity at depth z. The value D depends slightly on ocean regions and on depth and is
equal to ~10 sec2/m. For the case of ocean internal waves the parameter pyj ~ 7 km

and the anisotropy factor £(z) depends on depth and varies usually in the range from
1/70 to 1/100.

Computer modeling results of statistical characteristics of ray paths for shallow water
conditions (for the Pekeris waveguide) are presented with the figure 2.1. General
conclusions for the deep ocean case are as follows. As it has been shown that the
main contribution to ray travel time fluctuations is done by ray turning points, then,
taking into account that in the deep ocean 1) the frequency Mz) decreases quickly
when the depth increases and 2)the variance of p(z) is proportional to the third
power of N(z), one concludes that the maximal contribution in the ray parameters'
fluctuations in these conditions is done by the upper turning point. Really, simula-
tions demonstrate clearly the difference between water-born, surface-water-born and
bottom-born ray paths. It follows also from the simulations that the level of ray travel
time fluctuations is maximal in a shallow water channel and minimal in a deep-water
* channel. It agrees well with the above conclusions about contributions of ray turning
points. Our simulations show also that ray travel time fluctuations vary from several
fractions of ms for steep ray paths to several units of ms for gentle ray paths. The
RMS of grazing arrival angle varies from fractions of degree for steep ray paths to
1°...2° for gentle ray paths if one pays no attention to jets in the graphics occurring
- when a ray passes focal points. Horizontal arrival angle fluctuations are so small that
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one may neglect them for distances about first hundreds kilometers from the source.
Modeling for correlation intervals of ray travel time and arrival angle fluctuations
shows them varying from tens minutes for steep ray paths to 1...2 hours for gentle

ray paths.
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Figure 2.1. Modeling of fluctuations of travel time (a) and arrival grazing angle (b) of
source field's rays in the Pekeris waveguide.

Errors due to the use of the geometrical (ray) approximation can be evaluated.
Thereby frequency and distance ranges of its validity can be estimated. To do it, let
use the Rytov's method of smooth perturbations [7].

2.1.3. GF model for sea environments with large-scale bottom roughness

High-frequency banded signals in sea environments with reflection on a bottom
having roughness, whose scale is larger than the field’s Fresnel radius, should have a
multi speck-patch structure. Such signals consist of many neighboring ray arrivals in
the time domain. This effect, whose nature is the same as of the “moon light band”
effect, was studied in [8] on experimental and simulated data. Figure 2.2 shows two
correlation functions for two consecutive signal pulses obtained on experimental and
simulated raw signal data where the simulation was done for a flat smooth bottom.
Figure 2.3 shows the time evolution of correlation peaks when the source moved to
the receiver. The experimental and simulated situation were for the Barents sea
summer propagation conditions (sub-bottom channel) with mean bottom depth about
240 m. The source of LFM signals (central frequency 3240 Hz, band 600 Hz, dura-
tion 0.01 sec, depth 7.5 m, speed 6 m/sec) moved from 15 km to 6 km range directly
to the receiver (vertical linear array at depth 150 m) and radiated LFM pulses each
10 sec. Although the correlation function structures on the figures 2.2 and 2.3 are
rather.different, one can find the same general behavior of experimental and simu-
lated correlation functions when observing their time evolution. The difference is
that for the simulated data the evolution of maximums has rather regular and deter-
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ministic character: peaks form curved lines in the (Delay, Time) plane. It’s as each
simulated peak corresponds to a group of experimental peaks. Peak amplitudes in
each group are fluctuating very quickly although their time coordinates are rather
stable and change slowly by the same manner as solitaire peaks in the simulated data.

DT =0085 sec

This effect is due to large-scale DSTE: Poriods #11 and # 12
bottom roughness whose correla- 3 Experiment signal dsta set #1.1
tion scale .is larger then the Fres- | ! 11ih hydophone |
nel radius of rays reflected on the i Correlation with LFM:
bottom. When a sufficiently high o4

i

frequency sound field is reflected
(scattered) on the bottom, there is
always such roughness (since the
spectrum of the bottom roughness
is continuous) on which the scat-

fad A}

Simulated data set #11
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pon. Qua.ntlty of such rf)ughness } Comolation with LEVE
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some propa'\gation conc.litions this  Figure 2.2. Two correlation functions of two con-
area is mainly depending on the secutive periods for one hydrophone:
RMS of roughness slope. a) experiment data (Barents sea), b) simulated

The quick amplitude fluctuations data (flat smooth bottom,).

of peaks of experimental correla-

tion functions are effect of the source motion. It follows from the simulation that
each correlation peak corresponds not to a solitary ray arrival but to a couple of ray
arrivals very close in time domain. When the source moves phase difference between
rays in each couple changes, and the interference between fields arriving along close
ray paths creates the amplitude fluctuations. Some correlation peaks be correspond-
ing not to couples but to couples of ray couples since the time resolution of the signal
may be not sufficient to segregate maximums of these ray couples. In this case, those
maximums should be some more rapidly fluctuating in amplitude.

To simulate this effect, numerical modeling of the source sound field was done for
the experimental situation. In this simulation the real bottom was modeled as a) flat
smooth or b) rough surface. This simulation was conducted by using a 3D ray-tracing
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rough, so when a sound source moves, bottom realizations are different for consecu-
tive periods of signal radiation. It makes moving points of specula reflection on the
bottom and makes corresponding correlation maximums fluctuating in delay and
amplitude.

When doing ‘the statistical description, all parameters of one-time reflected field
(number of rays n, their travel times ¢ and arrival angles x, ¢ forming a vector
&=(1,%,9)) should be considered as random and described by some probability den-
sity function (PDF). The simplest model for the parameter #, which must have value
1 or higher, may be the Rayleigh model, where the PDF is:

®(n) = nexp§- n?/2N* YN?, n21

¢ =El]= /2N, o? = Dfp)= (4 -7)N*/2)

(the maximum of this PDF is for the argument » = N). The simplest model which

(2.22)
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could be proposed for £ is the gaussian one, where fluctuations of field parameters
(arrival times and angles) are fully described by theirs two first moments (mean val-
ues, variances and cross-correlation). If propagation conditions are such that fluctua-
tions of field parameters are not able to change radically the ray path then the mean

values § = (f, %[, @) are those calculated (following the model described in 2.1.1)

by a ray program for corresponding environment with a flat smooth bottom. The
PDF under the gaussian model is

) exp (B E-E)E-E)}
OE) = detonE , (2.23)

where E is the cross-
covariance matrix of parame-
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plane having a slope angle a
then the angle y of horizontal refraction due to this reflection satisfies the equation

siny = sin2a. siny. . (2.249)

For small angle values x which are usually realized for sound propagation in sea
environments this gives the estimate y ~ 2a. So, as y ~ 2¢, then the parameter o,
may be estimated as G, ~ G,Xm, Where Xm is some characteristic grazing angle value
for bottom reflections. The parameter , may be simply estimated as.c, ~G,. As
travel time fluctuations are due to the horizontal refraction effect then the travel time
increasing is about
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[L /cosg+H(L~L,)/cos(y—p)-LVec ~ [¢’L, + (w—9)*(L-L,))c, (2.25)

where L is the range form the source to the receiver, L1 is the range form the reflec-
tion point to the receiver and c is the sound speed. So, an estimate for the parameter

oy is
ot~ 3 o.2Llc ~ \[3 oyl (2.26)

For the experimental data presented with the figure 2.3 the parameter 6; may be es-
timated as 0.004 sec for the range L ~ 10 km, so the RMS of slope of bottom large-
scale roughness can be evaluated as ¢ , ~ 1/6 ~ 9°, which may be a rather realistic
value.

Finally, an estimate of the parameter N may be the done by estimating the bottom
area S from which ray paths having such angle fluctuations are able to reach the re-
ceiver. When considering the Pekeris waveguide case this bottom area may be esti-
mated as

S~ (Lo, /sin2y)(L tgo) . @27

If the roughness correlation interval is / and oy is the RMS of bottom depth
(I ~ o gctge) then the parameter N is evaluated as.

N~ L’/ nP~L%,' /| no . (2.28)

For the experiment the parameter N may be estimated as 10 for the range L ~ 10 km,
so the RMS of bottom depth can be evaluated: o7~ 50 m.

2.2, Echo-signal model

In the general case, when there are surface, bottom and water ray paths connecting
the source array (S), an object (7) and the receiving array (R), an echo-signal created
by the object is a sum of coherent and diffused components. Under the both DSE or
SSE models, the coherent echo-signal component is a quasi: deterministic vector
process. The diffused component that is due to single scattering from rough object
body, from rough bottom and sea surfaces may be supposed normally distributed. As
to the field component being two-time scattered from boundary and body rough sur-
faces, it is randomly modulated random fields (under supposition that surface rough-
ness is normally distributed). Neglecting the two-time scattering component of the
echo-signal, one shell consider the incoherent component as homogeneous and sta-
tionary gaussian field on the receiving array.

Reflection capability of some object is described by equivalent radius Ry(e,e';®),
where e, ¢' are normalized vectors determining directions of the reflected and inci-
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dent waves. By definition, it is equal to the radius of a perfectly reflecting sphere
creating in its Fraunhofer (“far field”) zone a reflected signal of the same level that
the object.

Using the ray notations, the time-space structure of coherent echo-signal component
of an underwater object is

P ( Wpc.y N(rg.rr) M(rp %)
T (PR P Fg30) = [——— - i A, (rg,rp;0)4, (rp,rg;0) %
4 F = " (2:29)
i0 (4, (rr.05)+, (o) 1
x g tnlrmts +t, (rg,rr)) —RT(ev ,e”;O))'Bs(e“ —eg;m),

2

where W, v, pc are the radiated acoustic power, the concentration coefficient of the
source array (pattern factor) and the wave resistance of medium. All other values
were described above.

Usually one makes following assumptions on statistic properties of echo-signals:

1.  Their phases are random and uniformly distn’buted in the interval (0;2x).

2.  Depending on propagation conditions, the echo-signal amplitude is considered
as determinist or randomly distributed under the Raleigh low.

3. So far the echo-signal in waveguide environments is a multi-path signal, it is
assumed for such propagation conditions that amplitude fluctuations and initial
phases of signals arriving along different paths are statistically independent.

2.3. Object model

The term "object model” means hereafter some method to calculate the object
strength or equivalent radius.

2.3.1. Object model for ABS

Under the classic ABS approach an object is described by its capability to sound
reflection that is characterized by equivalent radius (ER) RT equal to radius of a
sphere creating an echo-signal of the same level than the object. Under the FS-ABS
approach it is common to call the useful signals "scattered”, or "diffracted” instead of
"reflected”. Nevertheless this type of signal shall be also considered as a special kind
of echo-signal and one may use the ER term to characterize such signals.

For the frequency range above several hundreds of Hz and for any ABS scheme
other then the FS one the ER of common underwater objects usually slightly depends
on incident and reflection angles. When the object is sounded from the bow or in a
wide angle sector around this direction, the ER depends on object sizes and on qual-
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ity of special anechoic covering, if there is one. In this case, it depends smoothly on
frequency (as the square root). To do numerical modeling one may use the estimate
Ry =5 + 10 m for common ER increases sharply when the object is illuminated in
the board direction. Nevertheless, this effect appears only for narrow angle sector.
For conventional active pulse system modeling one should neglect this effect having
small probability.

At lower frequencies (about tens of Hz), resonance of object body structure will appear
and the equivalent radius increases sharply. In this case, the object reflection capability
has a well-pronounced angular pattern in both vertical and horizontal planes.

2.3.2. Object model for FS-ABS

It’s already mentioned above that for the FS-ABS case when an object is placed in
the vicinity of the vertical plane containing the emitter and the receiver, the ER in-
creases sharply up to the ratio ~ 25/A, where S is the area of object projection onto
the incident wave front, A is the wave length. Previous estimate of the useful effect
(modulation coefficient) under the FS-ABS approach was made in the section 1.2
and it was shown how one could obtain an estimate of the ER for FS-ABS by using a
heuristic approach. Let us found this estimate of ER by using more rigorous formal-
ism of wave diffraction on a perfectly rigid body.

Let Py(r) and G(r-r’) are the incident field and GF of free space without body, P(r)
is the field scattered by a body, Z is the surface of the body. Each point on the sur-
face 2, may be considered as source of waves forming the field Pr. Using the Green

theorem (otherwise called sometimes [1] the Huygens principle), it’s possible to rep-
resent it as a surface integral

B®-= ‘f{(P(r'n ) - a(P(')+P("))} ~rydo » (230)

where n is the external normal to Z;. So far as the body is perfectly rigid, then

0 (Ps )+ A ')] =(, therefore,
on' r'eX.
R®=JBE)+ ﬂ("))a'%d"' -
I |

Lét the observation point r tends to the body’s surface. Taking into account that GF
has a pole when r = r', the following equation deduces
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aG(r r')

B(r)= (r')+2<j(P(r')+PT r') do, rez,, (32

where the surface integral must be calculated as the Cauchy main value.

Let us use now the Kirchhoff approach with shadowing. It means that one must use
the first iteration P = Pg of the equation (2.31) as the first order approximation of

the scattered field on the sounded surface E;, and zero field on'the black side of the
body. This approach corresponds really to the well-known fact that the total field

near some perfectly reflecting plane is equal to the incident field multiplied by 2.
Thus, the following derives:

aG(r r)

R(r)= 24 K@) (2.33)

It's known [1] the Kirchhoff approximation is well working in the Fraunhofer zone if
the wave length is much smaller than the body's maximal dimension (A < < L).

To simplify the calculation of this integral, let us consider a free homogeneous space

ik|r—r|
where G (r-r')=— 1 e
4nr-r|
rigid rectangular screen with dimensions L and D such that § = LD, and let us con-
sider finally the plane wave incidence. Having placed the coordinate center in the

center of the screen and having oriented axes X and y along its sides, one has P =
ezand O __ 0 Therefore,

and approach the object using a perfectly thin and

on' oz'
Li2 D/2 |r-—r’ J
P, -1 + +
2 (r) = { DI,,dyaz =T == J(x=x) +(y-y")? +2°

Having calculated the derivative, one has

L2 DI2 l z
rio- T Tolocr)

bl
T _in  -Dn Ir—r'| |l' -r

eiklr-t'|

from which it follows for |r-r'| > > l/k:

u2 D/2 z iklr-t'[
P(r)-—— ax | dy —2—f—
o I e e

281



Since  |r-r'|= JrP=2(r,r)+r*, for  r>>r  one  has
[r—r'|=7-(e,r')+5(r'/r), with e = r/r. By applying the common procedure
for this type of calculations, values of the order O(r'/r) into the amplitude factor of

the integrand should be neglected but conserved in the phase of the fast oscillating
exponent, then the following derives

ke D
ik zew ¥ P2 o) 7)) sin 2" L sin ; &
=22 I " e x'+e,y' - = L
k@ rr -lj;zdx'_l!;iy ¢ "X Y ke L ke,D
2 2
. ke L . ke ,D
therefore, sin—,—si (2.34)

f-,(e) = -] Ie, ‘-'———'—kexL IceyD

2 2
Thus, the estimate Ry = 25/A for the case where the scattering direction is equal to
the incident wave direction (e = (0,0,1)) is proved.

More rigorous validation of the increasing of object ER for FS-ABS schema can be
the accurate asymptotic solutions of the sound wave diffraction problem for a rigid
sphere [1] or for ideal rigid spheroids [9]. These asymptotic solutions should be used
for numerical modeling of echo-signals when doing computer simulations of FS-
ABS systems.

2.4. Interference models

It will be assumed hereafter that interference fields for an ABS system are statisti-
cally independent from the probing and echo-signal fields. Total interference for an
ABS system consists of
system interference (electronic noises of the receiving system, and so on),
2. seaambient noise (dynamic noise of wind perturbed surface, far ship traffic
noise and so on),
3. noises coming from point noisy sources (from surface ships, oil installa-
tions, etc., located in the vicinity of the receiving array),
4. seareverberation.

It will be assumed on all these interference fields that they are normally time-space
distributed (taking into account some limitations) and have zero mean values. Thus,
they are fully statistically described by the time-space covariance function
KN("s,l'qJ 1 ,‘2)'
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2.4.1. System noise

Regarding the system noise, one assumes that it is gaussian, mean-zero, stationary in
time, homogeneous and non-correlated on sensors, so it is fully described by such
time covariance function:

Ky, (5,:5008) =Ky, (4, =,)8(r, -1,) - | 2.35)

2.4.2. Ambient sea noise

Ambient sea noise sources are the dynamics of ocean waters and of the free sea sur-
face, seismic activity, distributed far ship traffic, biological and temperature noises.
In the case where sonar operating frequency is hundreds Hz up to several kHz, the
dominating source of ambient noise is the wind near the sea surface and the wind
agitation (so-called dynamic sea noises).

It is common to model the ambient sea noise as a field generated by uniformly ran-
domly distributed sound sources in a thin subsurface layer. In mean-layered hori-
zontally regular sea environments the vertical angle spectrum of the dynamic noise at
the free surface NS"(y;®) doesn't depend on azimuth angle ¢ and on horizontal co-
ordinates. To calculate it with taking into account the impact of multiple scattering
from the free surface one needs to solve an integral Fredholm 2nd kind equation [10]

N (130) = Sour (430) + N (1:0) Vg (430) Vi (o (1,006 0 +
x/2

‘ (2.36)
+ [ NS (050 Vo (o (6 050) 5 Mg (x,;0)
0

cosy'
siny

a’,
] 2=
Mue (X, X"0) =5~ Infs..f(x,x',w—¢':co)d<p' ,
2n

where Sg . (%;0) =K g, (@)sin®™ y is the angle-frequency spectrum of sub-
surface noise sources, with kg, (@) their power spectral density, ug the power pa-
rameter for the pattern lobe of these sources, R(y) is the horizontal length of the ray
path having the grazing angle  (so-called cyclic distance), mg, (... i_s the energetic
surface scattering index, xp,(X,2) is the grazing angle of the ray whose grazing angle
isy atthedepthZ, B = O,IQnIO)BWa(co) is the weakening-in-the-water coefficient.

Neglecting the surface scattering, the well-known classic equation [4] for NSU(y;m)
derives:

=1
N3 (130) = Sour (430)( = Vo 0430 Wi o G Ds0) ™0, @237)
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Calculation of the ambient sea noise angular spectrum at some depth z is done as

follows:
NS (4, 250) = NS (00 (1 2)50) 2

c*(2)

where R, (x,2) is the length of ray arc, which has the grazing angle  at the array’s
phase center at depth z and goes to the free surface, Xg ¢ = Xgu(X,2) is the grazing
angle that this ray has near the free surface. .

Instead of the above presented model a more simple model may be used where the
impact of the multiple scattering is simulated by the presence of phantom bottom

noise sources with frequency-angle spectrum Sg (X, ®):
N¥(x, z0) =
See (X e (X Z);w)C;f, +S8sna A sna (X5 Z);(’))e-BR(X)V:ncénd o~ 2BRea (1) »(2.39)
S (2)A-V2 V2 e W)
where the subscript Fst takes the value “Surf” or “Bot” depending on what boundary

is encountered first by the ray, and accordingly to it the subscript Snd takes the other
value; cg, and ¢, are sound speed near corresponding boundaries.

et (K (Xs250) > (238)

As the result of modeling of ambient sea noise angular spectrum under equations
(2.36)-(2.38) or (2.39) the function NSUrf(y;®) slightly varying on grazing angle  is
obtained. In not-regular environments (for example having 3D bottom surface) the

integration on ¢ in (2.36) should not be done. In this case the ambient noise angle
spectrum is a function of two angles and frequency.

