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PREFACE

Investigations of the features of synthesis and analysis of hydroacoustical
signals, on the one hand, associated with the influence of oceanic waveguide
properties, and, on the other hand, taking into account the possibilities of optimi-
zation of methods of inhomogeneity characteristics reconstruction are presented
in the series of collections in set (from 1991 to 1997 years) of IAP RAS books.
The most of investigations in these books were focused on development of fun-
damnetal researches which can be the scientific base for development of effec-
tive schemes of acoustical observation of an oceanic environment condition.

The results of investigations presented in this book can be seen, as some
intermediate finish of such investigations, which can show not only additive new
understanding of the different details of forming of acoustical fields in oceanic
environment, but also to present some of directions for solution of practical
problems. In particular, there are the problems of tomographical reconstruction
of parameters of spatially-localized inhomogeneities, such as clouds of bubbles
and bodies, reconstruction of extruction of characteristics of spatially distributed
inhomogeneities of oceanic environment. Another close problem is associated
with the receiving and processing of probing acoustical signals. All articles in
this book are directed on practice and are based on analysis of experimental data.
Some methods were tested in real conditions.

In conclusion of this short preface, we would like to note that it is not diffi-
cult to predict the great future for presented in this book direction of investiga-
tions because of the activities in the shelf zones of ocean. The methods of shal-
low water acoustical tomography is the field of great interest of world scientific
hydroacoustical community. The example of such interest are the articles of this
book which were associated with international collaboration.

This work was supported in part by Spacial Federal Programme
«Integratsiya» and by Scientific School of V.A. Zverev.

Vitaly Zverev,
Alexander Khil'ko



ACOUSTIC COHERENCE EFFECTS

ON SIGNAL PROCESSING
IN SHALLOW WATER CHANNELS

E. Yu. Gorodetskaya, A. I. Malekhanov, A. G. Sazontov,
and N. K. Vdovicheva

Introduction

The problem of acoustic coherence and its effects on spatial and tem-
poral signal processing in underwater sound channels is of a great interest
in ocean acoustics, mainly, with application to long-range source detec-
tion/estimation systems. Recently, considerable effort has been devoted to
this problem for the case of large arrays in deep water environments [1-3].
A distinctive feature of this study was incorporating realistic calculations
of the signal mutual coherence function (MCF) of space [4-6] to predict

, the coherence-induced degradation of the array beampattern and gain for
several types of linear and quadratic signal processors, optimal ones in-
cluded. These theoretical results were summarized in the review article by
Gorodetskaya et al. [7]. It is natural to develop such a scheme of com-
bined consideration of the acoustic coherence and array signal processing in
shallow water environments. One of the particular goals here is to formu-
late recommendations for effective beamformers in realistic shallow water
channels.

The research presented also concerns temporal processing of pulsed sig-
nals. The previous study [8,9] was focused on a conventional matched-
signal approach and demonstrated a considerable degradation of its perfor-
mance induced by the MCF of time and frequency in deep water environ-
ments. Here, the problem of our particular interest is not only incorporation
of realistic shallow-water models of pulse propagation, but also expanding
the study of temporal filters to optimal ones. In this context, a general
goal is to realize a similar approach to the study of spatial and tempo-
ral sighal processors, which is focused on realistic predictions of processor
performances in underwater channels.

In this paper, we present our results on shallow water acoustic coherence
and its effects on large-array beamforming and temporal pulsed signal pro-
cessing with emphasis on comparative analysis of optimal and suboptimal
techniques. A scheme of our study is, in general, the same as was effectively
exploited previously [7]. For calculation of the shallow water acoustic MCF
in the framework of the rmodal approach, we develop the method of the
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second moment equations, in which an extra absorption term modeling the
bottom effects is included. To analyze the optimal signal processors, spatial
and temporal ones included, we use the eigenvalue-eigenvector (eigenfunc-
tion) decomposition of the signal covariance matrices (signal MCF). Besides,
we simulate more simple and traditional techniques, such as plane-wave
beamformer (PWBF) and some of its modifications for array processing, and
matched filter for temporal processing. The focus here is to estimate and
compare the output SNR gain loss for different processors, that is induced
by the long-range coherence degradation at the receiving system input.

The body of this paper is organized as follows. In Sec. 1 we introduce
a general model of acoustic coupled-mode propagation (the mode-coupling
coefficients are random variables resulting from rough surface scattering).
We then formulate the second moment equations for the self- and cross-
modal coherence functions by assuming that the subbottom attenuation
only results in modal-energy loss. In Sec. 2 we give the general description
of array beamforming techniques that we use in numerical simulations, in-
cluding a short discussion of modal approach to their analysis, and in Sec. 3,
the basic formulations for temporal processing of pulsed signals. Next, in
Sec. 4 we report illustrative results of numerical simulations to show in de-
tail the coherence-induced effects on the performances of both the vertical
and horizontal arrays and temporal filters. Finally, in Sec. 5 we discuss the
results obtained and summarize the research.

1. Evaluation of the MCF in shallow water

The MCF is of great importance in understanding statistical behavior
of underwater acoustic transmission. Most of the activity in this direction
has been concentrated on deep—water environments. In such environments
with the bottom at abyssal depth, bottom interaction of the acoustic signals
can be ignored, and acoustic propagation conserves energy, i.e., there is no
attenuation. The application of the general theory of the wave propaga-
tion through random media to a deep—water waveguide has been focused on
quantitative calculations of the MCF as a function of time and space, on
the behavior of pulse propagation, the coherence of intensity, and the prob-
ability density of intensity. In this context, it should be noted that the sys-
tematic investigations of the sound propagation in a refractive deep oceanic
waveguide containing random inhomogeneities have been carried out in a
ray oriented approach. The predictions of acoustic coherence from the ray
theory and their comparisons with single-receiver measurements are fairly
well summarized in the book by Flatte et al. [10]. For low-frequency long-
range propagation, the ray theory is not adequate and the wave-theoretical
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description like the normal-mode method is more suitable. The use of this
approach introduces the effect of sound-speed profile in a direct and sys-
tematic way. Applied to deep ocean acoustics, the modal treatment was
developed in a series of publications and well documented in our review
paper [7].

In coastal environments or oh the continental shelf, interaction of acous-
tic signals with the ocean bottom faces the difficulties that are not encoun-
tered in deep—water waveguides [11,12]. The acoustic attenuation resulting
from sediment absorption will lead to the decay of the average wavefield
intensity and essentially modify the MCF behavior in comparison with the
deep—water situation. Efforts have been undertaken to include the presence
of the bottom boundary into the consideration by formulating the theory
in terms of acoustic normal modes [13-16]. However, the effects caused by
sediment absorption have not been included in most studies (exceptions are
the works by Creamer [14, 15] who studied only the behavior of the fist and
the second moments of the sound intensity). Moreover, the illustrative ex-
amples given in Refs. [13-16] do not describe adequately most shallow-water
environments (somewhat nonrealistic assumptions are made to simplify the
computations).

In the presence of sediment penetration, the modal energies typically
decay at different rates, the phenomenon known as mode stripping. On
the other hand, the presence of random scattering results in modal cou-
pling with continuous energy exchange between the modes. This “mixing”
of energy leads to essential transformation of the modal spectrum of the
registered signal and in a nonabsorbing medium the modal intensity distri-
bution approaches a constant at the asymptotic ranges. Hence, the inves-
tigation concerning the effects of the competition between mode stripping
and random mode coupling on acoustic coherence is of great importance
in understanding fluctuation phenomena in a shallow-water channel where
bottom interactions are significant. Since bottom effects radically modify
the acoustic transmission, any realistic propagation theory in shallow water
environments should include them.

In deep ocean channels it is now generally accepted that the random
volume scattering in this case is due to the presence of internal waves. For
many regions of the world’s oceans the internal wave field is well character-
ized (both experimentally and theoretically) as a stationary, stochastic field,
with little geographic variability and the space-time scales of these waves
are accurately described by the Garrett—-Munk model [17,18]. This is not
correct for most coastal areas and shallow-water regions — the spectrum is
not correct while stochastic internal waves are intermittent as a rule.



In the present study we are interested in acoustic coherence in a shallow
water environment in which fluctuation phenomena are caused predomi-
nantly by fully developed wind seas.

1.1. Formulation of the propagation model

The propagation geometry is exhibited in Fig. 1, where the coordinate sys-
tem is placed with the z-axis pointing downwards and the z-axis paraliel to
the boundaries.

AIR

z . SEA
. WATER
H  SOURCE (Pw,c(2))
FIELD POINT
(Ov 20)

(r,2)

SIS S S S S S S S S

BOTTOM
(Pb, cb)

Fig. 1. The geometry of the problem (not shown to scale) presenting
shallow-water channel of depth H containing source, field point, and co-
ordinate system

Throughout the paper, the water depth H is assumed to be constant and
the background speed of sound ¢(2) in the fluid is a function of depth 2
only. The bottom is modelled as a lossy infinite half-space.

Assume that the sound scattering is caused mainly by the statistically
rough and acoustically soft boundary z = 5(r,t). Here, r = (z,y) is the
horizontal two—dimensional position vector, z is the vertical coordinate, and
t is the time. The perturbation 7 is assumed to be a random Gaussian
homogeneous and stationary field with zero mean and can be fully described
by its autocorrelation function By:

By(p,7) =<n(r,t)n(r +p,t +7)> .

The angular brackets < - - - > indicate ensemble averaging.
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Let a nondirectional acoustic source be located at coordinates (0, zp)
and emit a signal having time dependence g¢(t) = s(t) exp(—iwot), where
wo = 27 fo denotes the radian carrier frequency, and s(t) specifies the am-
plitude modulation. This signal passed through a medium with randomly
distributed rough surface is registered by the receiver located at coordinates
(r, z). In the subsequent analysis we shall assume that the scale of oceanic
inhomogeneities is much greater than acoustic wavelength, the Rayleigh
roughness parameter is small, and the characteristic frequencies of B, are
small compared with carrier frequency wq.

The complex envelope of the acoustic pressure field P(r, z,t) in an ir-
regular oceanic channel can be formally represented by

P(r,z,t) = [dwg(w) ¢~ iwt P(r,z,w,t). (1)

- 00

Here, g(w) is the frequency spectrum of the transmitted signal and
P(r, z,w,t) is the wavefield at angular frequency w.
The governing equation for the propagation of sound in a channel is
9 o2 o? 2 9
(w-’-a—yz-l-'a?-"k n (Z)) P(r,z,w,t):O,' (2)
where k = w/co, ¢p is chosen to be the minimum of ¢(z), and n(z) is the
refractive index:

no(z), 0<z<H;
n(z) =
N [1+ia], z>H.

Here, no(2) = co/ ¢(2), noo = co/ cb, cb is the constant speed of sound in
bottom sediment, and « is a measure of the attenuation in the bottom. Ac-
cording to measurements [19] of the acoustic attenuation in different types
of sedimentary material, including various sand-silt—clay mixes, the coef-
ficient a is approximately independent of frequency, taking a value in the
range 3 x 1073 to 6 x 1072,

In the presence of a soft boundary z = 5(r,t), in addition to the wave
equation (2), the following condition on the acoustic pressure field is im-
posed

P(r,n(r,?),w,t) =0. ®3)

The sound field in the channel obeys also the conditions that the pressure
and the normal component of velocity are continuous across the channel
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bottom boundary:

P(r,z,w,t)],_g_o = P(r,z,w,t)],_gr40

1 9P(r,z,w,t) _ _1_6P(r, z,w,t) (4)
Puw 0z z=H-0 Py 0z z=H+0 ,

P(r,z,w,t) >0 at z— oo,

where p,, and p; are the density of sea water and the density of bottom se-
diment, respectively. Equations (2)—(4) define the boundary value problem
for the acoustic pressure field.

1.2. Parabolic stochastic coupled mode equations

By applying Green’s theorem, the wave equation (2) can be transformed
into a boundary integral equation as follows:

P(Rw,t)= / / [P( 3G(RR) —G(RR )Q-PM]M,,

(5)

where R = (r,z), dA, is the area element, S is the bounding surface, n,
is the local outward normal to S, and G(R,R’) is the medium Green’s
function.

Since the solution has the form of outgoing waves and environment is
assumed to be attenuating, as the bounding surface goes to infinity, the
integration reduces to integrals on the ocean surface.

For a small Rayleigh parameter, the explicit boundary condition (3) can
be expanded at the mean ocean surface z = ( in powers of 5 to give

8P(r,z,w,t)

P(r,0,w,t) = —n(r,t) 5

(6)

z2=0
The modal solution for P(r, z,w,t) in the random oceanic channél far
enough from the source can be formally represented by
M(w)
P(r,z,w,t) = Z Py(r,w,t) pu(z,w). (7
n=1
Here, ¢n(z,w) denotes the n-th vertical eigenfunction of the deterministic
background medium and M is the number of propagation modes. Each
12



normal mode is modulated by a random amplitude P, (r,w,t) indicating
the effect of the surface on acoustic propagation. The normal mode depth
functions o, (z,w) satisfy the eigenvalue problem

2

:2 Pn(z,w) + [k?nd(2) — K2 (w)] on(2,w) =0, n=1,2,...,M(w), (8)

together with an orthonormality relation and appropriate boundary condi-
tions

Son(zaw)lzzﬂ—() = ‘P”(z’w)l"':H‘H’ ’
Lomes)|  _ 10ee)
po 0z g P 07 gy

en(0,w) =0, pn(z,w) >0 atz—o0d.

The eigenvalue corresponding to the n-th modal function is designated by
2
K2 (w).