In the frame of the above-presented models the ambient sea noise is a gaussian zero-
mean field being homogeneous in the array's receiver space. Its variability time in-
terval is determined by the sea and ‘atmosphere variability. Taking into account that
the most powerful are large-scale processes, one may consider the ambient sea noise
as stationary process on time intervals not exceeding this scale:

K, @t t0) =Ky, (51,0 —t,) . (2.40)

Furthermore, for receiving arrays whose vertical size does not exceed the interval of
vertical vanabihty of sea noise this one can be cdnsidered as homogeneous on the

array and is described by its angle spectrum NS¥f(y ;).

2.4.3. Interference from local sources

This interference component is due to the presence of close ship traffic or industrial
installations or some other power localized noisy sources. As to the ship traffic one
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has to distinguish two types: "near" and "far" traffic. The "far" traffic increases the
variance of signal processing output and its effect can not be suppressed by time
accumulation. This particularity distinguishes the "far" local noises from the ambient
sea noise. As to the "near" traffic, one must consider each ship as a powerful local
noise source that should be suppressed by using an appropriate algorithm with adap-
tive beam forming.

Supposing that movements of local noise sources are small during the primary proc-
essing time interval, one may consider the noise of local sources to be stationary,
with covariance matrix

Ky o 0,0) =Ky (1,1 -1,) . 241)

Spectral density matrix of this noise component is

K. @] =¥« @6, r:0)6,r:0) . 242)
1

where (@), r, are the spectral power density and coordinates of the I-th local noise
source.

2.4.4. Sea reverberation

Sea reverberation is an interference field created by sound scattering from inhomo-

geneities of sea environment. The main sources of sea reverberation are rough

boundaries of the waveguide (bottom and surface) and volume scatterers. So, the

total reverberation may be devised on surface, bottom and volume reverberations
" regarding its generating mechanism.

In the general case, the reverberation noise is not a stationary process. Its variability
interval is the same or greater then the incident signal duration if this one doesn't
exceed several seconds. Nevertheless it may be often considered as random process
similar to quasi-stationary one whose correlation coefficient depends on time differ-
ence.and the variance depends on current time moment. If this dependence is suffi-
ciently "slow", then one may consider the reverberation process as stationary on time
intervals several seconds or less which are equal to the echo-signal duration for clas-
sic ABS systems. For FS-ABS systems when prolonged or continuous signals are
radiated this approach is still more right. The correlation coefficient of reverberation
is known for the observer and is equal to that of the probing. signal..If the vertical
size of a receiving array is not more than the vertical variability interval of the rever-
beration, one may consider it as homogeneous random field and describe it by an
angle spectrum. '

Models for all types of reverberation - boundary reverberation (BR) including the
surface and the bottom ones and the volume reverberation (VR) - for classic pulse
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ABS systems as well as for FS-ABS systems are formulated below. Also, models for
energetic scattering coefficients m; (e,e’;@,r), (M = "Surf", "Bot" or "Vol") de-
scribing the sound scattering from boundary or volume perturbations are presented.

Reverberation model is formulated hereafter for some receiving array being compen-
sated in the direction eg and having a pattern lobe in pressure described by the func-
tion Bg(e). It’s supposed as usually that the reverberation process at the array exit is

gaussian with some non-zero mean’ value and covariance function K (¢,,t,)
(M = "Surf", "Bot" or "Vol"). The intensity of reverberation is defined as follows:
17 (¢) = K[ (¢,1). If there is a fan beam forming, one may consider the covari-

ance matrix [K?” (t,.¢, )]y in the beam space. Its elements are covariance functions

of beam exits. In force of these definitions, the intensity and the covariance matrix
are related:

() =[Ki" 0],

By its definition, the instant angular spectrum of reverberation N, lR“ (e,t) is related
to the covariance matrix:

(2.43)

0 _
eR=¢;

[ .0] = § NP (e,) By (e-e;) By (e—e,)dxAe) » (2.44)
and to the intensity:

1™ (1) = { N™ (e, 1)B2 (e - €2)d2e) - (2.45)
If the reverberation can be considered as a quasi-stationary process, then

K =K (6, - 1), [Ki"(0.0)], =[KI" G, 1)), (2.46)

1™ (£) = K (0) = const, [Kf”(t,t)]lj =const;, NF = N{*'(e) . (247)

Hereafter following notations other than above ones are used: S(¢?) is the normalized
signal envelope of radiated narrow band pulse signals, r is the point of scattering,
e(r,r',¢") is the normalized tangent vector of a ray path connecting points r' and r when
it is considered at the point r and is equal to ' at the point r’, e, is the normalized vector
of the observing direction, M(r.r') is the number of ray paths connecting points r* and r,
t(e,r,r’) is the time of propagation along the ray path connecting points r and r' if it has
e as tangent vector at the point r, y(e) is the grazing angle of the vector e, W, y are the
radiated acoustical power and the array pattern factor (the concentration coefficient),
dW(r), dZ(r) are volume and surface elements containing the point r.
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2.4.4.1. Volume reverberation

Using above introduced notations and supposing the space correlation interval of
volume scatterers to be less than the space interval of sound field interference vari-
ability in the ocean, the instant intensity of volume reverberation created by sound
scattering from one elementary volume element d¥ can be written as

M(rg,r) N(r,55)
Z vaa( e, (r,rg).e (r,r5);0,r)x
va(r,rs)-Vv(r,rs;a))R“z(r,rs)Bg(ev(rs,r)—es)><
X f, (Fg ,¥) -V, (rg,1;0) R (1 ,r) B} (e, (rg ,r) — €} ) x
xS* (-t (rg,r) -t (r,r5)),

o= Wpcy ——dV (r)

(2.48)

Full amount of intensity of VR is the integral all over the waveguide's volume:
& = [a1% . (2.49)
v

When calculating , the intensity of reverberation by integrating all over the
waveguide's volume, the signal envelope S(f) works as "window function" deter-
mining in the waveguide a volume in form of pseudo-ellipsoidal layer encircling the
source and the receiving arrays.

Using the equation (2.4') for ray presentation of GF as a surface integral and the
equation (2.45), the following expression for the angular spectrum derives

) N(rx5)

Nz e = L [y 2: S (e, (F10),0, (1), ) X

v=]

x3(eg —e, (rg,1) £, (r,15) -V, (r, rs;0) R (r,rs) Bi(e, (rs,r) - €g) x
x £, (rg, 1)V, (g, F;0) R (0 1) x S (1 = t, (5 ,¥) — £, (1, 15)),

The volume element dV may be represented as dV = dsdo, where ds is the elemen-
tary length element of the ray path, o is the area of small elementary surface that is
transversal to the ray. Introducing the ray coordinates (s,1,& ) so that do = R2dndC,
where R is the distance between the source and the receiver, one may pass from vol-
ume integrating in Descartes coordinates to integrating in the ray coordinate space.
This means to replace r = r(s;n,§ ) in (2.50) and to omit the index p and the sum on
u-th rays connecting the receiver and the scatterer since they will be all taken into
account because of the iritegrating on the "transversal" ray coordinates (1, ). As
result of this substitution the single meaning functions e(r',s,n,) = e"(r',r(s;n,c )

(2.50)
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and e(s,n,G,r') = e"(r(s;n,c,r') will arise which determine tangent vectors of ray
paths connecting two points (r' and r(s;n,C)) when these vectors are considered at
points r' and r(s;n,£) respectively under the condition that the ray coordinates are
(s,m,0) at the point r(s;n,{).

Moreover, using the definition of focusing factor the following derives:

4V (r) = dsR (ry ,7(5;n,))dnd = ds ';(‘r"‘”((:;‘°f°))))dnod«; , @51
R’ 0°%0

and it’s possible to pass to integration on "transversal" ray coordinates (n,,5,) at the
observing point.

We N (9)rs)
N3z () =g L [fdnude, [ds 3 muu (e, G rede, (Dm0 () x
x8 (ell - e(rk ,I'(S)))V(I'R ,I’(S),(!))f; (l‘ (s),l’s) x
x ¥, (X ()r5;0) R (1 (s),15) B (e, (rs,r (5)) - €5),
with r(s) = r(s;ng.Cy)- Let use as (n,,&) the spherical coordinates (6,9) on the unit
sphere surface. Notice that the unit vector e(rg,r(s;8,,9,)) has (89,@,) as its spherical
coordinates because of its definition. Therefore the result of integrating on (8,,¢,) in

the presence of the 5-function in the integrand is the following result equation for
modeling of the instant angle spectrum of volume reverberation:

(2.52)

N(r(s).r,)
N™(eq,t) = Ids m.(~e(r(s) rR).e, (£(5),5s);0 ,1(s)) x

x £, (x(s), rs)V (r(s),rs,m)B (e, (rs,r(s)) —e) R*(r(s),rs) x (2.53)
X V(rg,1(5);0)S (t - t, (rg,r(5) - t, (¥ (5),15)),

where the integration is made along the ray path r = r(s;05,05) with the tangent
vector eg = (COSQsindyg,sinPgsindy,cosby) at the receiver point.

One may model the intensity and the angle spectrum of reverberation by using 1) the
equations (2.48), (2.49) or (2.45), (2.50), but also by using 2) the equations (2.45),
(2.50). The calculation algorithm for the first case (when integrating on all the
waveguide's volume) is radically different from that for the second case (when inte-
grating on ray paths). When integrating on all the waveguide's volume one needs to
choose the scattering element dimensions (the element of integration) so that it
would be smaller than the interval of the field space variability due to the interfer-
ence of reflected and refracted waves. If it is done and if one finds all main ray paths
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connecting three points (the receiver, the scattering element and the source), one may
be sure the reverberatjon is "completely" modelled (taking into account limitations of
the model). By the same manner, to ensure the "complete” modeling when integrat-
ing along ray paths one needs the steps of integration on ray length and on angles at
the receiver to be so small that the field varies a little on these steps.

2.4.4.2. Boundary reverberation

Using the above notations and the same supposition about space correlation interval
of scatterers, the intensity of single time scattered narrow-band boundary reverbera-
tion (BR) from an element 4Z of the boundary Z (of the sea surface, for example) can
be expressed as

) N(rrg)

M(
()= 2L g3 ) i 3 Mgt (=€, (g )s0 (1215 );0,1) X

v=1
xf,(r,rg)-V,(r,rg ,(o)R"(r,rs)Bg (ev(rs,r)-—eg)‘ X
xfp(rk 3r)'Vu(rR ’r;b))R-z (TR,T)B:(C‘J(I’R,I‘«)—C:) X
sz(t—t"(rk,r)—tv(r,rs)).

The total amount of BR is calculated as integral of (2.54) all over the boundary. If
the boundary is horizontal and homogeneous (as it may be usually admitted for
problems considered in this paper) then the scattering coefficient doesn't depend on
horizontal coordinates. To calculate the angle spectrum of BR, one may consider the
BR as a particular case of VR in which the volume scattering coefficient is equal to
product of boundary scattering coefficient and of Dirac function of depth 8(z-zg,,p)
Thus, using (2.53) and taking into account that

cosang(e(r,rk,ek),e l)l.v =dz,

where e, is a unit vector transversal to the boundary, one can calculate the integral
on ds and obtain the following equations:

(2.54)

Woey MR g (~e(zuur, 20, €00, (ot Z650)
NR(e 1)=2PT Surf R surfs 28 )5
st (€, 1) 4 2 (€(Zsuts Zr-€r )€1 )
XV (1 1(5);0) £, (1(eq ), )V, (r(eg), T @) B2(e, (25, Zgur) - €2) 2.33)
xR z(r(en)’ 5)S - t, (%, r(eg)) - t, (r(eg), 1)),

with r(eg) = (x(eg).2g,) the point where the ray having the direction ey, at the re-
ception point arrives onto the boundary.
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As for the VR case, the intensity of BR is calculated by integrating elementary parts
all over the waveguide's boundary under ‘consideration. The signal envelope is acting
as "window function", which determines on the boundary a band area of pseudo-
ellipse form, which encircles the projections of the receiving and source arrays' posi-
tions on the boundary.

2.4.4.3.. About scattering index modeling

Other than the reverberatlon model structure such as is described by equations (2.53)
and (2.55), the main factor determining the reverberation interference in sea envi-
ronments is the model of scattering coefficient entering in the reverberation model.
As to the volume reverberatlon, the ‘scattering from small-scale scatterers creates it.
The main scatterers are air bobbles in the sub-surface layer or gas bobbles
owned/created by sea biological organisms or the organisms themselves. Those
scatterers are sufficiently well described by .a ﬁ'equency-dependmg scattering .index,
which does not depend on both incident and scattering directions. It may be depend-
ing on space coordinates since the scattering properties.(e.g. density of scatterers) are
usually changing with depth and sometimes with range. Results of boundary rever-
beration modeling will be determined by used scattering index model for the bound-

~ary. This model can not be a frequency-depending scattering index as it is for the
volume reverberation. The sea surface is an interface between two different media
(water and air) which can be considered as homogeneous for thé sound scattering
problem.- So, the scattering properties of this boundary are determined by the physi-
cal parameters of the media and by the boundary’s shape. This one is very complex:
there is roughness of various scales relatively the wave’s length. As to the sea bot-
tom, its scattering properties are determined not only by the shape of the interface
between the water and bottom media but also by internal structure of the bottom me-
dia, which can not be considered as homogeneous. There are inhomogeneities of vari-
ous scales in the bottom and internal interfaces between layers having different physical
properties. So, the bottom scattering is summarized effect of the scattering from rough
interfaces and from volume inhomogeneities in the bottom media. Nevertheless, higher
is the sound frequency, smaller is the effect of the volume inhomogeneities and internal
interfaces since the sound can not penetrate far into the bottom medium.

Simulations show that the behavior of available models for the scattering index is
rather similar for high incident angles (10° and more), but it is very different for slow
incident grazing angles. As the slow angle case is realized for the sound propagation
in shallow water sea environments (SWSE), the forward scattering reverberation and
its model for SWSE shall be studied and validated by conducting sea experiments. -
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3. PARAMETERS OF FS-ABS SYSTEMS

3.1. Thickness of the FS detection zone and life time of echo-signals

Horizontal thickness of the FS-ABS detection zone is determined by the half-width

A@ of the main lobe of the scxittering amplitude of an object. Using its model de-
duced under the Kirchhoff approximation with shadowing

S  sinke,L/2 sinke D/2

f. =—j— 3.1
)= e eLi2 ke,DI2 GD

one can estimate

A@ ~ A/ (Lsin(a-a,)) , (3.2)

where o is the course angle
between the acoustical. path
source-receiver and the ob-
ject’s speed vector, «, is the f
angle between the direction *,

"SR" (from the source to the Rey ‘ Bn
receiver) and the direction
"ST" (from the source to the o, * a,

object, see the figure 1). For "=~ mn(A)L)I —
: S g —_—— —_— R

the FS scheme a~mw2, . - \ AORspx (1-0/2

a;<<1 and sin(o-a,;)~1. Figure 3.1. Scattering geometry.

Quantitative estimates of the |

. width 2A¢ of the main lobe

are given in the table 3.1.-

The réceiver begins to "sense" the echo-signal due to the main lobe if is satisfied the
condition

Ap>a, to,, 3.3)
where a, is the angle between the direction "RS" (from the receiver to the- source)
and the direction "RT" (from the receiver to the object). Since it can be estimated:
a, ~ Ay/Rgy, 0, ~ Ay/Ryg, where Ay is the distance between the object and the verti-

cal plane including the source and the receiver, one can deduce following ‘estimate
for the half-thickness of the FS-ABS detection zone:

max{Ay} ~ [A/ L)Rg Rig/Rg = AORGx(1x) , x= Ry/Reg . (34)
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Table 3.1.

antitative estimates of FS-ABS systems'’ parameters.
sy: pa

Parameters of object | f, =1 kHz, Af=100 Hz Fy =6 kHz, Af= 600 Hz
and ABS system
object. 2A¢ ~0.03 (= 1.7°) 2A9 ~ 0.005 (= 0.3°)
v =5 m/s (10 knots) 2max{Ay} ~ 0.36 km 2max{Ay} ~ 0.06 km
system's base length: max{T} ~ 72 sec max{T} ~ 12 sec
RgRr =50 km 2Ay~0.3 (» 17°) Ay ~0.05 (= 3°)
max {341} ~ 51073 max{3{1)} ~2.5-10-5
‘ max{5£2)} ~ 1-10~3 max{542)} ~2.5-10~5
object: 2A¢ ~0.15 (~ 8.5°) 2A¢ ~ 0.025 (» 1.5°)
vr =35 m/s (10 knots) 2max{Ay} ~ 0.6 km 2max{Ay} ~ 0.1 km
system's base length: max{T} ~ 120 sec max {7} ~ 20 sec
Rgg =15km 24y ~ 0.85 (= 50°) :2Ax ~0.14 (~ 8°)
max{3£1)} ~7.2.1072 max {341} ~ 1.5-10~4
max{3£2)} ~ 1-102 max{3£2)} ~3-104

Therefore, the detection zone of an FS-ABS system has the maximal thickness
2max{Ay} ~ [ML1]Rgp/2 at its middle point where x = 1/2. The detection zone has

the parabolic shape x(1—x) in the horizontal plane (see the figure 3.1). The thickness
of the detection zone is proportional to the wavelength, to the length Rgy of the FS-

ABS system's base and is inverse proportional to the object's length. Maximal rela-
tive half-thickness of the detection zone is 2max{Ay}/R¢p ~ [ML)/2 = A@/2. Quan-
titative estimates of the detection zone's maximal thickness are given in the table 3.1.