The medium Green’s function which satisfies the inhomogeneous wave
equation and the boundary conditions for the unperturbed (flat pressure
release surface) system is [20]:

‘ ;M@
GRR)==7 D ¢n(zw)en(®,w) B (km(@) Ir = ¥),  (9)

m:l

where H, ((,1) is the cylindrical Hankel function of the first kind of order 0.
Since G evaluated at z = 0 vanishes, the integral of Eq. (5) can be rewritten

as
PR,w,t)= / / P(R,,w,t 6G(RR)dA, (10)

z2=0
The combination of Egs. (6), (7), and (9) with Eq. (10) yields:

M(w)
Pa(r,w, t)—z /n(r.,t)ZPm(r,,w OHD (ka(w) Ir =} x  (11)

2=0 m=1

X ‘P:; (0, “")‘P:n (0,w) dA,,

where the prime denotes differentiation with respect to depth z. In obtai-
ning (11) the modal orthonormality has been exploited. By applying the
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operator ((—%25 + -6%22- + &2 (w)) to both sides of Eq. (11) and making use
of the fact that

(-(?i 2y ~i(w)) B (kn (@) Ir - ¥')) = 4ib(x — ¥,

8z2 Oy
one obtains the following set of coupled mode equations:
9 8 s
(3 7t 52 +Icn(w)) Pu(r,w,t) = — Z Tam (T, w,t) P (r,w,t), (12)
m=1
where

am(r, w, 1) = ¢, (0,w) e, (0,w) 7(r, ).

In what follows, where the forward scattering is assumed to be essential,
we shall use the spatial coordinate system with the z-axis taken in the main
direction of wave propagation.

For forward propagation, letting

one obtains from Eq. (12) the parabolic coupled mode equations for the
modal coefficients p,(r,w,t):

Py(r,w,t) =

F) 5? M(w)
(8 —ikp(w)— P (w) 3y2) Pa(r,w,t) =1¢ ,,,Z=:1 Vam (r,w,t) pm(r,w, ),
(13)
where the complex horizontal wavenumber is
Kin(W) = @ (W) + ian (W),

with the ordinary acoustic wavenumber 2, (w) and a,(w) the modal atte-
nuation parameter, given by (see, e.g. [12]):

2,2 2
a"(w) = _p_'i k noo")oﬂ(H’w)l
Po 2 () /(@) - P,
The mode—coupling term is

T t) 400 08) o
21WEn(W)km(Ww)  2v/En(W)km(w)
The quantity V,,, that is similar in form to Eq. (15) was derived by Bass

and Fuks [21]. Equation (13) is the starting equation for the subsequent

statistical analysis.
14

(14)

Vnm (r,w, t) =




1.3. Second moment eciuations for the multimodal MCF

The quantity of ultimate interest is the second moment of the complex
pressure:

Bp(l‘l, zl,t1|rz,22,t2) =<P(l‘1,21,t1) P*(rz,ZZ,t2)> . (16)

Substituting Egs. (1), (7) into Eq. (16), one finds that

[o o) o0
B, (r1, 21, t1|ra, z2,t2) = / duoy / du 9(wr)g" (wa)T(-|-)e—1t1 +iwata
—00 -0

(17)
where T'(ry, 21, wi, t1|ra, 22,w2, t2) is the total MCF defined as

polz,01)pm(z2wa) b o) (18
n,m \/’cn(wl)nm(wz) ”m( ’ )’ (1 )

Tam(1,2) =<pn(1) P(2)> .

The labels 1 and 2 refer to two different horizontal position points, times
and frequencies. In Eq. (18) we see that the total MCF is expressed as
the weighted sum of the self-modal coherences I'n,(1,2) and cross-modal-
coherences I'nm(1,2) (n # m). Thus, the problem of finding a result for
B, in an irregular oceanic waveguide channel now reduces to evaluating the
self-modal and cross-modal coherence functions.

The equations governing the change of 'y, (1,2) as a result of random
surface scattering can be derived from (13) under the Markov approxima-
tion (see, e.g., [7] and the corresponding references presented there). A
considerable simplification occurs for the waveguides having a nonequidis-
tant spectrum of wavenumbers 2, [22]. In this case, the diagonal elements
of the matrix I'pm(1,2) decouple from the off-diagonal elements. As a con-
sequence, for 'y, (1,2) the final equation is

oz o - te=3 (055 37 - s o) 09 =

= —-;- [O'?(wl) + Un(;‘)g)]‘ rnn(1)2) + Zn: A:m(lﬂ) rmm(1;2)o

[(ry, 21, w1, t1|ra, 22,ws, t2) =

Here, 0y, (w) is the total modal attenuating parameter

on(w) = o (w) + 07 (), s



where o3(w) is the absorption coefficient: o3(w) = 2an(w) with an(w)
specified in Eq. (14), and o} (w) is the scattering coefficient:

M
on(l) = 3 Ann(LL).
m=1
The coupling matrix Apj(1,2) is given by the expression

[ﬂPQ (0,w1)@m (0, w1) @ (0, w2) @l (0, w2)]
2 [&n(wl)aem (w1)een (wz)aem(wg)] 172

AP™(1,9) =

0o =
X /dQe—iQT/d&!leiaeprﬂ(&rtn_m;‘r'xm’&y)Q),

where F,(ze,) is the Fourier transform of the surface autocorrelation with
respect to p and 7 and &}, = 0.5 (&n(w1) + 2 (w2)).

At w; = ws,, an equation similar to Eq. (19), but without transverse
y dependence and subbottom attenuation, was derived by Beilis and Tap-
pert [23] using a parabolic approximation.

The equation for the cross—modes is

] 1 62 1 02
[ —i(@n(w1)— ae'"(wz))__(—_as,,(wl) W - _&m(wz) -@-)]F”m(lﬂ) =

= [—— (o',,(wl) + O'm(wz)) + A (1 2)] an(l 2)

where

mm ﬂ'[<p,,(0 w1)@m (0, “’2)] —iQ7r i
Az (2 =T e /dQ —[daeye =P, 0, =, 9).

As a consequence of (20), we obtain the following representation [9]:
Lam(1,2) =<pa(1)><pn(2)> Tam(1,2), n#m, (21)
where
<pn(r,w,t)>= Mexp [(iae,.(w) - la':,(w)) Ir| - il] (22)
V8rz 2 4
is the coherent field of the n-th mode and the explicit expression for T,,, is

given in Ref. [9].
16



3 For most oceanic applications the characteristic correlation length I,, of
gurface irregularities is much less than the typical mode cycle distance, i.e.,
lp < A,. In this case, elementary acts of scattering occur at statistically
independent ensembles of the surface, and the formula (21) reduces to a
simpler form [24]:

Tam(1,2) =<pn(1)><pn(2)>, n#m.

Thus, under the assumption made, the second moment of the modal coeffi-
cients I'p,n(1,2) appearing in Eq. (18) becomes

Lam(1,2) = <pn(1) ><pp(2) > + [Tan(1,2) = <pa(1) ><Ph(2)>]nm.-
) (23)

The relations (18) and (23) together with Eqgs. (19), (22) allow for estimation
of the key correlation characteristics of the acoustic signal in a shallow water
channel where the rough surface scattering effects are important.

2. Array beamforming techniques

In this section, we consider array signal processing of the Fourier-
transformed sensor data at an arbitrary frequency. The main attempts
are focused on the case of coherence—degraded signal, which was shown to
be the inherent case of shallow water sound propagation as the result of
multiple sound scattering on random wind waves. Our particular interest
concerns the array gain defined directly from the small-signal deflection, or
the generalized SNR, for several types of linear and quadratic beamformers,
and a multimode model for the discrete spectrum signals.

2.1. Array gain

We follow here the general formulations for the array signal processors ex-
ploited in the previous study [1, 3, 7].

Assume that the acoustic signals at an N-element array are N-
dimensional data vectors, the signal of interest (vector s) and the noise
background (vector n) are both zero-mean and mutually uncorrelated ran-
dom processes, and the noise vector is a Gaussian process. The spatial
covariance matrices are defined as I'; =<xxt > (x = s or n, respectively;
the superscript * denotes complex conjugate transpose). The signal matrix
T, is obtained from the calculations of the MCF of space for a given set
of source and environmental parameters, and the noise matrix Iy, is calcu-
lated directly by using the well-known model of surface-generated modal
noise [25].

17



The array gain G is defined as the output SNR ¢ normalized to the input
SNR qdo:

q Tx(Ts)
G=— ) = ’
o' 7T

where the symbol Tr(-) denotes the matrix trace. For the output SNR we
use the deflection which is given by

¢= <d(s +n)> — <d(n)>
{<d?(n)> — <d(n)>2}/*’
where d(-) is the detection statistic [26-28].

(24)

(25)

2.2. Linear beamformers

According to the general definition, we refer to a linear beamformer (LBF)
as to a device which weights the outputs of each array element and then
sums the weighted outputs. This is a conventional choice for array signal
processing with numerous applications in radar and sonar [29,30]. The
general structure of LBF (a weight-sum-square scheme) is shown in Fig. 2.

1
w,

T2

w2

Z YreF l . ’2 d

TN

WN

WEIGHT
VECTOR

Fig. 2. The general structure of linear beamformer

The LBF output y, 5~ is obtained as a linear function of the input vector
x, and the detection statistic d as a squared y,gr:

Yrer = WTX, d= Iwalz’ (26)
18



where the superscript 7 denotes the operation of vector transposition.
The vector w is an arbitrary (N x 1) weight vector of the array elements,
the choice of which gives the output array performances.
The output SNR g¢,pr is given by the ratio of the corresponding
quadratic forms:

wTT,w*

= -7 27
wIT,w* (27)

qiBr =
In this paper, we compare the SNR gain performance for the same three
LBFs which were compared in detail in deep water environments [7].
Plane-wave beamformer

The first one is a conventional PWBF giveﬁ by
wpw(j) = exp[—ikd(j — 1)sinf], j=1,2,...,N, (28)
where £ is an arbitrary steering angle.

Adaptive plane-wave beamformer

The second one is a plane-wave beamformer with noise interference
prewhltemng, or adaptive PWBF (APW) (29, 30]. Its weight vector w,pw
is given by

Wiapw = r;lew. (29)

Optimal linear beamformer

The third one is an optimal LBF which is of particular interest in the
case of partially coherent signal. Its weight vector w5, is given by the
following eigenvalue—eigenvector problem:

QVp = I‘;II‘,V,,, p=12,...,r =rank(T,), (30)
where the eigenvalues g, are assumed to be ordered as
2¢02..-¢>0.

The largest eigenvalue ¢; is the maximum SNR among all LBFs, and the
corresponding eigenvector v; is the optimal weight vector: ¢.pr = ¢i,
Wipr = V1.
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2.3. Quadratic beamformers

In comparison with LBF, a more complicated quadratic beamformer (QBF)
is a weight-square—sum scheme consisting of a matrix filter W followed by
an R—channel quadratic processor [26, 27, 30]. The general structure of QBF
is shown in Fig. 3.
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> | > |
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22| I I
2 P
W | )y .
I I
o | — I
N
>— I |

MATRIX L - — —/ |

FILTER QUADRATIC PROCESSOR

Fig. 3. The general structure of quadratic beamformer

The QBF output ygsF is obtained as a guadratic function of the input
vector x in the form

Yosr = XT Ax* = [WTx|2. (31)

Here, the matrix A is an arbitrary Hermitian (N x N) processing matrix fac-
torized as A = W*W7 by usmg an (N x R) weight matrix W (1 < R N).
The output SNR g5 is given by the following ratio:
Tr (W*WTT,)
[x(W*WT T2 /%

(32)

doBr =



As is clearly seen from Figs. 2, 3 and directly follows from Egs. (26),
(31), the QBF scheme is a squared combination of R partial LBFs which are
characterized by the corresponding weight row—vectors wp(p=12,...,R).
This scheme allows, generally, for both coherent and incoherent s1gnal pro-
cessing. Note that QBF reduces to LBF in the specific case of R = 1.

Similarly to the LBF scheme, the choice of the weight matrix W and,
respectively, the matrix A of QBF determines the output array performance
for given signal and noise inputs. One of attractive strategies is to optimally
process the partially coherent (random) signal against the noise background
and to maximize the array SNR and gain. In practical situations, however,
this strategy can require a considerable increase in the processor complexity,
consequently, the suboptimal schemes are of particular interest.

In this paper, we compare the SNR gain performance for three QBFs.
The first of them is the optimal QBF which maximizes the output SNR (25)
and realizes the upper limit of the array gain [26-28], and the other two are
suboptimal beamformers.

Optimal quadratic beamformer

The optimal QBF which maximizes the output SNR (25) and realizes
the upper limit of the array gain, namely in the case of partially coherent
signal, is given by

Age =T;'0, T, wh =M 'm,. . (33)

Here, A\, and m,, are the eigenvalues, and eigenvectors of the signal matrix
r,, respectlvely, which are given by

Apymy =Tymy, p=12,...,r =rank(T,). (34)

The eigenvalues A, are assumed to be ordered and normalized by

‘N
M2 A>0 Y =1 . (35)
p=1

The maximum SNR results from direct substitution of Eq. (33) into Eq. (32)
and is given by

i 1/2 W T )] 1/2 N
GoBr = [’h' ﬁ‘ :) ] {gﬁ,} s (36)

where ¢, are the eigenvalues from Eq. (30).
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As follows from these equations, the number R of partial linear channels
in the full-optimal QBF is-equal to the signal rank, R = r. Because the rank
r increases monotomcally with the ratio of the array length N to the signal
coherence length N, the performance/complexity of optimal beamformer is
a function of this key parameter. As is clearly seen from Eq. (36), only the
largest eigenvalues gp_are of real importance for calculation of the quadratic
array gain. In turn, their number is upper limited by an “effective” signal
rank r.ys which is defined as a number of the largest signal eigenvalues ),
(35).

Subariuy beamformer ‘

One of practical approaches to large—array processing of partially coher-
ent.signals (for the N/N 2ratio) is based on an heuristic idea of incoherent
combining the outputs of a number of subarray LBFs, the lengths of which

_are about N.. ’I‘hls scheme is not a full-optimal choice, but does have two

essential features. Fl_rst the computational requirements are much lower;
second, -the details of the signal coherence need not to be known precisely,
implying robustness of the processor to the coherence variations in nonsta-
tionary conditions.