Total duration of the forward-scattered signal created by the main lobe of the scat-
tering amplitude may be estimated as:

T~ 2Ay / (vysine) ~ [24. / (vysino) L] Rgpx(1-x) , 3.5)

where vy is the horizontal speed of the object. Thus, the duration of the FS signal is
proportional to the wave length, to the system's base length and inverse proportional
to the object's speed and to the object's length. It depends on the point where the
object crosses the vertical plane, by the same way as the detection zone's thickness
depends on it. Quantitative estimates of the maxnmal duration max{7} of the FS sig-
nal are given in the table 3.1.
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3.2. Amplitude, angle and time structure of FS-ABS signals

It follows from the approximation (3.1) and from the FS signal model that echo-
signal ray amplitudes depend on geometrical parameters of an FS-ABS system as
follows:

. msin(o, +o, ) Ly sin(a~a,)
D;L,sin(a-a,) s A
A nsin(a, +a,)L;sin(e-a,)
A

If the object moves in the waveguide the angles o, and o, change. Let's note #, the

moment of the object's crossing the system's vertical plane. One can deduce from the
sine theorem a system of equations (see the figure 3.1):

V'r(t_to)= R (t0) - R (¢5)

sina., sin(fa-a,) sin(a-a,)

P, ~ (3.6)

cos(a, +a,) "

from which it follows:
o, = arcctg| ctga +——x_—(1‘2&"4—— , o, = arcctg| ctga. + [l‘.x(’o)]Rsn .
vy sina(f—1,) vy sina(t—1,)

Thus, echo-signal rays' amplitudes are "copying" the shape of the horizontal cross-
section of the object's scattering amplitude's main lobe:
. + S
sin nsin(a, +a,) Ly sin(a -, )

. o A .G
Py ~ B (ty)sin(e ~a,) nsin(a, +a, ) L sin(a—a,) cos(a, +a)

A

In the case where a ~ n/2 and the system's detection zone is very narrow, one has
approximately

a, = ] Gl Vill=1o) o <<1l,a, =—v"—(ti°)——sina <<1, (3.8)
x(t) Rex [1-x(2,)1Rs ‘

therefore,

P =~ PT(t(,)sinlt—l"—;:lrﬂ(ccI +a2)/nl”—)s:ﬂ(a, +a,) - 3.9

It's possible to approximate well the main lobe of the function sinx/x by a gaussian
function (see the figure 3.2)
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sinx 1 X
haidady ___* . 3.10
exp{ 20 /2)1},Iad$1t (3.10)

Thus,-the following time dependence of the echo-signal rays' amplitudes derives

Lysina vt )2 .G.11)
A2 Al-AR,

Pr(t-1) m B(t)b(t - 15, X(8)), b(t, ) = exv{ 2(

Vertical space ray structure of echo-

signal fields is determined by the 1 Approximations of the main lobe _
half-width Ay, of the object's scat- TN
tering amplitude's main lobe. Based \
on the approximation (3.1), one can 05 RVEY,
estimate R

0 B R
Ax~M\/Dy. ; gﬂkh_ ]

This value and the distance fromthe 05—+ 53—+ & é‘ 7

obje(.:t.to the receiver Rpy are de- Figure 3.2. Approximations for the main lobe of
termining the number of echo-signal the object's scattering amplitude.

rays on the receiving array. Quanti-

tative estimates of the angle width

2Ay are given in the table 3.1.

While the object is moving, geometrical parameters of the triangle source—object—
receiver are changing and therefore, echo-signal ray delays are also changing. Let us
write as follows the delay of the v-th echo-signal ray path given birth by the scatter-
ing of the p-th ray of the source field

(1) =t,,(8)+8t,,(¢) - (3.13)
The variation part 5t of this delay can be represented under the form
8t, () =8t0M+5tD (),

50 b o) (3.14)
Hv aﬁ T 07>
510 10 (t (X7,X5) +t, (XR,XT)) B (1)}
2 aﬁan ( 0) >

where v, = {v,vZ} = v, {cosa,sina} is the vector of object's horizontal speed,
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t, is the moment of object's crossing the system's vertical plane. Calculating the lin-
ear-on-time term, one has

COSY,x —COSY vr
3t (r)=—==* -

vycosa(t—t,) > (3.15)
Cr

where ¥, .1, X7 are grazing angles of the rays at the object's location at the moment 7,

cr is the sound velocity at the object's depth. The squared-on-time term is

2
Vo COSOL
(’-to)2+( T )

2c; Cr

510 (1) = COSKyr , C0SXyr |(Vr sinat)?
RST Rm

xEosqutgx“ké Ry /0 Xuk)l"'wserth‘s(aRsr/a Xvs)-llv

where Xpus> Xvs and XyuR> XvR r€ grazing angles of the rays ‘at the source and receiver
locations, respectively. It follows from (3.13) - (3.16) that if the object is crossing
some ray path of the source field, then X1 = Xt and there is no linear term in the
expression (3.14), that agrees with the Fermat principle. Quantitative estimates of the
squared term is given in the table 3.1. If y,; # ,y that means that the v-th echo-
signal ray path is a "new" path being given birth by the diffraction on the object, then
the difference x,,7 — Xyt is smaller than the angle half-width 2Ay, of the object's scat-

tering amplitude's main lobe having been estimated above. Quantitative estimates of
the linear-on-time term in the equation (3.14) are also given in the table 3.1.

t-1)"x  (3.16)

Let us show that signals coming along echo-signal rays that one can not resolve in
the time-space domain from some rays of the source field give birth to a time modu-
lation of corresponding correlation maximums. The modulation is the result of the
summation of the source and diffracted fields. One can write the result as follows:

[}; + B(t—t,)exp{iod tP (1 - t‘,)}]so (H)exp{-imt},

where S(?) is the envelope of the amplitude of the radiated narrow-band signal with
the central frequency @, Pg is the amplitude of the source field's ray, P(?) is given by
the equation (3.11) and 5t®)(#) by the equation (3.16). After correlating with the radi-
ated signal Sy(r)exp{—iw¢} taking into account that its correlation interval is much

smaller than variability scales of b(¢) and 5t)(¢), and after making normalization with
respect to the amplitude of the source field's ray, one obtains a correlation function

[l +eb(t - to)exp{— i0d t? (1 - to)}]l(s ()exp{-iot},
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where K(t) is the correlation function of the radiated signal's envelope and € is de-

termined by the object's equivalent radius. The square of its amplitude maximum
varies in time as follows

1+ (t - 1,) + 28b(1 — 1, cos B8 tP (1= 1,) } .

Having removed the constant part and taking into account that € <<1, one has a
normalized signal

b(t - 1,) cos o8t (1-15) } » (.17)

that is a linear frequency modulated (LFM) on amplitude signal with the gaussian
envelope (3.11). This signal has a frequency deviation o= @3t (0)/(t—,) linearly
changing in time. Such signals are shown with the figure 3.3.

Echo-signal rays whose correlation maximums can be separated from those of rays of
the source field, bring signals whose complex envelopes are the shape

Bt -1, expf-iod tV (1 - 1,) - i08 t? (1~ 1,) }S, (1) » (3.18)

where P.(?) is also given by the equation (3.11), and 5t()(z), 5t)() are given by the
equations (3.15) - (3.16). The signal (3.18) is also a complex linear frequency
modulated (LFM), signal, nevertheless the squared module of the corresponding cor-
relation maximum is not LFM and changes only following the gaussian low (3.11).

One can see on the figure 3.3 that when

the parameter A is small, then the LFM signal with gaussian amplitude
squared amplitudes of correlation maxi- T T
mums of both types (segregated and not) : i
echo-signal rays are changing in time as
the gaussian signal. If the parameter aAs?
is big, then the squared amplitudes of cor-
relation maximums corresponding to the
non-separated rays are LFM signals with
gaussian envelopes. Therefore, to feel the g5 175> 25 3

structure of the LFM signals due to non- ¢
separated echo-signal rays and to use it to Figure 3.3. LFM signals
improve the SNR when making detecting, 12 )
one needs the condition cxp{— EF}COSMZ Jor different
mst(z)(vrx(’o 1= x(1, )]RsnX/Z) >>1 - parameters a.

L;sin®a
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to be satisfied. The time shift 5t()(¢) of segregated echo-signal correlation maximums
corresponds to the constant shift @dt()(¢)/(1—,) of the central frequency of the echo-

signal. It can shown that this shift is due to the Doppler effect. Really, it arises thanks
to the difference of speeds of changing the acoustical lengths of two ray paths that
have different grazing angles at the object's location, when the changing is due to the
movement of the object along the axis "source-receiver”. The Doppler effect works

so that the frequency of a harmonic wave of initial frequency (‘"o after scattering from
1 ,€) + 3
a body moving at speed vy becomes g =°)o(l .,__(_!I_ﬂz_(_vj_fﬁ) =coo(l+ ﬁ),
T

where e and e, are unit vector of the directions from the scatterer to the receiver and

from the scatterer to the source. Therefore, in the case where the body is in a free
homogeneous medium, the scattered signal being created by the scattering of the
incident signal with the spectrum Sy(@y—®,), where @, is its central frequency, is

S() = [Sy(@0 ~0,) frle.eq;0)expi-ion(t-r /c)}f;% = (3.20)
= (14 B)S, (1 + Bt =7/ N fr(e,eq;0,) expl-io, (1+B)t -7/ o) }.

Thus, the Doppler effect gives a shift of the signal's central frequency, a compression
of the signal envelope and corresponding increasing of its amplitude.

Let us study the effect that it causes for the correlation processing of signals. As re-
sult of correlation between the signal (3.20) and the radiated signal

S, (t)exp {— it } the correlation function is obtained

K@) = (1+B)fr(e,e0;0,)e™ ™™ [5,((1+ a{t - g]) Sy (t —)e B¢ gy =
(+8)

2n

(3.21)

fT(e,eo;(o,)e'i'”'('*”x"”‘) ISO(Q)S; (0) (l + B)+m|B)e—ia(l+p)(l—r/c)dm'

For narrow-band signals with a band Aw: Aw/@, 2 0.01, one has ®, >> ® under the
integral, so it’s possible to neglect fw with respect to B, when calculating the inte-
gral on frequency in (3.21). On the other hand, since B ~ v/c then one can also ne-

glect o, with respect to © for common underwater objects. In this case, it derives
from (3.21)
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K@)~ (Q+ B (e,ep0,)K,((1+B)x —r/c)),

I : (3.22)
K,@t)=e™" o ﬂSo(m){ e do,
where K(t) is the correlation function of the probing signal. Thus, the Doppler effect
gives for such narrow-band signals a shift of the central frequency and a compression
of the correlation function with corresponding increasing of its maximum amplitude.
In the waveguide case the echo-signal has a multi-ray structure. Signal Sw(t) coming
by the p-th ray path and being the result of the scattering from the object of the field
of the v-th ray path of the source field, is strained with the coefficient

1+8,B =-Zl cos(a +a2)cosxur-cos(a—a,)cosxﬂ)- (3.23)
T .

Since the angles o, and a., are small for the FS-ABS, so § is
v
B= @os X, — COS va)c—Tcosoa : (.24
T

Rays' grazing angles x are small for common sea environments: % ~ 0.1, so one can
estimate

B~x?Lcosa ~3-107 cosar - (2.25)
‘r

When making correlative processing, the Doppler signal decompressing will give,

accordingly to the equation (3.22), some decreasing of the correlation of received

signals with the model where it is not taken into account. This Doppler decorrelation

is of the order ~- B, so one can neglect it practically always for the FS-ABS systems.

3.3. Validity conditions of used mathematical models
for FS-ABS systems

The echo-signal's model used in this study and estimating is working truly when are
satisfied following conditions:

1)  Receiving system is placed in the “far field” (Fraunhofer) zone of the scatterer
(object):

Rg> LR/, (3.26)

where one can use the directed spherical model for the scattered fields.
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2)  The distance from the object to the source is big enough to consider incident
wave fronts as planar one on the object's length. This condition is also
equivalent to this one that the source of the probing field is placed at the “far
field” (Fraunhofer) zone of the scatterer

Rep > L2/ 3.27)
Thus, one can formulate the two conditions as
min{Rgp, Rz} > (Lp)?/A. (3.28)

Another equivalent formulation of the condition (3.28) is that the object length is
smaller than the Fresnel zone radius calculated for the distances from the object to
the scurce and to the receiver.

For 1 kHz: min{R¢r,Rp} > 6.8 km for a object of 100 m length and is increasing as
the frequency and the squared object's length, so that at 6 kHz: min{R¢p,Rz} >
40 km for the same cbject, and min{R¢p, Rz} > 1.7 km in the case where the object's
length is 20 m.

3)  The object is placed in the “far field” (Fraunhofer) 2one of the emitting and
receiving arrays. If Lg and Ly are their lengths, this coudition is formulated as
follows

min{RgpRig} > (Lgp)? /A - (3.29)

Another equivalent formulation of the condition (3.29) is that the arrays'
lengths are smaller than the Fresnel zone radius calculated for the distances
from the object tc the arrays.

The condition (3.29) is automatically satisfied if the condition (3.28) is satis-
fied and if maximal sizes of the arrays don't exceed the object's maximal size.

The above presented estimates allow to conclude that the validity conditions of the
main approximations will be satisfied practically for all situations for a object of
20 m x 3.5 m size and a FS-ABS system of ~ 15 km base iength working at central
frequency ~ 6 kHz. Hence, they may not be satisfied for a object of 100 m x 10 m
size for some situations, especiaily in the high frequency case where the wave fronts'
curvature and the Fresnel diffraction should be taken into account.

3.4. Tactics of use of FS-ABS systems

By force of its characteristic properties, FS-ABS systems may be used to protect and
survey straits, to create acoustic barrier, if only a sufficient efficiency when applying
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adequate signal processing aigorithms is proved for them. When they are used to
create acoustic "barrieis", emitter and receiving arrays need to be placed on two sides
of a strait or along the barrier line. The system will operate not in pulse as a common
ABS system, but in quasi-continuous emitting mode, where em:itting arrays continu-
ously radiate probing signals and receiving subsystems continuously receive and
process those signals.

When using an FS-ABS one will have the following situation. The sonar's source
array will emit continuously probing signals. When an object crosses an acoustic ray
path from source to receiver or is near the vertical plane containing this path, distor-
tions of the source signal arise ai the receiving array. Such distortion may be gener-
ated not only by the sound scattering from the object’s body but also by the sound
scattering from hydrodynamic inhomogeneities accompanying the object. Those
sound field distortions may be classified in two types:

1)  modulation of quasi plane ficlds arriving along the ray paths of the source
field; this modulation is due to the interference between the scattered and
source fields, which follow the same ray path,

2)  arising of new ray paths belonging to the scattered field; their arrival times and
angles are different from those of sourve field’s ray paihs.

When the FS-ABS scheme is used, TS is much greater then that for the monostatic or
common bi-static sonar scheme, therefore distortions of those two types are more

appearing at reception.

If propagation conditions are those where sufficienily multi-ray signal structure can
develop, then one should solve the UDL problem by using the ray paths of scattered
field that are different from the source field’s ray paths. In this case optimal frequen-
cies will be higher as it is for the classic ABS. Nevertheless the reverberation will be
much greater in this case than for the classic ABS because the angle lobe of the scat-
tering index is very narrow when high frequencies are used.

If propagation conditions are those where sufficiently multi-ray signals can not de-
velop, then one needs to solve the UDL problem using the first type modulation of
quasi plane fields arriving along the ray paths of the source field. In this case one
should increase the time of signal accumulation to improve the probability of good
detection. Therefore optimal frequencies should be lower because the time interval
where an object crosses the narrow FS-ABS detection zone is proportional to the
width of the main lobe of the scattering coefficient, and this width is inverse propor-
tional to the carrier frequency of probing signals. When using this signal detection
mode, the signal modulation of the source field due to the scattering from the object
body and accompanying inhomogeneities will be mixed with signal distortions due
to the scattering from natural inhomogeneities such as small-scale internal waves or
turbulence.
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Notice also that the general physical principle used by FS-ABS systems (detection of
distortions of probing signals) is very common and used anywhere, in sciences appli-
cations.

4. SIGNAL PROCESSING FOR FS-ABS

The underwater object survey (UOS) problem consists of 'solving three main prob-
lems: detection of an object, localization (determining object’s coordinates) and clas-
sification (determining of class to which the object belongs; it means to make choice
between a submarine, surface ship, torpedo, imitator, and so on). Hereafter the only
detection and localization problems are considered. They may be solved separately
or simultaneously. The last approach is more effective.

Signal fields in common sea environments have some complex space-time structure
(multi-ray or multi-mode composition). It gives unique opportunities to localize ob-
jects when using only small (with respect to the waveguide’s depth and object range)
receiving arrays. )

In this chapter the methodology of designing MFP algorithms for solving the under-
water detection and localization (UDL) problem by using an ABS are presented. The
methodology is developed for the determinist sea environment (DSE) model (section
4.2.1) as well as for the stochastic sea environment (SSE) model (sections 4.2.2 and
4.3). All the signal and interference models being needed for this methodology are
described above in the 2.

4.1. Model of signal measurement

Signals at exits of Ny receivers of the receiving array are proportional to sound pres-

sure at points I'; where the receivers are placed. Under the supposition that the hy-

pothesis H, is true (¢ = 1 if there is an object and € = 0 if there no object) the signal
measurement is (see the section 2):

p(r,,t)=ps(r. . t)+ep (v, t)+ py(r,t), s=1L..,Ng, te(0,7). (4.1)
Let consider the interference pN(l‘q,t) in the equation (4.1) as normally distributed
stationary field having zero mean value and a covariance matrix
[KN(t)]q,= K\(rprpt) which is not know a priori. For common sea environments
and periods of signal processing T, not larger than several seconds the supposition

about interference's stability may be assumed. This supposition is well founded for
the system noise, interference of local noisy sources and sea ambient noise since
theirs time intervals of stability are about tens of seconds or more. It's also valid for
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the forward-scattered reverberation (FSR) in the case where complex probing signals
of quasi constant module (like the linear frequency modulated pulses) are radiated
within a period equal to the sngnal’s duration. The probing signal's and echo-signal's

“fields are multi-path signals whose structures are determined by GF of the waveguide
and afe described by models being presented above in the section 2.

Since the signal and noise fields are supposed to be staticnary, it is convenient to use
theirs spectral representations. To obtain a-spectral representation of a measurement,
signals at exits of all array's sensors are Fourier transformed on the time interval T,

being equal to the probing signal's period:

5
P, ,0) = I p(r, 1) expfiot}dr “4.2)
0

When a-digital signél \proceSSing is realized, the sensors' time exits are firstly sam-
pled on the-period T, at N+1 moments ¢, and measured signal amplitudes compose a

vector of measurement. Then, its complex spectrum is obtained by using the discrete
Fourier transform:

0, =2 Zp( t,)expio,t,}

N3 4.3)
t, = 5n,(o,, = 2—nm, nm=0,...,N.
N - T,

So, under the digital spectral répresentation the model of measurement is

P(r,,0,)= P(r,,0,) +€P(r,,0,)+ Py(r,0,),

: (4.4)
©, =2 nn=0],.,N.
T, .

Under the approximation where a receiving array having its center located at point ry

has a smaller dimension than those of ray beams, and where the array is not placed in
the vicinity of some caustic surface those spectral models can be written as follows:

e model for the source field (probing signal):
M(rgag) - h (e We
BE,i0)=5@) 3 A fio)e ""”,/ ~oL By(-e, (15 1) - efi0) @4.5)

M(rg xs) ioo 4, (v s ) H— (e, (P X5 )by TR
= S(o) il Au(l'ml'sim)-e et c( o) PR TBS(‘eu(rS'rR)_eg;m)'
=
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where: W, v, pc are the radiated acoustical power, the array pattern factor (the con-
centration coefficient) and the wave resistance of the medium, S(®) is the spectrum
of the probing signal, Bg(.), e’ are the emitter's lobe and its compensation vector,
M(r,r') is the number of ray paths connecting two points r and r', 4, =A4,(rro)is
the amplitude of the p-th ray path connecting the points r and r', t, =t (r,r') is the
travel time of the p-th ray path connecting the points r and r', e, = ¢ (r,r’) is the unit
vector tangent at the point r to the p-th ray path connecting the points r and r';

e model for echo-signals:

N(r,.rr) o1, )M(rr.rs) oty (reurs)
Vr’ . 3
Pi(r;0)=S(@) > A,(r,,r;0)e”" "™ Y 4 (r,rg0)e MY x
v=l n=l
1 Wpcy

XERT(-CV(I'T,TR),C"(I'T,l's);())\) an

Bs(‘eu(rs,r‘r)"eg;m) &

Ny i 1, (g )+, (i rr)r, 1 )
2S©) 3 Al(r,rpw)e” TSI
v=l
, M(rg,rg)
A (1, 1p;0) = A, (1, Fp30) A, (r,1;0)e
u=1

io 1, (rr.rs) 4.6)

1 W
x5 Re (e, (T ), (rr T o), |70 By(e, (5 1)~ €350),.

where R(.) is the object's equivalent radius (ER);
e model for interference:

The interference is a gaussian stationary field with zero mean value and a cross-
spectrum matrix (CSM) [KN((o)]q, = KN(rq,r,,m) related to the local angular spectrum
Ny(er;0):

2, r +r,
Ky(r,550) = Ny@ro)e = "da, r="2" p=r,-5. @7

For the multi-component interference in sea environments the CSM is
Ky(r,r,0)=Ky, @)(r, -r,))+Ky, (.5, -r,0)+

4.8)
+ Yk, @) G(r,,1;:0))G(r,,1;0)| + Ky, (f,T, - 1,,0),
, :
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50, the interference is locally homogeneous field. In the case of relatively small ar-
rays the covariance matrix becomes of the Toeplitz type: [KN(m)]qx = KN(rq—r',.,o))
and the angular spectrum is constant on the array's aperture: Ny = Ny(e,»).