Formally, the subarray a.pproach can be described by the general equa-
tions (31), (32) with a block-diagonal weight matrix

W, = diag(wi,Ws,...WR), (37)

where each subarray weight vector wp, p = 1,2,..., R, is formed as for.a
conventional PWBF (28) (in the case of white n01se) or adaptive PWBF
(29) (in the case of ambient modal noise). For example, the simplest first
case is

wp(j) = exp[~ikd(j — Vsinfp],  (P—1)Nsa+1<j<PNsa, (38)

and w,(j) = 0 for all the other element numbers j. Generally, the steering
angles (B, can be chosen to be different for each subarray to match this
scheme to multipath propa.ga.tlon A special case R = 1 leads to the simplest
PWBF (28).

The subarray beamformer (SABF) was previously analyzed by several
authors with the focus on the coherence degradation [26, 28] and the multi-
path signal reception [31]. An important issue here is, however, the case of
partial signal coherence characterized by residual spatial correlations across
a large array. We emphasize in this connectlon, that this case is a typi-
cal practice for horizontal and vertical arrays in underwater channels (both
deep-water and shallow-water ones)

22



Incoherent modal beamformer

Another approach to suboptimal array beamforming, which is motivated
directly by multimode/multipath propagation of the signal and ambient
noise fields in underwater channels, is incoherent mode filtering [32].

Generally, this technique exploits the same heuristic idea of squared
combination of the partial filter outputs (as for SABF), but each partial
filter is formed to be matched to some normal mode of the signal. Contrary
to SABF, the partial weight vectors wp, p = 1,2,..., R, are expanded at
full array length. Following such an approach, the welght matrix me
and weight vectors (its rows) w, are easily given by

Wp = um(p), W’Mp = U dlag( m,m(p)), (39)

where u,, are the vectors of modal shapes over the full array, or the modal
vectors, with the numbers m = 1,2,...,M; M is the total number of
the signal-carrying modes; U is the (N x M) matrix consisting of the row—
Vectors U, or the modal matrix (see also the next subsection); the numbers
m(p) indicate the “reference” modes which the p—partial filter is matched
to; 6,,,,;,,(,) is the Kronecker symbol.

For R > 1 this approach leads to quadratic beamforming, and for R = 1,
to a linear scheme of matched—mode filtering. Taking a general analogy
with multibeam phased arrays, we will refer to such a beamformer as to
incoherent modal beamformer (IMBF).

2.4.1 Modal approach to large—array beamforming

As was shown in Refs. [27, 33, 34] on the basis of a general model representing
the multimode signal and noise fields with arbitrary amplitude covariances,
the array beamforming techniques can be re-formulated in mode space to
realize a complete scheme of normal mode treatment of the signal processing
problem. The modal approach to examination of the coherence effects on
array beamforming is a useful tool that enables us to interpret the results
of full-wave simulations from the spatial MCF in the mode space and to
propose effective suboptimal beamforming techniques. For a particular case
‘of long-range sound propagation in shallow—water channels, the analysis of
beamforming in mode space is quite reasonable because of the intrinsic
features of the problem. The first feature is a relatively small number of
the discrete spéctrum modes. The second: one is a specific shallow-water
evolution of the signal modal spectrum over long distances due to strong
effects of cross-modal interaction and bottom-induced modal stripping.

To analyze the schemes of the multimode signal array processing we use
here the array beampattern in mode space, or modal pattern [27], deﬁn;d



N
E=UTw,  gn=3 um(iul) (40)
i=1

Taking an analogy with conventional beampattern, the modal pattern shows
the modes which give the maximum response in the array beamformer out-
put. It is important that the modal pattern may be obtained directly from
the M-dimensional matrix equations containing the matrices of the modal
covariances (instead of the spatial ones) of the signal and ambient noise and
the matrix of the modal orthogonality factors [27, 34, 35].

In this subsection we restrict ourselves only to two short comments
concerned with a physical interpretation of optimal beamforming, which
is based on modal approach. These comments are important for further
discussion of numerical results.

First, for the case of coherent signal in ambient noise, when adaptive
PWBEF (29) is the optimal processor, its modal pattern g,pw is formed in
such a way that the most noised signal-carrying modes are in deep nulls of
the pattern [27,35]. Because the ambient sea noise is usually multimodal
and covers some modal band, the corresponding modal bandwidth is cut
off in the pattern. This leads to a considerable rejection of the signal, if its
spectrum is filled in part by the noised modes.

Second, for the case of decorrelated signal modes, when the optimal QBF
(33) should be used to enhance the array gain, the partial modal patterns
gp are formed to match the partial filters w, to the modes of the most
intensive signal eigencomponents [33, 34]. In comparison, the modal pattern
of the optimal LBF (30) matches one eigencomponent with the maximum
intensity. Therefore, if the sighal-carrying modes are decorrelated and the
array length is sufficient for their spatial resolution (orthogonality), the
optimal QBF is a substantially complicated scheme at a cost of forming
additional modal filters. Note also that the modal patterns are determined
in this case only by the modal orthogonality factors and modal intensities
of the signal and ambient noise.

Returning to the IMBF scheme we note that in a general case of mul-
timode signal in multirnode noise background, IMBF is essentially different
from the sptimal QBF. it is clear, however, that IMBF is a suboptimal
processor when the sighal comsists of several uhcorrélated and resolvable
(orthogonal) thodes, and their modal SNRs ate sirilar to each other [32].
An effective choice for the reference modes (for the numibets m(p)) is, there-
fore, the modes with maximum values of modal SNR. The latter values, in
turn, depend on the modal spectra of both the signal and ambient noise, so
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they may be essentially different for various sound frequencies, signal source
depths, and underwater environments.

Thus, the modal approach to array beamforming gives us an effective
scheme to select the modes from the point of view of their partial contribu-
tions to the array processor performance/complexity.

3. Temporal processing of narrow—band
acoustic pulses

Until now, we have discussed the coherence effects on the large—array
processor performance in application to CW transmission. In this section,
we focus on temporal processing of partially coherent nonstationary radia-
tion, namely, temporal filtering of narrow-band acoustic pulses in a shallow
water waveguide, where rough scattering processes are important. This
problem is considered to be of a great interest in various applications con-
cerned with underwater detection, communication, and the ocean acoustic
tomography.

The starting point in designing a temporal receiver is statistical analysis
of the temporal stability of the registered wavefield. In this context it should
be noted that the theoretical studies of the temporal pulse structure have
been carried out with deep—water application in mind (see, e.g. [10] and
the corresponding references presented there). A distinctive feature of the
current consideration is incorporating realistic calculations of the quantity
of interest to predict the combined effects of random scattering and bottom
interactions on the quality of the temporal performance.

Note also that the methods presented in our previous section may be
adapted directly to the construction of temporal processors, optimal one
included, since the general techniques of signal processing are well known
to be similar for spatial and temporal domains.

3.1. Pulse temporal structure and governing equations

The important correlation properties of a pulsed wave, that has traversed
a random oceanic waveguide, are described by the second moment of the
acoustic pressure field, Eq. (17). In what follows we will be interested in the
temporal behavior of the correlation function with no simultaneous space
separation.