4.2. MFP algorithms for detection and localization

4.2.1. MFP for determinist sea environments

Let begin with the case of deterministic sea environments (DSE). In despite that this
model is rather unrealistic it’s a good start point to present the methodology of signal
processing design. This methodology remains the same in its main moments for sto-
chastic sea environments (SSE), which needs only some modifications to account
various random factors.

4.2.1.1. Signals with predictable phase and amplitude

When using the DSE model one must consider the probing signal and the echo-signal
to be determinist with fully known phase and amplitude. In this case, under above
admitted suppositions about statistical properties of signal and interference fields the

probability density of an array measurement P(w ) =| P(r,,®,)) is:

- exp{( K"((o ©,)-Ps©,)-eP; ) P©,) - P©,)-P:0,))}, (4.9)
AAEN-F | det2nK  (@,)

where KN(con) is the noise spectral density matrix (NSDM), the angle brackets
means the time-space  scalar product of U(w,) and V(o,):

(U’V> = ZUJ(O‘)I))V.: (O‘)n)

Under the Bayessian statistical approach to making decision [11], the optimal deci-
sion statistics (ODS) is the likelihood log-ratio:

L}=n 2P _oRe ¥ (K7 0, PO, )- Py, D P; 0, ) -

@, (P) ) (4.10)

- LK@, 0,)P:0,),

®,>0

So the signal processing algorithm for solving the UDL problem based on this ODS
is following. All the waveguide area to be observed is covered by a grid in depth and
range. For each grid point considered as possible object location the vector Py(w,) of

complex spectra of the echo-signal and the vector Pg(w,) of complex spectra of the
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probing signal on receiving, array's receivers are modeled. After the measurement
having been done and its complex spectrum P(,) being obtained, one calculates the
ODS (3) on the grid. The ODS (3) means that the model of known source field has to
be subtracted from the measurement and the result has 1o be correlated with the
model of echo-signal. The correlation to be calculated is the scalar product in the

space having the metric tensor KN'l(mn). The correlation will be maximal for the
more likelihood position of echo-signal source. As result the ODS (4.3) as function
of probable object coordinates is built. After that one searches for its global maxi-
mum (main lobe) which is compared to some threshoid having been calculated from
some given probability of false alert. If the maximum value is higher than the thresh-
old then the detection problem is considered as solved and the coordinates of this
maximum are considered as estimate of object’s coordinates. If the main lobe is
lower than the threshold, the detection problem is considered as unsolved and there is
no built estimate of object’s coordinates.

To increase the power of this signal processing algorithm one may do incoherent
accumulation of decision statistics over processing periods with taking into account a
possible object motion. By making parameterization of the motion and accumulating
decision statistics with taking into account different values of motion parameters one
can determine by the way estimates of these parameters and solve the problem of
following the object.

4.2.1.2. Signals with unpredictable phase

In the cases where it’s not possible to control positions of the source and receiving
arrays within the wave-length precision one must use for the probing and echo sig-
nals the model of unknown phase. On the other hand, the object strength is never
know a priori, therefore the echo-signal amplitude is not known. in this case the
unknown phase signal model for probing signals and the unknown complex ampli-
tude signal model for echo-signals shall be applied.

To get ODS for this case one may apply the maximum likelihood principle that
means the maximization of the spectral power densities of hypothesis Hy and H;
versus the unknown parameters to get their maximum likelihood estimates (MLE).
Further, MLE are substituted into the spectral power density equations and the log-
ratio is calculated. Having done all these procedures, the ODS for the UOS problem
deduces under the form

[lgx;:@,,r«»,,m(m,,» z<x.—:@"rs«»n)w,>]
L{P}=-.»,>o [ lou>0 | .(4.11)

> (Kye, P 0,)P0,)

0,>0
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The signal processing algorithm for solving the UDL problem based on the ODS
(4.11) rests the same as for the previous case. The meaning of this ODS is calculation
of difference between the amplitude envelopes of correlation i) between the meas-
urement and echo-signal model and ii) between the source and echo-signal model. If
there is no echo-signal in the received field the difference will be minimal and it will
be maximal for the more likelihood position of echo-signal source.

4.2.1.3. Signals with unpredictable phase and amplitude

If the absolute amplitude of probing signal is also unknown as well as characteristics
of the receiving and emitting systems, then the signal model of unknown complex
amplitude must be used for both the probing and echo-signals. Having applied in this
case the maximum likelihood principle, one gets the ODS under the form

L;o (K 3 (mn)’((o,,)PiL ("’n ))
RS
( K- ((D,.))S (o),)PT(")n ))

where P'L(O) ) PT((D,,} PS(O) . (413)

" Z( (co,,)’s (m,,),PS(o),,))

In the classic ABS case the probing and echo-signals are separated in the time do-
main, then <K N ((o,,)’s ((o,, )PT (0),,)) = (), and ODS becomes simpler

SkiereIwe)|
SEEREIRE)

The signal processing algorithm for solving the UDL problem based on the ODS
(4.12) or (4.14) rests the same as for the previous cases. The meaning of this ODS is

calculation of scalar product (within the metric KN'l(mn)) of the measurement and
orthogonal supplement to the echo-signal model.

(4.12)

(4.14)

L{p}=

4.2.14. Qualfty estimation of DSE-matched algorithms

Probability of false alert per one signal processing period per one grid point for the
ODS (4.11) is
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P:(r) = ]‘HK(_"O)Z —1}_'1_"’210(2}?‘0)}'(1}’,
0

3 (K3 0,6, ) Py o, )A

(4.15)

,>0

\/Z K6, P:6,)P6,)

where H(.) is the Heaviside function, M, is the zero-order Bessel function of imagi-

nary argument. For the ODS (4.12) the distribution low under the hypothesis Hj is
exponential with unit mean value, so the false alert probability is

P.(t)=e". (4.16)

Under the hypothesis H; the ODS (4.12) has the Rice distribution. Probability of
good detection for ODS (4.11) and (4.12) is

P,(r)= !Hkr - ro)2 -1 }—"—r.‘ I,Qrr)rdr

5 (K6 o) P )re.)
U EKerere)

P,(x)= j'e-"'°’i0 Q2rp)rdr,
0

iz K3 0,0 0.,) P 6,

|©,>0

Z( O, P 0,)P0,)

Grid steps on depth and range are determined by corresponding widths of the ambi-
guity function (AF) main lobe. AF is calculated using following expression

L < (‘° )’r(m.,l'o),PT(m,,r )>‘
[TEe i) C,n)

(statistics (4.11)), “4.17)

)>‘ (statistics (4.12)) . (4.18)

N, .1,) = (4.19)
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The widths of the main lobe determine also the precision of object localization. It
foliows from theorems of mathematical statistics that the mean value of the second
order derivative matrix of the AF in the global maximum point is asymptotically
equal to the minus Fisher information matrix (FIM) for estimates of object coordi-
nates:

I(r) = 2Re ) (K7 @, )@, PP ©,;5)0P: ©,;1,),

@50 (4.20)

Q@,)=E-P@,)

where P is the operator of projecting onto hyper-space of vectors Pg(o,) and
Pr(@,;ry):

Pe)- 3 K0 )R 6.rIB6.) (BeKi6.):

@4.21)

Signal-to-noise ratio (SNR) is
I 2

5K, 00,) P, 6.

©,>0

. (4.22)

AP R ST XA YA

®,>0

For the convenient active pulse sonar the SNR is determined by the first term in (22).
For the FS sonar the SNR is cut down because of the effect of the second term in
(22). Equations for ODS and SNR clarify the main difference between the conven-
tional mono or bi-siatic ABS and the FS-ABS. For the conventional sonar the ODS is
proportional to the time-space correlation of the measurement and the echo-signal
model. For the FS sonar the ODS is proportional to the time-space correlation of the
measurement and the orthogonal addendum (13) of the echo-signal field to the
source fieid. It means that a new kind of interference appears for FS-ABS systems -
the source field. Its effect has to be suppressed like that of the ambient noise and
reverberation. The effect of the source field is as smaller as small is the second term
in (22) which is proportional to the scalar product of the source and echo fields. To
have this term as small as possible the FS-ABS system’s parameters and configura-
tion should be chosen to ensure the separation of source and echo-signal ray arrivals
in the time-angle space. Horizontal arrival angles of the source and echo-signal rays
differ very slightly but their grazing angles may be rather different. It follows from
this consideration that the receiving sub-system of FS sonar should have a rather big
vertical wave dimznsion to ensure the ray separation on grazing angle. It follows also
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that the FS sonar should use pulse signals with high time resolution, which is deter-
mined by the signal band width. So, the radiated probing signal should have some
large band to ensure needed time resolution. Finally, the central frequency of probing
signals has to be chosen to have the living time of echo-signal much smaliler than the
variability time scale of the source field.

Characteristics of an UOS system as used for modeling may have some mismatches
from real values. Those characteristics may be:

1)  parameters of the waveguide (total depth or bottom profile, bottom type and
parameters, sound velocity field, wind speed, etc.);

2)  parameters of emitter or receiving arrays (their depths, space orientation, etc.).

Mismatches in these parameters between real situations and used models make so
that real fields of probing and echo signals will be different from model ones. Mark-
ing the real fields by the upper script (0), the following expression for the ambiguity
function (AF) characterizing mismatches derives:

Z(K ;1] (O)n XPS(O) ((’)n)+ P{'o) (")n;ro))P';' (O)n ;rl)>

o, >0

N(r,,ry) =" . 4.23)

PULNCY AR SR

4.2.1.5. Algorithm for estimation of unknown interference and field parameters

In the above presented algorithm of méking decision it is considered that the noise
spectral density matrix (NSDM) KN(O)) is known a priory. In fact, one has no such
a priori information. Moreover, the noise field may vary during the survey, for ex-
ample, because of variations of the wind speed or movements of surface ships (local
noisy sources). Nevertheless, as a rule one has a priory information about time inter-
vals of variability of different types of interference. Usually they exceed correlation
intervals for all types of interference. On the other hand, some a priori information
about space variability of this interference is available. It may be formulated as
smoothness characteristics of angular spectrum or as spectral characteristics of inter-
ference. This a priori information allows to design adaptive algorithms with NSDM
estimating.

Let first suppose that the NSDM KN doesn't depend on frequency for the frequency

range of probing signals. While probing signals are narrow-band, this supposition is
unconditionally valid regarding the system and the sea ambient noises. The rever-
beration interference has a spectral density that is proportional to the squared module

309



of the probing signal's spectrum. One uses usually complex signals where only the
spectrum's phase depends on frequency but not the spectral amplitude, In this case
one may consider that the spectral density of reverberation isn't also depending on
frequency. If some frequency dependence is still present, our previous numerical
modeling shows that the optimization of processing algorithms for active systems by
means of making mterference whitening gives rather small amelioration of the result,
which is not important.

To get estimation of the NSDM one may as well use the maximum likelihood ap-
proach. In this case it’s necéssary to calculate derivatives of the logarithms of the
probability density functions (log-PDF) of measurements

v
n®, (P)=-3 (K5 @" - P2 -cP; )@" - P! -¢P) - N, IndetK,, » (429)

n=1

where P" =P(®,), P{ =P;(®,), Py =P;(®,), with respect to elements
of the matrix K and to equal them to zero. Solution of such obtained equations is

K® = Z|P" PPy (P~ B ~eP? (4.25)
(.) n=1

Substituting (4.25) in (4.24) one derives:

Ind, (@) =-N, {; +IndetK© }, 4.26)

where NP is the number of receivers in the array.

The NSDM estimate for the hypothesis with Hg may be presented as

Mg +eMy
RY =0+ LS R, )| AE, 20 AR -20),  @2D

o hy=l
f=t-— 2. ko, -1 Flac, )\(q(r) m=iZ'P(w,) NP@,))
o Q=

(4.28)
s@,)’ /ZIS< s

iEu>=

exp{im7° e..T, —i'R%>, Ry(r)= Ze"”"
M N - 3

760 =Y Rt -1)}aw), |aw)= -Nv—Zl P@,))e™™'S" @,).
v=l o n

There Ry(7) is the probing signal's correlation function normalized so that Ri(0) =1,
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[R4(7)| < Rg(0), matrix [Rg(f,~ D171 is inverse of the matrix Rg(t,~1,), q(1) is the
cross-covariance functions of measurement and probing signal. Using these notations

the term Indet K:) may be presented as

IndetK® =Indet® +

1 Mi+eMy 4.29)
+ lndet[E+ —ﬁ— R Z Ry(t, -t, )! ARE’l - q(tu )><AVEV -q(t, )!:|
[0 pyv=l
The last term in (4.29) may be approximated by
1 M, +WT _
- S R, 1) R UE, -70,))AE, -7C,)) . 430
o pyv=l

This approximation gives a quasi-optimal processing algorithm where the mismatch
vector A,E, —q(¢,) should have smallest length.

Therefore, the log-PDF for the hypothesis H is

Ind, (P)=-N, {V, +Indet® }-
‘si ' Ry, -1, )<m-l C‘luEu —q(tu))(AVEV -q¢, ))>

pyv=l

(4.31)

Making maximization of this PDF on unknown complex ray amplitudes one obtains
estimates

a, =M§]MT ke, -1, 87E, B ) ] (®7E, .00,)) » 432)

which have to be substituted into (4.30) to derive the log-PDF for ray phase parame-
ters estimating:

In®, (P)=-N, {V, +Indet®}-
Mg+eMy 1
=S (8, q0)) R, 1 RE, E, )] (RE,a0,)).

=l

(4.33)

By searching for maximums of (4.30) in the space of ray arrival angles and delays
one obtains estimates of these parameters.
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In the case where ray arrivals are different from each other by time delays which are
larger than the probing signal’s correlation interval then the PDF is simplified:

(R'E,,q(1,))
v=l <m_IE‘,,E”>

2
Mg+eMy

(4.34)

Ind, (P)=-N, {V, +Indet®}-

In the case where signal processing for ray parameters estimating is made on some
time interval equal to several source signal periods the time accumulation may be
applied to calculate PDF:

In®,(P) =

N,
== {2 (K@) - B -cB; ) @7 () - B ~eP2()) - N, In det K (1)

} (4.35)

After making the same developments as above one obtains the PDF

Ind, (P)=-N, Y N, +Indet®(r)}-

Mg+eMy -1 4
- X Z(ﬁ"(r)Eu,q(tu)>[Rs(r,.—tv )Z(iﬁ"(t)Ev,E,)] x (436

=l

x Z(ﬁﬁ" (NE,,q(1,)).

4.2.2. MFP for stochastic sea environments

Space-time variability of sea environments and the impossibility to know precisely
their parameters influence on the efficiency of functioning of UOS systems espe-
cially on those based on the use of MFP. The MFP algorithms use the fine space-
time structure of sound fields in the ocean to solve the UOS problem and just this
structure is the most sensible to variability of medium parameters. Certainly, to avoid
this problem one can use very low frequency range (units or tens of Hz) where the
sea surface agitation and volume inhomogeneities don't affect considerably the sound
field structure. Nevertheless, the use of this frequency range decreases sharply the
noise resistance of the system (since it is not optimal for ranges tens of km in shallow
water conditions) and decreases also the resolution of the algorithms. It needs also to
develop and use powerful low-frequency sources and long receiving arrays. Thus the
reasonable way to solve the mismatch problem is to design MFP algorithms being
matched to stochastic structure of signals. Evidently such processing algorithms will
have the maximal resolution and noise resistance when they are used in environ-
ments being adequate to the algorithm’s structure.
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MFP algorithms for solving the UOS problem in deterministic sea environments
(DSE) are presented above. For the stochastic sea environments (SSE) model the
principle scheme is the same in all its points other then the optimal decision statistics
(ODS). Since fluctuations of waveguide parameters make GF random then to obtain
the ODS it’s necessary to average the expressions (4.9) over fluctuations. In the most
general case there are on this way mathematical difficulties that are not resolved yet.
Nevertheless it’s possible to do the averaging for two cases that are very important
for applications.

Let suppose the full statistical description of all waveguide parameters is known. In
this case it would be reasonable to apply the Bayes approach to obtain the ODS for
optimal solving the UOS problem. Denote ®(Q) the probability density function of
waveguide parameters describing some sea environment, where

Q= ﬁm (%,2),Cpo (X, 1), 1(X,2,0), 1y (X, 2), pr (X, z)} , 4.37)

with p of different indexes describes fluctuations of phase velocity of longitudinal
(L) and transversal (T) waves in the bottom. One supposes usually that ®(Q) is the
normal (gaussian) distribution with some mean values and space-time covariance
functions of the above mentioned parameters and hydrophysic fields. When there are
fluctuations, the probability density functions (4.9) should be considered as condi-
tional:

@, =D, (PQ) . . (4.38)

Corresponding to the Bayessian approach these conditional probabilities have to be
averaged over the medium fluctuations:

3, (P) = [0, (PQD(Q)4Q , 4.39)
The log-ratio

= 6.;'(D-= @,(P)-In®, 4.40
L(P) lnao(P) In®,(P) - In®,(P) (4.40)

is the Bayessian ODS. Nevertheless, as it was already mentioned above, there is no
possibility to calculate rigorously the integrals (4.39) in the general case. Firstly, they
prove to be continual (functional) integrals (taken in the functional space), that is not
a great problem, but secondly there is the ocean waveguide’s GF entering in the con-
ditional probability to be averaged that depends on medium parameters p by rather
non-linear way. Moreover, it’s not at all possible to express in the most cases this
dependence as analytical one. That's why there is a need to apply some correspond-
ing approximation, as it happens generally in physics, to solve the problem of opti-
mal Bayes algorithm design for UOS systems.
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To make optimal and well-founded approximation, the essential difference between
the signal processing time interval and the time of sound field variability in SSE due
to fluctuating waveguide parameters should be used.

The characteristic time correlation interval of a sound field having been one time
scattered from the wind perturbed free sea surface is about several sec for the fre-
quency range from hundreds of Hz up to several kHz. When subsurface channel
propagation conditions in shallow waters are realizing, the greatest ray cycle length
is about several km. Thus, the touching bottom ray has about ten reflections on the
surface for ranges about tens of km. Since the correlation interval of scattered field is

decreasing as VN, where N is number of reflections, then the time correlation inter-
val of a sound field multi-time scattered from the free sea surface is usually much
smaller than one second.

Evidently, the time correlation interval of sound field fluctuations due to the scatter-
ing from volume random hydrodynamic inhomogeneities in sea environments is de-
termined by the time correlation interval of these:inhomogeneities. In the open
ocean, these ones have a large spectrum of correlation intervals: from several minutes
up to ten or more hours. It's known nevertheless that the long period inhomogeneities
are the most powerful and the fast inhomogeneities are weak and faintly influencing
sound fields. That's why common time correlation intervals of phase parameters of
sound fields in the ocean (ray arrival time and angle) are about tens of minutes or
more for the range tens of km and more.

Such are characteristic time intervals of sound speed variability due to fluctuations in
sea environments. On the other hand, the common duration of probing signals is
about several seconds or tens of seconds and it is equal to the time interval of the
primary processing. The total processing time with account of the trajectory filtering
is about several minutes or maybe tens of minutes. Thus, the signal processing time
interval is, on one hand, much greater then the time interval of sound field variability
due to the scattering from the wind perturbed surface. On the other hand it is much
smaller then the time interval of the variability due to the scattering from volume
inhomogeneities. During the signal processing time interval a surface scattered field
changes many times and one may consider that there is a well-established statistical
ensemble. So, these fluctuations may be named “fast”. In the same time, the field
having been scattered from volume fluctuations practically doesn't change during the
signal processing period and one may consider that there is no established statistical
ensemble for this time interval. So, fluctuations of this type may be named “slow”.

The facts presented above regarding the ratio between characteristic time correlation
intervals of sound fields in the ocean and the time intervals of signal processing pro-
cedures offer the possibility to calculate approximately the integrals (4.39).
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4.2.2.1. "Fast" fluctuations

Averaging of the conditional probability densities over "fast" sound field fluctuations
due to the scattering from the wind surface agitation is resumed as the necessity to
average the exponent arguments over the fluctuations:

T3 (P) = [@, (Pl gy )OC 0 ) st =
exp{—%<K;,'(P—PS -eP )(P-P;-¢ PT))} (44D

=ml:->[0 Jdet2nK

Since scalar products are averaged, ODS depends only on the two first moments of
fields Pg and P;. The second order moment may be expressed through the product of
the mean values and through the second order moment of the incoherent sound field
component. Primary evaluations and experiments show that in shallow waters where
the channel angle of a subsurface sound channel is about 3°-5° for wind agitation
with index about 3 or 4, the scattering coefficient main lobe width is greater then the
channel angle. Then the scattered field in such conditions is radiated from the surface
to the bottom and it is not accumulated or conserved in the channel but is rapidly
eliminated because of the bottom absorption. There is only a coherent field existing
in such waveguide environments, and one may neglect the scattered one. Thus, the
conditional probability density function after having been averaged over surface
scattered field fluctuations obtains the form

@)= exp{—-;-(K;‘(P -R-P)E-R —l_’r)}(det K, )" - (442)

®,>0

Thus, in the case of "fast" sound field fluctuations such as those due to the scattering
from the waving sea surface, and when one can neglect the scattered field because it
is absorbed in the bottom, ODS is of the same form that for the DSE case. The differ-
ence consists of using mean probing signal's and echo-signal's fields having been
averaged on "fast" fluctuations as model fields in the processing algorithm.

4.2.2.2. "Slow" fluctuations

One must proceed by different way to average the conditional probability densities
over "slow" sound field fluctuations due to the scattering from water volume inho-
mogeneities. The most informative in MFP algorithms are phase parameters of sound
fields: arrival times and angles of ray paths on the receiving array. That's these pa-
rameters that determine the resolution of localization. Let denote

£ = {f,...,ti,,xls,...,xfl }the vector of phase parameters of the source field.

315



When there are random volume inhomogeneities the phase parameter vector &g is

also random. Let it is possible to recalculate the a priori probability density ®(u) of
volume inhomogeneities as the probability density ®(&g) by using some mathemati-
cal or numerical model of sound fields developed for the random sea environments.
Let also ®(£) is not depending on time because the random field p(r,?) is stationary
and the primary processing time is rather small in comparison with the time correla-
tion interval of the vector &g.

When considering the optimal Bayes algorithm with taking into account fluctuations
of the interference structure of sound fields one needs to calculate the integral

Ty (P) = [@, (Pleg)D(Es)dEs - (4.43)

By the above definiticn of "slow" fluctuations of GF, the time correlation interval of
phase parameters of sound fields is much greater then the time interval T of one pe-
riod of primary processing. Therefore the processing system can get a rather likeli-

hood estimate &s of the vector &g during the time where the ocean waveguide

should be considered as "invariable". Typical "slow" fluctuations of this type are
those due to the scattering from natural intetnal waves in the ocean (time correlation
intervals of arrival angle and time fluctuations prove to be tens of minutes or maybe
hours). The possibility to get this rather likelihood estimate of £ means that the dis-

tribution low ®(&) is rather narrow. This fact allows to calculate the integral (4.43)
by using the Laplace method:

TV (P) = [expind, (Pe,) P (Es ), =

= d)o(Pl&s)q)(&s) IexP{' %<6 zs In q)o(PIgs)(és,&s), (gs,es)>}d§s =
-1/2
= o, (P, )0, )[det(— 5:':'6 2 In®@, (Plé, ))] : (4.44)
where é s is the maximum likelihood estimate (MLE) of the vector &. It satisfies to
equation
oln®, (Plés ) -
985

with gs In® O(H&s) the second order derivative matrix of the logarithm of the
conditional probability density with respect to components of the vector &g being

0, (4.45)
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calculated at the MLE point. It's well known [11] that the mean value of this matrix
is equal to the minus Fisher information matrix (FIM). Therefore it characterizes the
precision of the estimate of the vector &. The applicability condition for the obtained
equation follows from this consideration: the error of estimate of the vector £ needs
to be much smaller than its fluctuations due to the medium instability.

Proceed by the same way when averaging the conditional probability density of
measurement when the hypothesis H is true and introducing the phase parameter
vector of echo-signal &= {'lr seves t-,r, s xlT yeees X;/ }let suppose that it is possible
to recalculate the distribution low of medium volume fluctuations as the joint prob-

ability density ®(§g,&r). Then the integral in (4.39) for € = 1 can be calculated by the
Laplace method:

-1/2
'dSlwa(p)=¢,(p|és,éT)¢(és,&T)[det(-ana :nglnd)(Plés,éT))] , (4.46)

where és s éT are simultaneous estimates of the vectors &g and & satisfying equa-
tions

Oln®, (PEs.E7) _ (447
0(8s>81)

The log-ratio of densities (44) and (45) is the Bayessian optimal decision statistics
(ODS).

d)'(Plgs’E’T) (D(és:é'r) detaésln(bo(ligs)
o,BE)  OEs) Ydetd?, no, @)

In the case where the object is far from the vertical plane containing acoustical ray

paths, those of the source field and those of the echo-signal are independent. In this

case the joint probability density is factored: ®(g,E7)=P(ESP(Ey), so that the
ODS (4.48) is simplified

(4.48)

Ly (P) =In

Lu®= 1 5K E-REN)E-RE)-
_%,_%(K;'(P-Ps(és)—PT(ET))(P-PS(gS)_pT(gT))+ (4.49)

+In®E) - };mdet(-a . no, (B ).
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The equation (4.48) has been obtained under supposition that not only the measure-
ment error of parameters g is much smaller then their fluctuations due to those of the

medium, but also the measurement error of parameters & satisfies to this limitation.

Nevertheless, while the echo-signal energy is usually much smaller then the energy
of the source field, the latest condition may not be satisfied in some cases, for exam-
ple for estimating of ray arrival angles in the vertical plane if the receiving array has
no sufficient vertical length. In this case, the use of the Laplace method gives no the
MLE of the vector & but its estimate of maximum of a posteriori probability. By

taking into account that fluctuations of phase parameters are usually gaussian, the

expression for the probability density 6,“’ “ (P) having been averaged over me-
dium volume fluctuations should be the following

S ¢.(1=|§s,§T)¢(§i,¢:) Jaetory), (4.50)
Jaet-2, no, (e EE, )

where Z;. is the covariance matrix of &, and & is its estimate of maximum of a
posteriori probability that satisfies to equation

dIn®,(PlE,E)
ok,

with ET the mean value of &;. Under this approximation, the ODS is

®, (Bs.E) od, ) lde‘(‘aés'"q’o(ﬂés))"‘z"a .(4.52)
(Do(PIgs) q)(és) v det@—agngan,(ﬂEs,gT))

1]

-EME -8 =0, @.51)

Ly, (P) = In

Usually the signal-to-noise ratio (SNR) is high so that one may replace the second
order derivative matrices ags In®, and ag shlnd)l by their mean values that are

equal to minus Fisher information matrices (FIM) for estimates of corresponding
parameters:

07, In®, (P[E) = -1(55), 87, In®, (PEs.Er)=-1(55,Er) . (453)

These MFP algorithms for the SSE model having been designed on the base of the
Bayes approach are less precise than the algorithms for the DSE model, but they are
more robust regarding possible mismatching of the model and a real ocean medium.
In this case the precision is "exchanged" against the robustness and, if fluctuations of
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waveguide parameters are rather small, a little loss of precision allows us to design a
robust algorithm. Nevertheless if the a priori uncertainty of ocean waveguide pa-
rameters is considerable, then, using the above approach a robust but very lowly
precise algorithm or an uncertain algorithm giving in some-situations a good preci-
sion of object localization will be designed.

4.2.2.3. Quality estimating for SSE-matched algorithms

Under usual situations when solving the UOS problem, the echo-signal energy on
receiving array is much smaller than the source field's or noise's energy. To solve the
detection and localization problem in this case one may use the so-called local-
optimal algorithm. It consists of building an estimate of the echo-signal field ampli-
tude, and this estimate is used as the optimal decision statistics (ODS). In this case
the signal-to-noise ratio (SNR) is defined as

(M[LWa, H |- M[Ly.|H, ])Z (4.54)
DlLy.|#, |

proves to be equal to the Fisher information (FI) for the echo-signal amplitude esti-

mate. When introducing the notation € for the echo-signal amplitude so that €
1P = O(Py), the Fisher information matrix (FIM) has the following structure

3 Ieis Istr

I- Lo Ly Iy | (455)
&r1e Iéﬁs I§1§1

where

M_ is the Fisher information (FI) for echo-signal amplitude estimate,
I

I

£t is FIM for estimates of source field parameters,

(3234
I

is the FIM for estimates of echo-signal parameters,

Lo L s are mutual FI for estimates of source and echo-signal fields' pa-

rameters.

EsE1

The SNR is given by the following expression

p=] -1 Dﬁs&sl§se -21 DESETlng I Dgl{T 3L

where D, , , D, ,D,, are covariance matrices of estimates of parameters of

(4.56)
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source and echo-signal fields. They are corresponding blocks of the matrix that is the
inverse of the FIM (4.55):

D, D, D
D-I"=(p,, D

8sts
D Df, s

| (4.55)

13
D

Ere 3133

Precision of estimating of object's coordinates are given by their FIM. So far the in-
formation about object's coordinates that is given by the phase parameters of the
echo-signal field is much greater than the information given by amplitude parame-
ters, then the FIM for object coordinate estimates may be expressed through the FIM
of echo-signal field phase parameter estimates and the covariance matrix of fluctua-
tions of these parameters due to volume fluctuations into the sound propagation me-
dium is:

= Y 98 98¢ 4.57

I"T"T "<(DE.§T+"‘T or, ’arT ? (4.57)

where _351_ is the partial derivative of the echo-signal field phase parameters with
or;

respect to object coordinates.

The precision of estimating of source field parameters is rather high because of high
SNR of probing signals and while the time variability interval of the medium is also
rather big. If one neglect the impact of errors of estimating the source field parame-
ters then the covariance matrix of echo-signal parameter estimates may be expressed
as following

—~1 -1
TR T 0 P (4.58)

313 (3.3 -1
' i I“ - I§1§1‘ Iirs Itﬁr
When taking into account errors of source field parameter estimates, this matrix is
obtained as the corresponding block of the inverse-to-FIM (4.55) matrix.

D

In the determinist medium case, the FIM of object coordinate estimates is

I, =<Dg G air.>, (4.59)

or, o,

and it is different from the FIM (4.57) by absence of the Er matrix. The presence of

the matrix . makes worse the precision characteristics of the object localization
solution in the SSE case when comparing with the DSE case but it makes the coordi-
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nate estimating more stable to mismatches of real propagation conditions to those ot
the model being used by the MFP algorithm.

As to probability densities ® and @, given by the equations (4.9), the expressions
for SNR p, ambiguity function N(r,,r,) and FIM of object coordinate estimates are

o(r,) = ZKK;‘PT(ro),nT(ro))lz : (4.60)
S KP, (r), 0 (1)

= fa20 , (4.61)
N(ryro) E(K;:PT(.,O),PT(',O))

Fo <(E+Jar:r“T) JMTO&T arT>’ St (Dm) ’ (4.62)

ZQSPT(r)

where p_(r)= 0,20 (4.63)
(KN QsPr(r), Qs T(r))

0,>0

the operator Qs is the projector onto the hyper space determined by the source field
and its parameters' estimates:

-1
o[/, o, oR\| oP, »
Q=E-F, F= aas[<K”aas’aas>] ag N 06D
and the matrix J Ertr is
= -1 aPT aPT . 4.65
Jﬁﬁr —m,,z>o<KN Qs agT ,6§T> ( )

The Bayes approach being described above allows to design MFP less precise then
that for the DSE model but much more stable regarding possible mismatches be-
tween the real OWG and its model used in the processing. When using this approach
one exchanges, in fact, the precision vis-g-vis the stability. If the waveguide fluctua-
tions are rather small, one will have a stable algorithm with lose of some small preci-
sion of localization. Nevertheless if the a priori uncertainty of the waveguide is con-
siderable then by using the above described approach one will design a stable but
very rough algorithm or maybe an unstable algorithm giving sometimes in some
particular situations a very high precision of object localization.

321



4.3. Union of the underwater object survey
and of the acoustic tomography of the ocean

The way to solve the above presented dilemma is to join the UOS problem and the
acoustic tomography of the ocean (ATO) to solve them together by applying the
MFP approach.

The FS-ABS observation mode seems to be the most perspective for such a "great”
union. In this mode one has a continuously radiating source of probing signals, then
the source field energy at reception may considerably exceed noise fields; it allows
us te estimate very well ocean waveguide parameters. Wile the source radiates con-
tinuously one can also continuously solve the ATO problem and to survey the evo-
lution of waveguide parameters. On this way it is possible to know them at any time
with rather smaller variations then when using some a priori SSE model. Another
advantage of FS-ABS systems is following. While having one emitter and one re-
ceiver array it’s possible to reconstruct the sound velocity field in some vicinity of
the vertical plane containing the emitter and the receiver. The width of this volume is
determined by the space correlation interval of inhomogeneities that is about several
km for the case of free internal waves. Therefore if a object is out of this volume, the
joint solving of UOS problem by using the classic ABS schema and of ATO problem
by using the source field doesn't permit us to improve the localization procedure.
Otherwise, when using the FS-ABS schema, the volume where the object is detected
and localized by the system is just the vicinity of the source-receiver vertical plane
(while that's where the object strength grows sharply), where the solving of the ATO
problem is possible by using the source field. Thus, the FS-ABS mode is that where
one can effectively join the UOS and ATO solutions. Let us note that it’s always
possible (in principle) to solve the tomography problem when using the classic
mono- or bistatic active sonar or a passive sonar by using the echo-signal field or the
object noise field. Nevertheless the SNR on reception is rather little in these cases
and it may well not be possible to obtain a good solution of the ATO problem. The
presence of the strong source field when using the FS-ABS schema is a good factor
allowing to solve well the ATO problem and then to use the solution to improve
characteristics of the UOS solution and get it practically the same as in the determi-
nist waveguide case. Notice that when solving the ATO problem the best reconstruc-
tion is done for the large-scale ocean variability. That's just this type of fluctuations
that is the most powerful in the ocean and has the most of impact onto sound fields.
The small-scale variability will be reconstructed with less of precision but their in-
tensity in the ocean is rather little and, therefore, its impact on sound fields is less
important.
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4.3.1. FS-MFP algorithms adaptive to stochastic sea environments

Let us present the formalism of the procedure of joint solving of UOS and ATO
problems. One shell name corresponding algorithms “Adaptive MFP” (AMFP) for
FS-ABS systems.

While the hypothesis H is true, the probability density of measurement is (4.9),
where Pg = Pg(1) is the source field that depends on fluctuations p = p(r,?) of
sound velocity, and Py = Py(ry,p) that means that the echo-signal field depends on
object coordinates I'; and also on sound velocity fluctuation. Let the a priori distri-

bution of u(r,?) is normal zero-mean with some given time-space correlation function
K, (r,r',2,t') and with the a priori given probability distribution

eXP{—%(KuH,H>} |

Jdet2nK

O(p) = (4.66)
Joint probability densities of the measurement P and fluctuations p for hypothesis H),
and H, are

@, (P,p) = O, (Pp)D(1) (4.67)
@, (P,u|rr) = @, (P, n)@(R) (4.68)
Let us calculate the estimate of maximum of a posteriori probability of p and I'1. To

do it one needs to resolve a system of equations with partial and functional deriva-
tives: ’

K
Su(g) ﬁnq)o(Plp') + ll‘ld)(p)}: 0 (eq.))
‘ ou(o) {n®, (Plrr, 1) + @@ }=0 (eq.2) .69
a“ln(Dl(Per, p)=0 (eq.3)

Let us note py(P) the solution of equation (4.69-1), p,(P) and r(P). solutions of

equations (4.69-2,3) which are related since the corresponding equations need to be
solved simultaneously. After substitution of these solutions into (4.67)-(4.68) one
obtains the optimal decision statistics (ODS) under the form
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L = In{®, (Fir;(P), 1, @) @(1t, (P) }- In {0, Py PO, (P) } . (4.70)

The detection problem is solved by comparing the main lobe level of this statistics
with a threshold. If there is a detection fact then p,(P) is the sound velocity field
estimate and the corresponding r(P) is the object coordinate estimate. If there is no
detection then p(P) is adopted as sound velocity field estimate but one doesn't build
a object coordinate estimate.