For a narrow transmitted pulse, when wg; = w; — wy <K wy,
9.5(w1 + wa) & wo, we can put @ (z,ws,2) X ¢n(2,we) and expand kn(wy,2)
In the Taylor series: Kkn(w1,2) = Kn(wo) + 1/v5 (w1,2 —wo) + - -+, where v,
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is the group velocity of the n-th mode. Then, the quantity B, may be
simplified and in the case considered Eq. (17) taken at r; = rp = r and
z1 = 29 = z is replaced by

By(t1,t2) = BS(ta,t2) + Bj(t1,12). (41)

At this stage, the dependence of B, on spatial coordinates has been omit-
ted for notational convenience. Here, Bjy(t1,%3) is the coherent part of the
teniporal correlation function that is determined by the expression

1
Bi(ty,t) = <pn(r,t1)><ph(r,t2)> z z), 42
< (11, 12) ,.z,:n\/’m Pa(r, 1) > <P (r,2)> pn(2)em(z),  (42)

with
(ilc,. - %0',,) z
b

<Pa(r,t)>=

1
\/gﬁ S(t - tn) (P"(ZO) €

(where we have dropped the argument wy for brevity), and B} (t1,12) is the
incoherent component:

M
. 1 .
B}’)(tlitﬂ = Z KZ_ F:m(x»tl)tz) ‘)035(2)’ (43)

n=1 n
where

o]
Thn(2:t1,1) =/dwax(r, wa)Tan (2, 7, wa)e et
)
2
A . -1
-%S(tl —ta)s" (t — tn)e” 2772,

In writing Egs. (42), (43) we use the following notation: 7 = ¢, — i3,
t =0.5(t; + t2), tn = z /vy, and

00
1 1 1 ,
x(r,wq) = o /dts(t + -2-1-) s*(t - 5.,.)euudt
-0

is the ambiguity function of the transmitted pulse. Thus, the estimation of
the pulse temporal structure requires the knowledge of the self-modal MCF
of time and frequency separations.

Equation (41) together with Egs. (43), (42) are the main equations in
this section.
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3.2. Temporal performance analysis

Detailed treatments of the detection problem for partially coherent Gaus-
sian signals against a Gaussian noise background can be found in Ref. [36] as
well as elsewhere in the literature. For most practical applications, the reg-
istered signal is non-Gaussian due to complicated conditions of ocean sound
propagation. For weak signals, however, the peiformance of the temporal
receiver can be evaluated in terms of the deflection ratio for arbitrary signal
statistics. Here, we apply such a consideration to shallow water acoustics
for the construction of temporal processors, optimal one included.

Assume that a received waveform portion z(t) on the interval of the
observation t € [T}, Tf] consists of a random background noise n(t) which
may or may not include the signal of interest p(t). In what follows, for
simplicity we let n(t) be bandlimited white noise, i.e.,:

<n(ty) n(tz) >= oy 6(t1 — t2),

with the spectral level equal to o,,.

By analogy with array signal processing, SNR for the case considered
can be associated with the test statistic d by defining the desired output
signal as the deflection in the mean value of d caused by the presence of
the signal at the receiver input. The SNR is then defined as the deflections
ratio (see also Eq. (25)):

{<d?(n)> — <d(n)>2}*/?

(44)

As is well known [36], for an arbitrary linear temporal processor with
impulse response h(t), the test statistic d (cf. Eq. (26)) is given by

T, 2

d= /:c(t)h(t) dt| . (45)

T;

A receiver designed to provide the test statistic in Eq. (45) can be treated as
a correlation receiver. A simple diagram for this receiver is shown in Fig. 4.
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Fig. 4. Receiver structure for linear temporal processor

With the assumption that n(t) is white Gaussian noise, a simple calcu-
lation of the SNR from Eq. (44) gives:

//Bp(t u)h(t)h(u) dt du

SNR= . (46)
Ow / |h(t)|? dt

For our further purposes it is convenient to rewrite Eq. (46) as

sSNR=2 5.,

Ow

where
Ty

E,.:/Bp(t,t)dt
T;

is the received signal energy during the observation time, and

Ty
/ By (t, u)h(t)h(u) dt du
Oin = T;., T (47)

By(t,t)dt [ |h(t)|*dt
[0

has the sense of the coherence-induced SNR gain loss.
A filter h(t) chosen in accordance with h(t) = s*(t — 74), where 74 is the
expected time delay, defines the receiver structure commonly known as a

standard maiched filter. 1t provides the optimum performance assuming a
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known deterministic signal in white noise. In realistic underwater environ-
ments, this is seldom the case. In most practical situations, the signal to
be detected is a random function. For the temporal processor of the linear
type, the optimal filter response hop(t) of the correlation receiver can be
derived from the following integral equation [36]:

Ty
/K,(t, u)®;(u) du = \®;(t), T; <t Ty, (48)
T

where B, (t,u)
, U
K, (t,u) = TP_———’

j B,(t,1) dt
T,

The largest eigenvalue Apmax = A1 gives the gain loss (47), and the cor-
responding eigenfunction ®;(t) is the optimal linear filter response, i.e.,
D1 (t) = hope(t).

We now treat the general structure of a quadratic temporal processor
that determines the potentialities of the random signal detection. The test
statistic (cf. Eq. (31)) is now defined as [36]:

Ty
d= T/ / 2(t)h(t, w)z" (u) dt du, (49)

where h(t,u) is a two—dimensional impulse response function. Let us take
_into consideration the function hj(v,t) related to h(t,u) by

Fy
ht, u) =/h,(v,t)h;(v,u) dv, T, <t< Ty, (50)
T;

With the use of Eq. (50), the expression (49) takes the form

Ty Ty 2
d= /dv dt z(t)hy(t,v)
T; i

The resulting receiver structure is presented in Fig. 5.
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Fig. 5. Receiver structure for quadratic temporal processor

For an arbitrary impulse response function h(t, u), the SNR at the output,
of the quadratic processor is easily shown to be

Ty
//B,,(t, u)h(t, u) dtdu
SNR=-Z . (51)

I 172
Ow //Ih(t,u)lzdtdu
T;

The maximum possible SNR is realized if [36]

h(t, u) = hope(t,u),
where
hopt(t,u) = B; (t,u). (52)

Note that the temporal correlation function Bp(t,u) can be expressed
directly in terms of the eigenfunction and the eigenvalues of the integral
equation (48) as follows

(o]
Bp(t,u)=E, Y \®i(t)®}(u), Ti<t< Ty

=1

As a result, the solution of Eq. (50) is

)= VES VEBOEW, T<t<T.  (69)

i=1

For the case of random signals, the scheme in Fig. 5, with hy(v,t) chosen

in accordance with Eq. (53), provides the optimal performance.
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The substitution of Eq. (52) into Eq. (51) gives

SNR = 'E_r Jquada
Oy

where

T, 1/2

//|Bp(t,u)|2 dt du

T 0

Squad = = =, >N (54)
=1

/ By(t,t)dt
T,

is the gain loss of the optimal quadratic processor.

4. Numerical simulations and results

In this section, we give some illustrative examples to exhibit numeri-
cal prediction of the acoustic MCF in realistic shallow-water environments
where bottom interactions are significant. These results are then employed
to examine the processing techniques presented above both for (i) vertical
and (ii) horizontal \/2-arrays, and (iii) temporal filters with the emphasis
on the coherence-induced limitations.