Let us consider more in detail the equations (4.69). The equation (4.69-1) when the

probability density ®o(P|p) is given by (4.9) with € = O is

Z< “ (- P)’5 ()>*K:[H]=°' @.71)

0,>0

If may be rewritten under the form convenient for solving by an iteration process

u(r)=<[Kll(r,I")z<Kl‘ll8 ( :)’ s(P)“ y‘ (472)

®,>0

The functional derivative of the source field with respect to p(r) presents in this
equation. The source field Pg is expressed through the ocean waveguide's GF
G(rs;o)) = |G(ryy,rs;@)> and through the spectrum of the probing signal S(w):

= §(0)G" (rg;0). That's why the calculation of the functional derivative of the

source field reduces to calculation of the functlonal derivative of GF. It's made by the
following way:

SG(rnurS;(o) -
su(r) Um0 ()G(' Tai) @

After using (4.73), the equation (4.72) obtains the form

@) = [K, @) X K3 ©,)6030,).B(10,) - P©,))x
o0 (4.74)

2o '
)
One can solve the equation (4.74) by an iteration process. For example, the field
nO(r) = 0 may be used as initial approximation. After that GF for the « priori mean
sound velocity field is calculated and substituted into the right part of the equation
(4.74). By having done the integration the first order approximation p()(r) is ob-

G'(r',r5;0,)S (@,)dr'.
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tained. Furthermore GF is computed for u(r) = p()(r), substituted it into the right
part of (4.74) and the second order approximation p@(r) is calculated, and so on
until the iteration process converge to the solution py(P). At very low frequency
range where one should use some grid finite differences' method to model GF of 3D
waveguides it is necessary to calculate the integral (4.74) by some numerical method.
At sufficiently high frequency range where one may use the ray or adiabatic normal
mode approximations of GF its interference structure will be very important for the
integrating. In this case one may calculate the 3D integrals by using methods of inte-
grating of strongly oscillating functions. In this case the main contribution in the
integral will be done by the vicinity of the vertical plane containing the source and
the receiver since the points of constant phase of the integrand are lied in this plane.
By the same reason, u,(P) is zero outside this vicinity that has the width equal to the
horizontal space correlation interval of the field p(r) being equal to the dimension of
the support of the correlation function K,@,r').

One builds by exactly the same way the solution of the equation (4.69-2) with func-
tional derivatives. It just needs to be taken into account that not only the source field
is depending on the field u, to be found, but also the echo-signal field. Since the
echo-signal energy is always small regarding the source field energy one may use the
field py(P) as initial approximation to the solution. In some cases one may do only
one iteration or do no iterations at all and use the initial approximation as the solu-
tion. The estimate of the field u,(P) depends on possible object coordinates rr. Thus,
by varying possible object coordinqtes on some grid one will obtain each time a new
estimate p,(P), then will calculate the decision statistics (4.70), will compare it to
values having been obtained for other possible object locations and finally to search
for its maximum ou possible object coordinate space. This procedure may be simpler

but we don't want to consider it in all details in this paper and only the general view
on it is presented here.

4.3.2. Quality estimation of adaptive MFP algorithms

Let study the quality of the UOS+ATO solution. It will be done under, the approxi-
mation of "weak" signal (€ << 1, where € is the introduced above parameter char-
acterizing the echo signal's level). Let denote hereafter the true sound velocity field
(SVF) on the time interval of the measurement as u(, the true object coordinates as
r{©, and the maximum a posteriori probability (MAP) estimates as py(P), p,(P),
r{(P) (as above). 4 priori probability density function (PDF) depends also on the

parameter €: @, = (P|ry,&,1). As the true value of this parameter isn’t known, the
maximum likelihood estimate (MLE) is used, which satisfies the equation
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g—ln(D, (P|r;,&,p) =0, 4.75)
€

bne must solve this equation together with the equations (4.69-2) and (4.69-3). The
MLE ¢,(P) being obtaining by this way is then substituted into the equation (4.39)
for the décision statistic. Thus, the functional derives
LP)=L,(P|e;, b)) ~Lo(P| 1),

L, =In{, (Plr, (P),,(P), 11, P)O(w, (P)}, (476)
Lo = In D, (Blio (PYD(, (P) }

Let's expand the functions L, and L, as Taylor series in € and u,, p, in the vicinity of

the point € = 0, p = p©. Taking into account that these functions have a maximum in
the points &,(P), uy(P) and p,(P), the expansion is restricted by conserving only the
zero-orgle'r and ‘second-order terms:

L,(P |,(P), ;(R)) = L,(P| 0,n®) -

1{2,L,®10,u®) TalL@o,n®) 8,8,L(PI0,u®)] [5,L,@|0,u®)
2{8,L(P|0,n)] 8,0, L,(P|0,n®) SLL(PIO,R®) | |5, Li(P|Ou)]

Lo(P [ o(P) = Lo(P | 1) =23, Lo(B1 k)b, Lo(P 1 )] 3, Li® 1.

Having made subtraction of the second equation from the first one with regard to
L,(P|0,u©®) = L(P|un®), one obtain the following expression for the decision statistic

_1 2

| [a,, L,-8,5, L6 L,) 5, Lo]
DY -]

2521,-8,5,L,62L,) a3, L,

L(P) = , Li=L,(Pp®) . @77

Furthermore, the second-order derivatives in (4.77) can be replaced by theirs mean

values. These ones are the same (with the accuracy €) for hypotheses Hj and H| and
equal to

8:L,=-1

€8

» 8,0,Ly=-I,, Sfm L,=-1 -K_

(11} [T

(4.78)

where Iee is the Fisher information quantity (FIQ) for the estimate of €, L, is the
mutual Fisher information for the estimates of € and p and L, is the Fisher informa-
tion operator for the estimates of the field p. Dropping the denominator and power
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two in (4.77) that don't affect the efficiency of this decision statistic, one derives for
it a final expression

LP) =3, L,Pr®) - L, (1)L, (1 @) +K;') 8, L,PI®) . 479)

Under the weak signal approximation, the signal-to-noise ratio (SNR) is defined as
the ratio of the squared difference of mean values of the decision statistic under hy-
potheses H; and H, to the variance of the decision statistic under the hypothesis H:

(M[qH b, ]j (4.80)
D} ] |
Using this equation one derives the SNR of the decision statistic (4.79) as follows
g?J?
I, —JWIS:(;‘JM ’ (4.81)
Jo =1, -1, @, +K)'1,3, =L, @, +K;').

£e

The quantities J; have the meaning of the Fisher information quantity (FIQ) for the
estimate of € under the condition that the field p is also estimated. The quantities en

have the meaning of the mutual information of the estimate of € and of the field p
under the same condition, and ¢ is the true echo signal level. The expression (4.81) is
the SNR provided that the coordinates of the grid node ry where the decision statistic

is computed: p = p(ry), coincide with the true object's coordinates r(?. If this is not
the case, the SNR can be calculated as follows

& Jg (rr,11”)

p(r,r?) = - , (4.82)
' T (b, 0r) = 3, (0, 1)K (0,1)
where the mutual information J_(rp,r{©) is
Jss (rT’ ) 1 (rT’rT ) Isu(rT’rT)aw +K-l) I (rTvr(o)) ’ (4 83)
, .
L r®) = ja—a-lncp,(ne,rT,p M)gln(b, Ple.r®,n®) s=°d>(P)DP,

lm(rTyr'f'O)): I:_uln(bl(mervu’(‘))) ai-lnq, (HG r(O) (0))’ (b(P)DP'

p=p®
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Also, one may consider the ambiguity function (AF)

N(ry ) = LUI) (4.84)

- =TT 7 | .
p(r)p(r”)

The ambiguity function (AF) (4.84) is equal to one when the points ry and r{© coin-

cide. Spatial widths of its main lobe in the vicinity of the point r(% determine preci-

sion characteristics of the obtained estimate of object coordinates. Presence of other

maximums and theirs levels determine the probability of abnormal errors. The preci-

sion characteristics of the object coordinates' estimate can be calculated directly from
the Fisher information matrix (FIM) of this estimate under the condition of estimat-

ing the level of echo signal field € and the field [ This Fisher information matrix
(FIM) is

.o _[I,TB-I.T.;JW]-L“ o] o oYL, @8

L2 ) J
€8

where matrices I with different subscripts are FIM of corresponding estimates in the
deterministic oceanic waveguide (DSE).

For probability densities @ defined by (4.9), the SNR, the ambiguity function (AF)
and the FIM are

X (KRQUr )Py (1), Py (1))
D) = , (4.86)
Per Z<K;l Q(r'r )PT(I‘T),Q(I'T)’PT(I'T»

" Z (K3QUry )Py (r7), Py ()’
Neeer M( ;‘Q(rr)rf(rr),v,(-T))Z( Q(r. “”)PT(r.}"’),PT(rT("’))X {4.87)
2 (KRQUr)P (), Q)P (1))
XV“ wzw (K3Q )Py (), Q)P ()
. =2 (KRQ(rr)Pr(r;),Pr(rp)) -
2 (KRPy (1), Q(ry )Py (rp)) z (KQUr, )Py (1), By (1) (4.83)
) T (K Q)P (1), Qe )Py (1) ’

®,>0
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where
5Ps R 4.89)
Q=E-P, P———(E KPIW)K : “

The above defined operator P determines in the measurement space the subspace of
source field's fluctuations that are due to the SVF fluctuations. If the norm of the

operator P is lafge and, respectively, the norm of the operator Q is small then the
SNR and the FIM of the object coordinates decrease. That causes a decreasing of
efficiency of the object detection and localization solution.

Such are equations for accuracy characteristics of the joint UOS+ATO solution. We
don't describe details on the procedure of its computation in this paper. We only note
that the main new and difficult moment in it will be the calculation of Fisher infor-
mation kernels for the SVF estimate. Methods of computing these kernels and some
results are presented in detail in [12]-[13], where corresponding equations are de-
rived in the cases of deterministic, quasi deterministic and random probing signals.
Also, the informativeness of field parameters for all essential sound field representa-
tions in the ocean (ray, mode, etc.) is evaluated for the ATO problem in the cases of
inhomogeneities of various scales: for small-scale ones (whose scales are smaller
than the Fresnel radius), large-scale ones (whose scales are larger than the Fresnel
radius but smaller than cycle lengths of main strongest rays) and global ones (whose
scales are larger than cycle lengths of main strongest rays).

4.4. Features of proposed MFP algorithms for SSE

Other known algorithms are:
(1) either heuristic ones [14]-[20], using

o

the decision statistics of the high resolution methods (Capon's method with
different constraints) [14]-[17], whose optimality can be proved only for
signal-noise scenarios of the deterministic ocean,

°  or the decision statistics (AHD, NOLOSS) [18]-[20] close.to those that
should derive from the rigorous statistical approach,

(2) either based on the rigorous statistical approach with maximization of the a
posteriori probability density of measurements [21]-[23], but in this case the
computation of decision statistic is made by a computer.

In the first case, it is not clear what criterion the algorithms correspond to. So, one
needs to reinvestigate their efficiency for each particular case. In the second case,
CPU restrictions don't allow to take into account such moments as, for example, the
variability of hydrophysical conditions along a sound acoustical path.
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The proposed algorithms are derived from the rigorous statistical statement of the
underwater survey problem by using rigorous methods of mathematical statistics
based on the Bayesian approach. The classification of fluctuations of GF on "fast"
(due to the scattering from the sea surface) and "slow" (due to the scattering from
large-scale volume inhomogeneities), allow us to compute analytically the decision
statistic. In the case of the surface scattering the decision statistic is close to the
NOLOSS algorithm. In the other case (volume scattering) it is close to the AHD al-
gorithm. Nevertheless, in our algorithms, in opposition to the AHD, the a priori
spread of GF parameters is not arbitrary assigned but results from the distribution
low of fluctuations of these parameters that is defined by the statistics of volume
inhomogeneities. Moreover, it should be noted that the use of the Bayes' criterion
leads to another form of decision statistic than that of the AHD algorithm.

Our algorithm of joint solving the tomography and underwater survey problems de-
scribed above is conceptually closed to the algorithm considered in [21]-[23]. How-
ever, we note as difference that in that work the computation of the a posteriori PDF
is realized by a computer. In our approach, the integral of joint PDF in the functional
space of sound velocity fields (SVF) is developed by applying the Laplace method,
that allows to reduce the volume of needed calculations and to examine a real vari-
ability of the oceanic medium (in particular, along an acoustical path). So derived
algorithms are able to perform not only for the low frequency range that is optimal
for distances about hundreds kilometers, but also for the high frequency range that is
optimal for smaller distances and more informative because of a wide signal band-
width that is available for use.

4.5. FS-MFP algorithms

Detection and localization MFP algorithms for only one probing signal period have
been considered in sections 4.2 — 4.4, Let design now detection and localization MFP
algorithms, which will use the time-space structure of echo-signal field being consid-
ered in its main details in the 3. Let consider some time interval 7" on which the
source field is invariable. For common sea environments this interval is much larger
than the probing signal’s period 7g: 7= NTTg, NT>> 1.

Logarithms of probability density functions of measurement for hypothesises H, for
the time interval T are

In®, (P) =

= _gg {Kg""@"‘ —P e P )@ - - P;"‘)+Nm Indet K7™ },

k=1 n=1

(4.90)
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where K;k =KN(mn’tk)’ P”" =P(('on’tk)’ PS" S(m ) P”k = T((O”, )

It’s supposed that the NCSM may be changing during the time 7. The source and
echo-signal models are described by the equations (5) and (6). Parameters of the
echo-signal 4,, ¢,, e,, NV are changing while the parameters 4,,, ¢,, e,, M of the source
field are invariant. Time dependence of the echo-field parameters is considered in the
section 3. It will be admitted below that ray parameters of the source and echo fields
are not known a priori but it is known that the source field is invariant during the

time T and the time evolution of the echo field follow some known low with un-
known parameters.

Accordingly to the Bassian approach to making decision the ODS is

YK 6, )P0, )P 6, )>]

L{P}=In®,(P)-In®,(P) = o L, (@91)
|ZKie R 6P )
<K ;l, ((D,, ))S (mn)PT (O)n))
where pi ((o ) P, (0) ) P. ((o )ea20 4.92)

YLK REIRE, )

4.6. Implementation of FS-MFP algorithms

The signal processing algorithm (SPA) presented above consists of three processing
stages. The first stage is o estimate ray parameters 4 wlw €, of the received field on
the time interval equal to the probing signal’s period. The seoond stage is to select
echo-signal parameters from the set of all estimated ray parameters. It’s done by
some kind of spectral processing of those parameters, which is made on time inter-
vals not exceeding the time of stability of the environment. Finally, on the third stage
the inverse problem of object localization is solved using the SSE-matched MFP
approach.

4.6.1. 1* stage: Estimating of ray parameters of received fields

So, the first problem to be solved during the time interval equal to the probing sig-
nal's period is estimating of ray parameters 4,,, #,, e, of the received field which in-
clude the source and echo-signal fields and interference of various kinds. We present
below a processing procedure allowing to get these estimates when there is no full
a priori information about the interference field.
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4.6.1.1. Adaptation io the interference

In the above presented algorithm of making decision it is considered that the noise
spectral density matrix (NSDM) Ky (@) is known a priory. In fact, there is no such
a priori information. Moreover, the noise field may vary during the survey. Never-
theless, as a rule we have a priory information about time intervals of variability for
the interference. Usually they exceed by several orders its correlation interval. On the
other hand, we have also some a priori information about space variability of the
interference that may be formulated as smoothness characteristics of angular spectra
or as spectral characteristics of noises. This a priori information allows to design
adaptive algorithms with estimating of NSDM.

Let us firstly suppose that the NSDM I(N doesn't depend on frequency for the fre-
quency range of the probing signal. While probing signals are narrow band, this sup-
position is unconditionally valid regarding the system and the sea ambient noises.
The reverberation interference has a spectral density that is proportional to the
squared module of the probmg signal's spectrum. One uses usually complex signals
where only the spectrum's phase depends on frequency but not the spectral ampli-
tude. In this case one may consider that the spectral density of reverberation isn't also
depending on frequency. If some frequency dependence is still present, our previous
numerical modeling shows that the optimization of processing algorithms for active
systems by means of making "white" the interference gives rather small amelioration
of the result that we can neglect.

To get estimation of the NSDM we use the maximum likelihood approach. We need
to calculate derivatives of the logarithm of the the probability density function (4.9)
(log-PDF) of measurements with respect to elements of the matrix KN and to equal
them to zero. Solution of such obtained equations is

Ky = Z1P(@,)- B(0,)- A (0,))P0,)- B©,)- A(o,)] - ¢9)

o n

It follows from this formula that we need to know ray parameters of probing and
echo-signals to produce the maximum likelihood estimate (MLE) of the NSDM. If
we neglect the direct and the echo-signal fields in (4.93), we obtain following esti-

mate for the matrix K
Ry =5t =¥ P@,)}P(@,)] (4.94)

Mathematical expectation (mean value) of this approximate MLE is:
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E,NE,| Rs(1, -1, (4.95)

mMV

exp{ —-—@u,r }> R(1)= Ze"”[S(w )| /Z|S(m )|?

is the probing signal's correlation function normallzed so that Ry(0)=1,
|Rg(7)| < Rg(0). If ray delays exceed the signal's correlation interval, then IRS(tp—
t,)| = 0 and the equation (4.94) becomes.

where |E

If ray delays exceed the signal's correlation interval, then |Rs( —1,)| = 0 and we have
R=K, v |A | |E, XE. (4.96)

Thus, the mean value of this estimate is equal to the sum of the NSDM and of the
energy matrix of the probing signal with the echo-signal calculated per one fre-
quency at the spectrum. To have the good detection probability P, = 0.9 the signal-

to-noise ratio (SNR) needs to be about 50...100. Therefore, if N, ~ 103 then the SNR

per one frequency should be about 0.05...0.1. Thus, the expression (4.95) may be
used as estimate of the NSDM with a precision about 5...10%.

After substituting (4.94) into (4.9), it follows
@.97)
In®,P)=-N, x

x [SpE-Z(A" Sp(R™'R}) + 4, Sp(iR"‘.R”))-» > A A Sp(RTR,) +lndetiR],

- ZIPENE s @) 2y, -

0

4.6.1.2. Decision statistic for ray parameters estimating

To estimate unknown ray complex amplitude the maximum likelihood principle is
applied once more. Deriving the log-PDF (4.97) with respect to estimated amplitude
and equaling the result to zero one obtains equations to be solved. Thus, the estima-
tions are obtained

= -1 -
4, =[Sp(R7'R,,)] Sp(R™'R,). (4.98)
Using (4.98) in (4.97) one derives
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In®,(P)=

=-N, [SpE =Y sp@ wmBp@ R, )] Sp®R 'R, )+ Indet R

uyv

] (4.99)

It follows from the equations (4.97) for matrices R , that if ray delays t”—tv are
larger than the probing signal's correlation interval then R w=0,u#v.In this case
the equation (4.99) is simplified

In®,(P)=-N, [SpE— > Be®,,)] [sp@®,)|" +Indet m] . (4.100)

It follows from (4.100) that one may use the following function as decision statistic
to estimate signal's ray arrival angles and travel times:

e =N, lSp(iR’jRu(e,t))| '
Sp(R™'%R,,, ()

Let's write more detailed the numerator and denominator of the statistics (4.101):

(4.101)

PR, (01) = (9 'E(@).a09).

- | (4.102)
Sp(R™'R,,, (e) = E(fn 'E(e), E(e)),
a(®) =|q(r) = Y| P@,Xe™"'S" @,).
Thus, the final equation for the decision statistic derives
_ 2
(R E(e).a) .103)

T(e,t) = -
0 (R'E(e),E(e))
4.6.1.3. Time-space processing for ray parameters estimating

Processing procedure realizing the above described algorithm of primary processing
may be structured as follows.

(0) Making FFT (on the probing signal period) of signals received by array's sen-
sors and obtains the vector of complex spectra.
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Producing the NSDM estimate as it's described by (2), then the matrix is in-
verted.

Setting a grid of space directions (for a linear vertical array it is a set of angles
in the vertical plane) and forms the optimal weight vector (WV)
W(e) =|W(e)) = R'|E(e)) and the SNR p(e) = (W(e),E(e)) for each
direction € of the grid.

Realization of the correlation processing of the measurement by forming the
vectors q(¢) = |q(t)) = Zl P(o, ))e"“’"S' (®,) for all time mo-

n
ments with using the FFT procedure.

2
Computation of the decision statistic T(e,f) = I_(_‘i(e_)(iﬂ)(_ti versus (e,f)
p(e) °
coordinates.

Calculation of a threshold T, determined by the false alert probability Pg. If
only an interference comes to the system's input, then the decision statistic
T(e,?) at each point (&,?) is distributed following the Rayleigh's low with the
mean value T (e,f) = 1. So that when the false alert probability and numbers of
P
NN,

angels Ne and of arrival times N, are set up, the threshold is 1,=-In

Comparison of the decision statistic to the threshold t,, for each point of the

space (e,f) where the decision statistic has a local maximum. If one of maxi-
mums exceeds the threshold, one makes decision that there is a signal ray, and
accepts the maximum's coordinates as estimates of ray arrival angles and
travel time. Then one estimates the ray's complex amplitude following the

(W(e),q(t)).
p(e)

equation ;l(e, t)=

Thus, one has the decision statisti¢'s field T(e,?) formed at the output'of this part of
the processing algorithm for estimating source signal's and echo-signal's parameters.
During one period of the above-described primary processing, one isn’t still able to
decide which correlation maximums belong to the source field or to the echo-signal.

One of advantages of the above-described primary processing algorithm in compari-
son with the convenient space-time correlation is that there is a real-time produced
estimate of NSDM. It allows to follow efficiently an interference's variability thanks
to the use of probing signals of high complexity. Also, one makes the space
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"whitening" of the interference thanks to the optimal weight vector forming. It allows
to improve considerably the SNR in the presence of an anisotropy interference such
as the sea ambient noise or reverberation.

Another advantage of the above described primary processing is the fact that the
decision statistic 7(e,?) is insensible to movements of receiving and emitting arrays'
phase centers such as those due to a ship tossing.

4.6.2. 2" stage: Selection of echo-signal rays

Processing algorithm to select echo-signal's correlation maximums amongst those of
the source field is based of the difference of theirs dynamics. Correlation maximums
of the source field change slowly theirs coordinates in the space (e,f): the time corre-
lation intervals of arrival angles and travel times of source field's rays are about hun-
dreds of thousands of seconds (for free internal waves in the ocean). These time cor-
relation intervals for each whether season should be previously studied (measured)
for some given sea area where a FS-ABS system will work. On the other hand, the
echo-signal's ray parameters change much more quickly because the object moves.
When the object is far from the system's vertical plane containing the acoustical path,
the object's equivalent radius (ER) is small and one can't "see" the echo-signal on the
noise background. When the object comes in the vicinity of the system's vertical
plane, the ER grows sharply thanks to what levels of echo-signal's correlation maxi-
mums also grow sharply and the echo-signal in the statistic's field becomes visible.
After the object has crossed the system's vertical plane the correlation maximums'
levels decrease and finally they vanish in the interference background.

To design an algorithm for echo-signal's correlation maximums selecting one uses
the estimates of the FS-ABS detection zone's thickness, of the living time of echo-
signals and of the envelope's shape of echo-signal's amplitudes, which have been
derived previously in the 3. Let us resume once more main conclusions following
from these estimates:

o the FS-ABS detection zone is narrow in the horizontal plane, its thickness is
~ M2L relatively to the length of the system's base Rgy;

o the living time of echo-signal's correlation maximums is ~ [A2L{][Rgp/V1];

e amplitude of the complex envelope of each correlation maximum corresponding
to an echo-signal ray being segregated in the angle-time space from those of the
source field practically follows the shape of the object scattering amplitude's
main lobe in the horizontal plane. When neglecting its side lobes, one may ap-
proximate the main lobe by a gaussian function as it is done above in the 3
(equation (3.11)):
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A= A’(to)exp{_%(l'rsin’a vo(t—1,) )2} . (4.104)

AT2 x(t,)[1- x(ty)] Rg

amplitude of the complex envelope of each correlation maximum corresponding
to an echo-signal ray being not segregated in the angle-time space from a source
field’s ray is a linear frequency modulated (LFM) signal with the envelope
(4.104) and an LFM structure

cos{odt @}, (4.105)

where 8t, @ is the second-order-in-time phase term, being described in the
chapter 1.

Basing on these particularities of echo-signal's correlation maximums, the following
processing algorithm of the decision statistic T(e,t) being built on each primary
processing period derives.

1)

Making of time averaging of the decision statistic's field T (e,t) at all points

(e,7) within some time interval 7" that is much larger than the echo-signal's
living time but smaller than the time of instability of source field's ray pa-
rameters:

t+T/2

fen== [T.(uva . (4.106)

T

-T2

Then one subtracts the averaged statistic from the initial one:

T (e,1)=T,(e,t)-T (e,7) - (4.107)
2)  Comparison of the above result with a threshold determined by the false alert

3)

probability Py and find 'i (e, 1) exceeding the threshold to process them fur-
ther.

Computation of the time correlation of "]", (e,t) regarding to  with a model
signal that is the LFM signal (4.105) with the gaussian amplitude envelope
(4.104). Nevertheless our estimations of the time first-order term 5t(!) show
that one may neglect the corresponding time shift of echo-signal correlation
maximums because it is not larger than the correlation interval of the probing
signal (~ 2:1073 sec if its band is 600 Hz). Qur estimations of the time second-
order term 5t show that one may also neglect the corresponding time shift of
correlation maximums as well as their linear frequency modulation while the
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corresponding frequency deviation @8t)/(¢—,) is rather smaller than the in-
verted echo-signal's living time that is determined by the gaussian envelope
(4.104). Thus, the optimal processing in our case resumes as computation of
the correlation

-T/2

| HTI s 1(1-1, 2
K(e,t;t,,A0) QF* I T"(e’t)exP{-E(—Kt—) dt’ (4.108)

and following estimation of the model signal's parameters 7,, Af that give the
maximal correlation:

(o, ) = argmax {K(e, 731,40 } (4.109)

5)  Comparison of the maximums of correlation functions K (e,;7,,Af) to some
threshold. If some maximum exceeds the threshold the decision is made that it
belongs to some echo-signal ray path. Maximum's coordinates and the maxi-

mum likelihood estimates , 0> Af of the model signal's parameters are ac-
cepted as parameters of this echo-signal ray path and of its time dynamics.

4.6.3. 3" stage: MFP processing

If the tasks of the two previous processing stages (building of the decision statistic 7
and estimation of echo-signal ray parameters: number of ray paths ]fl theirs com-
plex amplitudes A travel times t and arrival angles ¢ ) are solved then all data

needed to solve the object locahzatnon problem by using the MFP approach are col-
lected. To solve the problem the system's vertical plane is covered by a range-depth
grid (7;,2)) with certain steps in range and depth

r=ibr,i=0,1,.1,1= int(ﬁ),zj =jAz,j=0,1,...0,J = int({[—z—) (4.110)

and echo-signal fields coming to the receiving array have to be modeled for each
point of the grid considered as possible object location. In fact, echo-signal's ray
parameters should be predicted: number of ray paths Ny., theirs amplitudes Ay, travel
times #;;, and arrival grazing angles Xy in the phase center of the receiving array. All
these parameters are calculated at advance and stored in a file.

So, while the system works, signal measurements on sensors of the receiving array
are made. Then, estimates of echo-signal's ray parameters are obtained by applying
the above described algorithms and for each grid point the statistic is computed
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» A N, ~-1/2 N, ) X
T; =(ZA:ZlA,,2‘,) ZEEA ,jviR(e —e; R, —t;) - @4.111)
u=l v= .

p=l v=l

Further, one has to search for a global maximum T max{T,j},
@) =arg max{T,j} of this decision statistics and to compare its level with some

threshold calculated previously for some given false alert probability. If the maxi-
mum's level exceeds the threshold then the detection problem is considered as solved
and coordinates of the maximum (r,,z;») are accepted as estimate of object coordi-

nates when it crosses the system's vertical plane.

Having estimated living times of echo-signal's correlation maximums it becomes
possible also to estimate the orthogonal component of the object's speed

_2AR;(Rp -Ryy) p _, .
ST TR, Ry =T, 4.112)

5. NUMERICAL AND EXPERIMENTAL STUDY OF SIGNAL
PROCESSING ALGORITHMS FOR FS-ABS

5.1. Choice of hydrophysical models for numerical studying

Let consider four types of shallow water sea environments (SWSE) for numerical
investigations of the above considered signal processing algorithms for FS-ABS:

(1) Pekeris SWSE with following parameters:

e sound velocity in the water: 1.5 km/s, ® sound velocity in the bottom:
1,7 km/s,

e waveguide's total depth 0.2 km, e surface waving: median ‘(5 points),
wind 10 m/s,

¢ length of the system's base 50 km.

(2) Summer SWSE. As example the Barents sea summer environment is chosen. It
differs from the Pekeris ones by following parameters:

e sound velocity in the water: sub- ® bottom is defined by a table of reﬂec-
bottom duct (figure 5.1a), tion coefficients.
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(3) Winter SWSE. As example the Barents sea winter environment is chosen. It dif-
fers from the summer SWSE by following parameters:

e sound velocity in the water: sur- e length of the system's base 15 km.
face duct (figure 5.1b),

(4) Test SWSE. As example the tropical sea summer environment of the strait be-
tween the islands Maui and Lanai (Hawaii) is chosen. Such an environment may
be common for possible sea trials of FS-ABS system prototype or for opera-
tional use of such systems. It differs from the summer SWSE by following pa-
rameters:

e sound velocity in the water: sub- e total depth: 50 m.
bottom duct (figure 5.1c),

Barents sea (Summer) Barents sea (Winter) 0 TEST conditions
BwW H

n n

BS / ! TCST B

—0.05 boomnonnnd B 1 T

£ -

o R | B P R R :

s £ =

R TR L B TR LY R it H
pe™ 149 1o fa 146 148 182 161 166

. Sound velocity [km/sec] .

b

Figure 5.1. Characteristic SSP chosen for computer modeling: a) summer SWSE (sub-bottom chan-
nel), b) winter SWSE (subsurface channel), c) Test SWSE (sub-bottom channel).

Choosing of Optimal Frequencies

-]

For all cases the Harret-Munk's spectrum of
free internal waves in the ocean for volume
random inhomogeneities modeling in all types
of SWSE is used, with calculating frequency
profiles from ¢(z) profiles for those SWSE.

Coefficients of weakening in the water, of
reflection and scattering indexes of the
waveguide's boundaries, the object strength
and other parameters are calculated following o
the models being described in the section 2. Range, km
The model of stationary reverberation is used = — 0S¥ —e— 3tz ——fl —e—lbtk
for forward scattering reverberation modeling.  Figure 5.2. SNR as function of object
range calculated for DSE-matched

FS-MFP algorithms (SWSE TEST)

Jor different frequencies.

NN
N aba

LV /\)\W/\v W

16 2

]

In all cases a linear vertical array of 10 m

length of 80 sensors with A/2 spacing is con-
sidered as receiving subsystem. As probing
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signal the LFM pulse signal with central frequency 6 kHz is used, which is optimal
for those environments (under the limitation to have 10% band signals). Such a sig-
nal has a correlation interval ~ 1.5-1073 s,

To study the quality and robustness of solutions of the underwater object survey
(UOS) problem based on the studied MFP-FS algorithms various positions of an
object in the waveguide are considered. Hereafter several examples of building the
ambiguity surfaces (AS) for these algorithms are presented for following object's
positions (zy,xy) and types:

Table 5.1.
Object positions and geomeltry of surveyed zones for modeling

Waveguide Surveyed zone (zT,xT)

Summer SWSE BS 0.2km x 50 km | 100 m, 20 km
Winter SWSE BW 0.2kmx 15 km 60 m, 7 km
SWSE TEST 0.05kmx 15km | 30m,7 km

5.2. Studying the MFP-FS algorithms for DSE

5.2.1. Frequency optimization

Figure 5.2 shows SNR versus object distance and probing signal's central frequency
modeled for studied deterministic FS-MFP algorithms for all typical SWSE. Based
on these results, optimal frequencies for FS-ABS systems using these algorithms
could be chosen. The optimal frequencies are given with the table 5.2.

Table 5.2.

Waveguide Optimal Optimal
frequencies frequencies

for DSE for SSE

Pckeris SWSE (0.2 ki x 50 km) 6-8kHz 6-8kllz

Winter SWSE (0.2 km x 50 km) 6-8kHz 6-8kHz

Summer SWSE (0.2 km x 15 km) 6 - 8 kHz 6-8 kHz
SWSE TEST (0.05 km x 15 km) 12 - 14 kHz 11-12kHz
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5.2.2. Calculation of detection zones

Figures 5.3 - 5.4 show detection zones calculated for the two DSE-matched FS-MFP
algorithms (equations (8) for statistics 1 and (9) for statistics 2). Different intensities

Detection 7ones for Statistic 1

8 10 12 1
Range |km)

%
Range fkm]

Figure 5.3. Detection zones of DSE-
matched FS-MFP algorithins (Pekeris
SWSE).

Figure 5.4. Detection zones of DSE-
matched FS-MFP algorithms (Test SIWSE).

of black and gray colors correspond to different probabilities of good detection. Fig-
ures 5.5 - 5.6 show axes of dispersion ellipses that characterize the width of the main
lobe of ODS in the points of detection zones of the FS-MFP. These results prove the
general low that the DSE-matched MFP algorithms (and not only of FS-type) provide
very high precision of object localization.
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Figure 5.5. Axes of dispersion ellipses of
DSE-matched FS-MFP algorithms
(Pekeris SIVSE),
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ERRORS OF LOCALIZATION FOR Winter Deterministic Ocean
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Figure 5.6. Axes of dispersion ellipses of
DSE-matched FS-MFP algorithms (Test

SIWVSE).



5.2.3. Study of the effect of local noisy sources

To study the effect of local noisy sources at the efficiency of an UOS solution in the
DSE we make modeling of detection zones for all model situations when a local
noisy source is present. We considered a surface ship with 2 Pa level per 1 Hz band
at 1 kHz (depth 5 m) and with 6 dB per octave decreasing. The distance between the
ship and the receiving subsystem varies from 1 km to 50 km.

Analyzing these modeling results we conclude that the use of the correlation proc-
essing and of algorithms with adaptation to vertically anisotropy noises allows to
eliminate practically a negative effect of a surface ship's noise even if it is located
very close to the receiving subsystem. It is possible, firstly, thanks to the correlation
processing with a signal model having high complexity and also thanks to the re-
ceiving array's vertical dimension and to the fact that the ray structure of a surface
ship's sound field is relatively poor (low number of strongest rays with rather distinct
arrival grazing angles). We make the modeling only for one local noisy source pre-
sented in the surveyed zone but it should be possible to suppress an interference gen-
erated by 4 or 5 incoherent local noise sources in this zone thanks to a large number
of sensors at reception (20-25 groups) we have with a vertical array.

We don't present in this paper corresponding modeling results for MFP algorithms for
DSE since theirs detection zones in the presence of local noisy sources are practically
the same that theirs detection zones having being calculated without such sources.

5.3. Efficiency of DSE-matched MFP-FS algorithms in SSE

As it was already noted for several times, the most informative parameters of sound
fields in the ocean for solving the UOS problem are phase parameters & being in use for
building a decision statistic, such as ray travel tinres and arrival angles. Under the DSE
model statistical properties of estimates &, of these parameters are determined by statis-
tical properties of interferences and are characterized by conditional probability density
function (PDF) (that is the distribution under condition that "true” values of measured
parameters are £). The corresponding variance D[E[€] is determined by the Fisher in-

formation quantity I of the measurement: D[§,|¢] = I"!. Under the SSE model, the pa-

rameters & fluctuate because of the time variability of the waveguide. These fluctuations
are described by a priori PDF. By applying corresponding signal and noise models
being described in 2, statistical characteristics of random medium fluctuations in the
waveguide can be recalculated as a priori statistical characteristics of fluctuations of the
parameters &. The main characteristic is their a priori variance D[E].

Let &, is a measured estimate of parameters & in the SSE. As in the DSE case, its
statistical properties are described, firstly, by a conditional PDF when the true value
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is &. Corresponding variance is determined by the FIQ of the measurement:
DI, €] = I-'. The unconditional PDF of the estimate &, is determined by integrating

the product of its conditional PDF and a priori PDF of fluctuations of the parameters
¢ due to the medium random fluctuations. The variance of this PDF is equal to the
sum of the a priori variance and of the conditional variance of the estimate:
D[] = D[E]+DIE,[€]. A posteriori PDF of parameters & under the condition that

theirs measured values are &, is described by the variance D[E|,], and the corre-

sponding precision is a sum of the precision of the a priori PDF of fluctuations and
of the conditional PDF of the estimate: 1/D[E[E,] = I/D[E]+1/D[E,|E]. Therefore, if

the Fisher's information of the measurement 1/D[&,|€] grows then one is able to
measure better the "true" values of ray parameters.

We have studied these modeling results to evaluate the efficiency of the MFP algo-
rithms for DSE model used in the SSE conditions. To do it we model building deci-
sion statistics of the algorithms by the following way: the echo-signal field is mod-
eled for the "true" object location and we add random simulated fluctuations to its
phase parameters with a posteriori variances calculated for the considered stochastic
propagation conditions and for the simulated signal-to-noise ratio (SNR). After that
the decision statistics is computed following the studied algorithm. Examples of
building of decision statistics for the both MFP-FS algorithms matched to the DSE
model when applied in the SSE demonstrate that there is a degradation of the DS
(sometimes rather significant) resuming as stretching and movement of its maxi-
mums and as appearing of side lobes that may in some cases exceed the initial main
lobe and produce abnormal errors of localization. Note that the algorithm #1 matched
to the random phase signal model is usually more robust than the algorithm #2
matched to the random complex amplitude signal model.

As we have already many times noted, the most informative from the point of view
of solving the UOS problem in the ocean are the phase sound field parameters (such
as ray arrival times and angles). They are varying (fluctuating) in SSE conditions
because of time variability of the waveguide. One may calculate statistical charac-
teristics of field phase parameters by using corresponding theoretical and numerical
models of sound fields in the ocean waveguide (OWG) and statistical characteristics
of medium fluctuations in the SSE. If the processing time interval is much smaller
then the time correlation interval of medium fluctuations, one has no exact knowl-
edge on waveguide's parameters and, firstly, on the sound velocity field (SVF), be-
cause of this time variability. If may be interpreted as a random component in the
SVF whose statistic characteristics are determined by those of fluctuations that may
be recalculated by the same way into those of field phase parameters' fluctuations.