The following values of the source parameters are used in simulation:
the frequency fo = 500 Hz; the distance £ = 100 km; the source depth
2o = 100 m. Some particular results are also presented for the source depth
zo0 = 20 m to emphasize the effect of the signal modal spectrum which
depends on the source depth. The environmental parameter is the speed of
wind v which varies from 5 m/s to 10 m/s.

For the horizontal arrays and temporal filters the simulation is focused
on the case of white noise background (in spatial and temporal domains,
respectively). The simulation of vertical array beamformers includes also
modelling of the ambient (modal) sea noise.

4.1. Prediction of the acoustic MCF in shallow water

To illustrate the effects of random surface scattering on acoustic transmis-
sion we consider the shallow—water environments and assume the Pierson—
Moskowitz spectrum [37] for F;(z, Q):

-3 2
Fy(e,Q) = §_1>‘<1_7rlO__ 2% exp (—0.74 g ) (- 9=, (55)

=2y
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where g is acceleration of gravity, and v is the wind speed over the ocean
surface.
The sound-speed profile chosen for our calculations is shown in Fig. 6.

50

200 1 1 1
1.45 1.46 1.47 1.48

Sound Speed (km/s)

Fig. 6. Sound-speed profile from the Barents Sea
’

It represents the summer profile from the Barents Sea. The environments
selected consist of a layer of water 200 m deep overlying a semi-infinite
bottom with constant sound speed of 1700 m/s, density of 1.6 g/cm’, and
attenuation coefficient of 0.02 dB/km-Hz.

The signal coherence degree is characterized by the correlation coeffi-
cient:

T'(ry, 21,t1|ra, 22,12)
VI(ry, z1,t1|r1, 21,8)T(r2, 22, ta|ra, 22, 1)

C(ry, z1,t1|r2, 22,12) = (56)

This function is fully determined by solution of the eigenvalue problem,
Eq. (8), and the second moment of the modal coefficients, Eq. (23).

Figure 7 shows the effect of variable surface roughness on coherence loss
in the attenuating channel for given source parameters.

It is clear that, as we increase surface roughness, the rate of coherence
loss increases.
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Fig. 7. The normalized MCF of horizontal (a), vertical (b), time (c), and
frequency (d) separations in the presence of bottom attenuation at various
surface roughness: 1 —v =5m/s;,2 —v=75m/s, 3 —v = 10 m/s.
Source frequency is 500 Hz, source depth is 100 m, and distance is 100 km
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For moderate v (v < 7 m/s), the MCF behaves in an oscillatory fashion,
which indicates that the scattering is weak, so that there can be a high de-
gree of signal coherence even at relatively large separation of the observation
points. It should be emphasized that the normalized MCF tends asymp-
totically to the coherence parameter I, = |< P(r, z,t)>* / <|P(r, z,t)[*>.
The characteristic coherence length, time and coherent bandwidth which
are determined by the half-power decay of the correlation coefficient in the
case studied depend on wind speed and are approximately 10 m, 2 s and
0.1 Hz, respectively, for v = 10 m/s.

For given source parameters and fixed surface roughness (v = 7.5 m/s),
in Fig. 8 we plot the magnitude of C in the case of time and vertical se-
parations in the absence (curve 1) and in the presence (curve 2) of bot-
tom absorption. The most striking feature in these figures is the fact that
the bottom interactions lead to an increase of the coherence degree of the
acoustic field. Physically, as was emphasized above, this is a consequence of
the competition between the mode coupling, which redistributes the modal
energies, and mode stripping, which results in an irreversible loss of energy
of the higher modes.

4.2. Vertical array beamformers

In this example, we simulate the key effects of shallow water sound on the
array beamforming, including effects of signal coherence and sea noise. To
demonstrate the latter one, we assume the noise to be the sum of two mu-
tually uncorrelated components, namely, spatially white noise and ambient
sea noise:

rn = O'I+ Fan.

Here, I is the identity matrix, o is the white noise level, and ',y is the
covariance matrix of ambient noise. To calculate the matrix I';,, we use the
results from Ref. [25]:

M
(rlm)jl = Z Vmem (i) (1),

m=1

where

_ [en(@)]”

sty R L R &

In what follows we will suppose that the ambient noise is rather intensive
in comparison with the white noise, so the ratio of the input white noise
power to the input ambient noise power (averaged over the array) is fixed
at the level ~ —23 dB. 35



Figure 9 shows the modal spectra of the received signal (solid line) and
the ambient noise (dotted line) for two essentially different source depths,
2o = 100 m and zg = 20 m. The depth zp = 100 m corresponds to the source
location in the middle of the channel when the source excites effectively the
group of relatively low—order modes. On the contrary, the source location
in the upper portion leads to excitation of the higher-order modes and
to narrowing of the signal modal spectrum at long distances due to non-
uniform modal attenuation.

Figure 10 shows the normalized MCF's of the signal and ambient noise
along the array (the full array length is N = 64 or L ~ 95 m). One can
clearly see the significant effect of the surface rough scattering by wind
waves on the signal coherence degradation. Typical correlation lengths of
the signal and noise are about N, ~ 10, but the signal has residual correla-
tions (coherence “tails”) over the entire array, the level of which decreases
monotonically with the increase of the wind speed.

A distinguishing feature of shallow—water sound propagation is signifi-
cant inhomogeneity of the signal covariances over depth. Figure 11 illus-
trates clearly the inhomogeneity of the signal wavefield along the vertical
array. It is seen, in particular, that the averaged signal intensity is much
larger for the elements with the numbers j 2 40. The signal correlations are
also larger for these elements. Such an inhomogeneous behavior of the signal
MCF leads to essential dependence of the array performances, beampattern
and gain included, on the array arrangement in the channel.

Figures 12, 13 demonstrate the modal patterns of optimal LBF and
adaptive PWBF for two source depths. The effect of cutting off the noised
modes is clearly seen in these patterns. In the first case of separated modal
spectra (Fig. 12), the plotted modal patterns are similar to each other, so,
as demonstrated below, these two beamformers achieve close values of array
gain (their difference does not exceed ~ 3 dB). In the second case (Fig. 13),
the modal patterns are essentially different. That is a reason of essential
difference between the gain performances, which is here ~ 10 dB.

Figure 14 shows one more illustration of the optimal LBF, namely, its
weight magnitudes for the largest 64—element array. The lowest numbers
of elements correspond here to the greatest depths, so the abscissa axis is
inverted with respect to Fig. 11a. These two pictures demonstrate clearly
that an effective array length for this case is N ~ 40, and arrangement
of the array elements in the upper (subsurface) part of the channel is not
effective in practice.

Figure 15 shows the 64—element array beampatterns as functions of the
steering angle 8 from Eq. (28), which are plotted for comparison of regular
and random-inhomogeneous channels (curves 1 and 2, respectively).
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spectra have been normalized to the area under their respective curves
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500 Hz, source depth is 100 m, depth of the 1-st hydrophone is 1.5 m, and
distance is 100 km
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The signal coherence loss is seen to lead to a considerable degradation of
the multibeam structure of the pattern, similarly to the winter conditions
in deep-water environments (see Fig. 12 in Ref. [7]). This beampattern
degradation leads, evidently, to very poor gain performance of PWBF.