Results of this modeling were used to estimate the efficiency of FS-MFP algorithms
matched to DSE when applied in SSE. To do it, optimal decision statistics (ODS) of
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these algorithms were built by the following way: echo-signal was modeled when
object is placed in the above given point and then random fluctuations with RMS
having been calculated for this point and propagation conditions were added to phase
parameters of the signal. Then the ODS were built by the common way. Examples of
such building of ODS for two FS-MFP algorithms matched to DSE are presented
shows that the ODS is degraded (sometimes to a rather marked degree). This fact is
expressed as a more large main lobe, movement and dividing of the main lobe, ap-
pearance of new lobes and abnormal errors (false solutions).

5.4. Studying the MFP-FS algorithms for SSE

Since the signal-to-noise ratio (SNR) of SSE-matched FS-MFP algorithms is not very
different from that of DSE-matched one, then their detection zones are also very
close. Examples of ambiguity functions (AF) built for the both two algorithms for
above given object location and axes of dispersion ellipses calculated in points of
detection zones are shown with figures 5.7 — 5.8. Precision of localization for SSE-
matched FS-MFP algorithms are greater then those for DSE-matched ones, but these
precision is rather satisfying and exceed considerably limitations which may be im-
posed on parameters of underwater survey systems for shallow waters.

To demonstrate the stability of solution being obtained in SSE conditions by using
SSE-matched FS-MFP algorithms, we have done modeling of optimal decision sta-
tistics (ODS) forming by the same way as above. Examples of ODS being built by
this way for two SSE-matched FS-MFP algorithms applied in SSE conditions dem-
onstrate that the ODS is much less degraded than in the above case.

ERRORS OF LOCALIZATION FOR PEKERIS Random Ocean ERRORS OF LOCALIZATION FOR Winter Random Ocean
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Figure 5.7. Axes of dispersion ellipses of Figure 5.8. Axes of dispersion ellipses of
SSE-matched FS-MFP (Pekeris SWSE). SSE-matched FS-MFP (Test SWSE).
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To study the robustness of the SSE-matched MFP algorithms, modeling of theirs
decision statistics following the approach of the section 4.3 was conducted. Exam-
ples of so simulated decision statistics for the both MFP-FS algorithms matched to
the SSE model when applied in SSE conditions show the robustness of solutions of
these algorithms in SSE situations to be usually qualitatively compatible to that of
the deterministic MFP algorithms. The reason is that even in the idealized case with-
out adding fluctuations to the field's parameters the decision statistics of DSE and
SSE-matched MFP algorithms in our situations are often rather similar from the point
of view of its space distribution and side lobes' level. In this case the use of a probing
signal having some correlation interval that isn't very different from the RMS of ray
travel times implemented in the SSE model robustness of the both deterministic or
random algorithms to fluctuations of field's parameters in the scope of the RMS is
qualitatively the same. To show the robustness of stochastic MFP algorithms against
fluctuations of ray parameters in comparison with that of the deterministic MFP algo-
rithms, probing signals with some correlation interval being smaller than the RMS of
fluctuations of ray travel times should be used.

5.5. Impact of mismatches on the efficiency of DSE
and SSE-matched FS-MFP algorithms

When some UOS system is operating in real ocean waveguide (OWG) conditions,
the real parameters of the OWG and of the system may differ from those being im-
plemented in the MFP algorithms on the use of which the system is based. Such
mismatch between the algorithms and the real parameters may be the reason of vari-
ous errors when solving the UOS problem. Errors of measurements (of actual SVP,
depth, etc.), various hydrophysical processes, as well as the random time variability
of the OWG may be the source of these mismatches. Parameters on which a mismatch
may be important, especially for solving the localization problem, are listed below:

e mean sound velocity profile (SVP),

e mean bottom depth,

e statistical characteristics of fluctuations in the frame of used SSE model,
e length of the system base,

e  parameters of the emitting array (power, pattern factor, array pattern, space po-
sition and orientation, etc.),

e  parameters of the receiving array (sensitivity, pattern factor, array pattern, space
position and orientation, etc.),

®  noise parameters,
and so on.
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Errors of localization arising as effect of some mismatch may be of two kinds:

e displacement errors when there is only one solution but in some different posi-

tion than the "true" one, and

abnormal errors (false solutions) when there are several solutions; in this case
one maximum may be rather close to the "true" object location but it may be
only a local maximum of the decision statistics and not the global one.

To estimate possible errors due to different types of mismatches, on the stage 2 of this
study we have conducted numerical simulations for all mismatch types. To simplify the
review and understanding of results of this modeling, we present quantitative characteris-
tics of mismatches' effect and mismatches' parameters in the table 4.2 (for SVP and bottom
depth mismatches) and in the table 4.3 (for mismatches in receiving and emitting systems'
parameters). The quantitative characteristics are RMS of errors of localization in depth and
range. There are also false solutions (abnormal errors) noted as AE. The sign (~;~) means
that there is no solution (the decision statistic doesn't exceed the threshold).

Table 5.3.
Mismatch effect for SVP and bottom depth mismatches
Waveguide | RMS | RMS of displacement of | RMS of | RMS of displacement
of |object localization solution| bottom | of object localization
SVP (z,x) [km] depth solution
D -DSE, S - SSE, AE (z,x) [km]
statistic 1 /2 D -DSE, S - SSE, AE
statistic 1/2
1 2
Summer SWSE | 1m/s | D: (0.025;15)/(0.035;3) 0.5m | D:(0.02;20)/(0.03;20)
S: (0.005;15)/(0.005;1) AE

S: (0.03;10)/(0.02;5) AE

0.2 km x 50km | 3 m/s | D:(0.005;13)/(0.005;4) AE | 1m |D:(0.02;13)/(0.03;5) AE
S: (0.005;13)/(0.005;4) AE S: (0.02;13)/(0.03;10) AE

inter SWSE 1m/s D: (~;~)/(0.03;1) 0.5m D:
S: (0.1;5)/(0.05;1) (0.02;0.2)/(0.030;0.15)
S: (0.03;0.3)/(0.025;0.20)}
0.2km x 15km | 3m/s D: (~;~)(0.1;3) AE 1m | D:(0.03;0.3)/(0.04;0.3)
3 S: (~;~)/(0.1;3) AE S: (0.02;0.3)/(0.03;0.3)
est SWSE 0.5 m/s|S: (0.002;0.5)/(0.003;0.8) AE| 0.5m |[S: (0.002;6)/(0.002;6) AEl

0.05 km x 15 km | 1 m/s |S: (0.012;1.2)/(0.005;1.2) AE] 1m |S: (0.003;4)/(0.003;3) AE|

5.5.1. SVP mismatch

To study numerically the SVP mismatch effect, we have considered profiles that
differ from the reference ones being chosen in the section 4.1 so that theirs RMS are
equal to values in the colon 1 of the table 4.2. Based on simulation results we evalu-
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ate RMS of displacements of the solution and present them in the table 4.2. It proves
the general conclusion that when a mismatch of this type is present, there is firstly a
range displacement of the solution and then side lobes grow and give false solutions.
Nevertheless, if we use a narrower band to solve the localization problem, the ro-
bustness of the solution to different mismatches increases.

5.5.2. Bottom depth mismatch

Second type of environmental mismatch we have investigated is the mismatch in bot-
tom's total depth. To study its effect on solutions of the both deterministic and stochas-
tic MFP-FS algorithms, we have simulated ambiguity surfaces (AS) when mismatches
shown in the colon 2 of the table 4.1 were introduced. Based on these simulation results
we evaluate RMS of displacements of the solution and present them in the table 5.3.

Table 5.4.
Effects of mismatches in receiving array depth
on object localization solutions by FS-MFP.

Waveguide Displa- | RMS of displacement of object
cement of localization solution
receiving . (z,x) [km]

array D -DSE, S -SSE
statistic 1/2
BS Im D: (0.02;20)/(0.02;20) AE
S: (0.03;20)/(0.03;20) AE
0.2 km x 50 km 5m D: (0.02;20)/(0.03;20) AE
S: (0.02;20)/(0.03;20) AE
BW Im D: (0.020;0.5)/(0.020;0.3)
S: (0.015;0.4)/(0.015;0.3)
0.2km x 15 km 5m D: (0.030;0.8)/(0.025;0.8)
. S: (0.025;0.8)/(0.020,0.8)
wC Im D: (0.03;7)/(0.02;1.5)
S: (0.02;5)/(0.02;1.0) AE
0.2 km x 50 km Sm D: (0.03;8)/(0.05;5) AE
S:(0.03;12)/(0.05;10)
TEST 0.5° S:(0.001;0.1)/(0.001;0.1) AE
0.05 km x 14 km 1.0° S: (0.100;5.0)/(0.100;6.0) AE

5.5.3. Mismatch in source or receiver position
The third type of environmental mismatch we have studied is that of receiving or

emitting arrays' parameters such as theirs positions (range, depth) and space orienta-
tions (for vertical linear arrays it is the angle from the vertical direction).
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It follows from the structure of considered MFP algorithms that such mismatches
will effect the decision statistics if variations of field's parameters due to them differ
from the model ones more than the signal's model (signal's correlation interval) or the
waveguide's model (a priori RMS) allows. Therefore, to avoid it, displacements of
sensors must be smaller than the space interval of field variability due to the mode or
ray summation in the waveguides.

To study numerically effects of such mismatches on localization solutions obtained
by the both types (deterministic or stochastic) of our MFP-FS algorithms, we have
built ambiguity surfaces (AS) when mismatches in position of array's centers as
given in the colon 2 of the table 4.3 were introduced. It is clear that mismatches in
source depth will effect localization solutions by the same manner. Based on these
simulation results we evaluate RMS of displacements of the solution and present
them in the table 5.4.

5.5.4. Signal mismatch

Spectrum of signals being really radiated by a source of probing signals may differ
from the model implemented in the processing algorithm because the source may be
technically unperfected or changing its transfer function. Nevertheless, one is able to
take easily in account such a mismatch by realizing a previous or, if necessary, a
periodic calibration of the source (measuring its transfer function) and by using the
measured one to produce a matched signal model. One may also correct the source's
transfer function by modifying the source input to compensate this type of mismatch.

A theoretical evaluation of the effect of a signal model mismatch was done in the
section 1.1.2 when we considered the impact of the Doppler effect on the correla-
tion's output. Such a mismatch will manifest itself for all ray paths and will resume
firstly as decreasing of correlation maximums. As result, the SNR of our MFP algo-
rithms will also decrease and it will effect the detection zones. We evaluate to be
insignificant the effect of this type of mismatch on ambiguity functions.

5.5.5. Conclusion on the numerical modeling of mismatches

Main conclusion to be done basing on results of this numerical madeling of mis-
matching effects is that when a mismatch on some parameter grows, displacement
errors occur firstly (the solution is displaced from the "true" object location). In the
same time we observe side lobes of decision statistics increasing. Then the side lobes'
level becomes high enough to create false solutions, one of which is the main by its
level (the initial solution being already displaced far from the "true” one, may de-
crease at all below the detection threshold). Sometimes, we have situations (in the
winter SWSE) where one of strong new side lobes of the decision statistic arises
close to the "true" object location. It is clear that it is related to the high periodicity of
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sound fields in such waveguides. We must note a higher probability to have false
solutions for the algorithms #2 both for the DSE and SSE models but smaller dis-
placement errors.

Effect of mismatches on MFP algorithms is not significant till they don't change
main echo-signal's parameters outside the limits allowed by the used mode! of sound
fields in the waveguide or by the used model of the probing signal. When the pa-
rameters' variability due to some mismatch becomes larger than these limits, solu-
tions of MFP algorithms become non-robust. For example the solution of SSE-
matched MFP algorithms rests robust till the variations of ray travel times or ray
arrival angles due to some mismatch rest into the limits of RMS used by the SSE
model to which the algorithm is matched. Similarly, the DSE-matched MFP algo-
rithms rest robust till a mismatch produces ray delay mismaiches that are smaller
than the correlation interval of probing signals.

5.6. FS-ABS system working as convenient ABS

As the results of detection zone modeling for convenient pulse ABS (PABS) systems
show, its efficiency is worse than that of an FS-ASB system when all systems' pa-
rameters are closes to each other. To estimate qualitatively the efficiency lose one
may consider that it is proportional to the decreasing of the signal-to-noise ratio
(SNR) SNRp,ps/SNRgg_aps, that must be proportional to the squared ratio of ob-

ject's equivalent radiuses for PABS and FS-ABS scheme (ERp,ps/ERgs aps)? and

inverse proportional to the ratio of energies of reverberation noises (RN) for these
two types of systems:

SNRpaps/ SNRgs aps ~ (ERpaps/ ERps aps)*(RNpaps/ RNgs apg)™" -
Using our estimates of ER being presented in the section 3 the following derives:
(ERppps/ ERgs pps)* ~ (D(2DyLy/A) 1Y ~ (M2Ly)* .

At 6kHz frequency one has: (ERp,ps/ERps aps)® ~ (0.25 m/2:100 m)? ~2:1075,
Further, using the reverberation model, one can evaluate:

RNpaps/ RNgs aps ~ ( Jax fm (5 XoMpao d<|>)(fdx Jm, ()c,tp;xo)dw)_l g

where y is the characteristic grazing angle's value of the strongest ray, ¢ is the azi-
muth scattering angle. In the case of surface reverberation from a developed sea

waving at 6 kHz frequency |Vg(x)l <<1, then RNp,po/RNgg apg ~ 47mg(%,915X1)-
For test SWSE y, ~ 0.1, ¢, ~ 0.5 and therefore, mg(x,,9,3%,) ~ 1073 at the frequency
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6 kHz, therefore the estimate RNp,po/RNpg apg ~ 1074 derives. Thus, the ratio is
SNRp,ps/SNRgg_aps ~ 2:1072. Therefore, one needs to increase the "power" of sig-

nal processing algorithms by corresponding number of times to ensure (under condi-
tion to have the same other parameters) a SNR for PABS of the same level that for
FS-ABS.

In the case where the object has left the always narrow (in the horizontal plane) de-
tection zone of a FS-ABS system, this one becomes an ABS system working under
the convenient bistatic schema but using continuously radiated probing signals. If
even one supposes that the echo-signal can be efficiently segregated from the source
field as it is realized for pulse systems, nevertheless one will have a higher rever-
beration level at the signal processing algorithm's input because of the continuous
radiation. It means that when using the continuous radiation the SNR decreases by
(ERp,ps/ERgg aps)? times for the convenient ABS schema but not by

(RNpps/RNgs 4ps)ERpaps/ERps aps)~ times as it is for the pulse radiation.

Let's note as conclusion to this section that in propagation conditions where the re-
verberation is the most important interference, one is not able to increase the SNR by
increasing the radiated power when using active systems because the reverberation
interference will also increase in parallel to the echo-signal's level. There is only one
way to combat the reverberation that is to use more complex probing signals of a
larger band or bigger receiving arrays. All this will need to use a higher computer
power when making the signal processing.

5.7. Conclusions

5.7.1. Detection

1. Signal processing algorithms for ABS systems that are proposed above have the
highest possible noise robustness thanks to the use of a complex probing signal
and of the correlation processing and also thanks to the adaptation to space dis-
tributions of interference in the vertical plane. For example, detection zones of
these algorithms calculated for situations where there are local nobisy sources or
not are practically identical. Big vertical dimension of a receiving array allows
to eliminate efficiently the anisotropy reverberation interference that's the most
important for the FS-ABS schema of observation. If a horizontal array is used,
we'll have no gain in the signal-to-reverberation ratio since the arrival directions
in the horizontal plane of the maximum of the reverberation's angular spectrum
and of the echo-signal's field are practically the same. Also, the use of a com-
plex signal gives a big contribution in eliminating the reverberation interference.
The use of a tone signal doesn't allow to do it because the Doppler effect is
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much smaller for the FS schema then for the convenient monostatic one. As ad-
ditional to these positive moments we note the use of the squared module of the
correlation function's complex amplitude as decision statistic in our signal algo-
rithms but not the use of the amplitude itself, since this decision statistic is more
robust to possible factors of instability such as a "jolting" of emitting of receiv-
ing arrays.

Comparison of detection zones of a FS-ABS system with those of UOS systems
based on the convenient active or passive sonar shows that the detection range
of the FS systems is much bigger than that of convenient systems (when all
other system parameters are equal). Nevertheless, the FS detection zone is very
narrow in the horizontal plane - it may be hundreds of meters when the system's
base length between the source and the receiver is tens of kilometers - against
the detection zones of convenient systems. It means that FS-ABS systems be-
long to the "barrier type" of UOS systems.

5.7.2. Localization

When using the MFP-FS algorithms for both the deterministic and stochastic
ocean waveguide's models one has a very high precision of object coordinates
estimating, in particular of the object depth. Thanks to this fact one has also a
rather good estimate of the object's speed in the direction being orthogonal to
the system's vertical plane.

The main problem when solving the localization problem by MFP-FS algo-
rithms is the robustness of the solution being characterized by the probability of
false solution appearing. It follows from presented results of numerical simula-
tions that in some situations even in the ideal case (without mismatching or
fluctuations of field's ray parameters) under the DSE model the ambiguity func-
tions of MFP-FS algorithms have several maximums whose levels are compati-
ble, and therefore false solutions are appearing. In these cases the use of the
SSE-matched MFP-FS algorithms doesn't eliminate these false solutions. In the
cases where the solution of the DSE-matched MFP-FS algorithms is rather
"good", having one well-expressed maximum of the ambiguity function, the
SSE-matched MFP-FS algorithms should , in principle, produce a more robust
solution. Nevertheless it isn’t seen in some situations since the correlation inter-
val of the used probing signal being determined by it's frequency band doesn't
differ considerably from the a priori RMS of ray of parameters of echo-signals
being determined by the used SSE model. In this case fluctuations of measured
ray parameters with such RMS manifest themselves in corresponding fluctua-
tions of the decision statistic by the same manner for the DSE-matched MFP-FS
algorithms as well as for the SSE-matched ones. Robustness of SSE-matched
MFP-FS algorithms against fluctuations of ray parameters when compared to



that of the DSE-matched MFP-FS algorithms will manifest itself if the correla-

tion interval of probing signals is much smaller than the variance of fluctuations
of ray travel times.

The main conclusion of the numerical study on the effect of different environ-
mental or system mismatches when solving the localization problem is that
when a mismatch grows, there are firstly displacement errors (the solution
moves from the "true" location of a object. Also there is in parallel an increasing
of side lobes of the decision statistic. Then this increasing becomes significant
enough to create false solutions one of which becomes the global maximum
(during this evolution the initial solution being already displaced from the "true"
object position may at all decrease below the threshold of detection). It often
happens that one of new strong maximums arises close to the "true" object posi-
tion. Probability of this event grows when the sound field's periodicity in the
waveguide is higher.

Different mismatches don't effect thie SSE-matched MFP-FS algorithms till they
disturb the echo-signal field into the limits allowed by the model of the field in
the SSE. When the disturbances exceed these limits, the MFP-FS algorithms
matched to the SSE model become non-robust. The same is true for the DSE-
matched MFP-FS algorithms, but in this case the limits of allowed mismatches
in field's parameters, one of which - the ray travel time - is the most informative,
are determined by the time correlation interval of probing signals.

In connection to this, there are two ways to improve the robustness of SSE-
matched MFP algorithms:

to make more "rude" the localization algorithms (for example, by decreasing the
effective signal's band used by the algorithm),

to solve together the UOS and ATO problems, with determining the bottom
depth and with solving the positioning problem for emitting and receiving ar-
rays.
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