Figure 16 shows the array gain G as a function of the array length N for
the same source depths and wind speed v = 10 m/s. Five beamformers are
examined for these conditions: optimal QBF and LBF, adaptive PWBF,
conventional PWBF (not plotted), and IMBF.

Because the array length is not sufficient to resolve the signal modes
with close numbers (see Fig. 9), IMBF (39) was reduced to the matched—
mode filter (MF). For the depth 29 = 100 m, when the signal and noise
modes are different, the most intensive signal mode (m = 7) is chosen to
be the reference mode in the MF scheme. On the contrary, the second case
(20 = 20 m) requires a more careful choice based on the analysis of the
modal SNRs (the maximum modal SNR is realized here for m = 79).

As is seen from Fig. 16a, the first three beamformers enhance conside-
rably the array gain due to modal noise cancellation (prewhitening), and
the noise-induced increase of the gain is about 15 — 20 dB. Beamformers
without a special procedure of modal noise prewhitening, PWBF and MF,
do not achieve such values of the gain (the PWBF gain is close to the MF
gain and does not exceed the level ~ 10 dB). An opposite situation can be
realized only if the modal spectra are much more separated from each other.
Consequently, a simple modal selection of the signal with the increase of ar-
ray length leads to a sufficient modal noise cancellation. A similar situation
was earlier demonstrated for the summer conditions in deep-water channels
(see Fig. 14 in Ref. [7]). Figure 16b shows that “overlapping” of the signal
and noise modal spectra leads to gain depression for all beamformers. In
this case, a conventional PWBF does not achieve any practical gain for all
array lengths (its gain does not exceed 2 — 3 dB), so the PWBF array is
ineffective (cf. Fig. 15 in Ref. [7]).

We emphasize that a decrease of the ambient noise intensity leads to a
proportional decrease of the noise-induced effect for the three first beam-
formers. Besides, it is worthy of notice that a sharp extension of the array
by twice increasing the interelement spacing d (for d = A = 3 m) leads to a
substantial enhancement of the MF gain up to ~ 25 dB.

Thus, we demonstrated here a great importance of the effects of both
the signal coherence and ambient modal noise on the vertical array gain.
The most critical factor is shown to be the intensive modal noise. A similar
conclusion was formulated in our previous papers on the vertical array gain
in deep-water environments [3, 7).
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4.3. Horizontal array beamformers

In this example, we focus our attention on a special case of the white (non-
modal) noise background to manifest the coherence-induced effects on array
beamforming. We have used a similar “selection” of the noise situations in
the horizontal array simulations for deep-water environments [1, 7).

The parameters of simulation are here as follows: the frequency
fo = 500 Hz, the distance £ = 100 km, the source depth zy = 100 m,
the array depth z = 145 m, and the source direction a = 0°,30°. The cross-
modal correlations of the signal wavefield almost vanish at such ranges and
frequencies. Consequently, the signal is a superposition of weakly correlated
plane waves with fluctuating angles of arrival. The cross-modal decorrela-
tion leads to longitudinal coherence loss that increases with the increase of
the angle of arrival and vanishes for the transverse propagation (for « = 0°).
On the contrary, the modal wavefront fluctuations lead to the transverse co-
herence loss which is maximum, namely, for the transverse arrival.

Figure 17 shows the normalized signal MCF for the two values of «. We
conclude from their comparison that the effect of the transverse coherence
loss under the conditions of fully developed wind seas is more considerable.
The coherence length L, ~ 5A ~ 20 m, or N. ~ 10. The level of residual
coherence decreases monotonically with the increase of the wind speed and,
eventually, drops to zero for v2 10 m/s.

The following pictures illustrate the coherence-induced effects on the
array beampattern and gain.

Figure 18 shows the effect of surface rough scattering on the beampattern
of the 256—element array. Coherence loss is seen to lead to a considerable
degradation of the beampattern in the field of its side lobes. Similarly to
deep—water environments, a pronounced feature here is a noticeable angular
displacement of the main lobes caused by multimode broadening of the sig-
nal angular spectrum (cf. Fig. 7 in Ref. [7]). Such displacements lead to an
extremely high sensitivity of large-array PWBF to multimode propagation,
and adaptive correction of PWBF is required to adjust the steering angle
to the angular response maximum.

Figure 19 shows the array gain as a function of the number of elements
for the two source directions and the wind speed v = 10 m/s. In the first
case (a = 0°), the coherence-induced gain loss is about —10 dB for all
beamformers and array lengths N 2 100. In the second case (o = 30°), a
considerable degradation of the PWBF gain (for 8 = a, see curve 4) is
caused primarily by the main lobe displacement emphasized above.
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Source frequency is 500 Hz, source depth is 100 m, array depth is 145 m,
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To interpret an oscillating behavior of the PWBF gain we note that
the first decrease of the gain (for the array length N ~ 30) corresponds
to the array beamwidth A8 ~ 0.1 ~ 5°, and the next one (for N ~ 150)
to Af ~ 0.02 ~ 1°. Comparing these estimations with the beampattern
showed above we conclude that the oscillations are caused by its multibeam
structure, which, in turn, is caused by the presence of several intensive
modes in the signal spectrum (see Fig. 9a.) The most steep decrease of
the gain (for N 2 150) corresponds to a critical situation, namely, when the
PWBF beamwidth is narrowed in comparison with the angular displace-
ment. In this situation the multimode signal is almost lost by a large-array
PWBF. As a result, the gain achieves the maximum value G ~ 10 dB for
N ~ 150 and shows a gradual decrease for larger array lengths. The proper
angular correction of PWBF leads to the significant increase of the gain up
to ~ 5 — 15 dB, and the corrected PWBF achieves a nearly optimal LBF
performance (see curves 2 and 3). On the other hand, this angular correc-
tion of PWBF does not entail any increase in computational complexity.
This point is of a great importance for the choice of a suboptimal approach
to horizontal large-array beamforming in underwater channels.
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One more beamforming technique, SABF (37), (38), is simulated also
for the largest 256—element array to illustrate this suboptimal approach.
For the case of a = 0° we obtain that the SABF gain depends on array
sectioning (subarrays length Ns,) but does not exceed the PWBF gain.
The SABF gain ranges from Gs, = 14 dB for N5, = 16, R = 16 to
Gsa = Gpw = 16 dB for N5, = 256, R = 1. The relatively weak depen-
dence Gs4(Ns,) is explained by the “tails” of residual coherence over full
array. Therefore, the SABF technique may be a suboptimal choice only
in the case of the coherence—degraded signal without a partially coherent
component.

Thus, the array gain in the case of spatially white noise background is
determined directly by the signal coherence degradation which is, in turn,
a function of the source and environmental parameters.

4.4. Ensemble—averaged pulse shape and energy loss of
temporal filtering

We begin with observing the effect of rough surface scattering on the wave-
field intensity as a function of time. The quantity of interest, I(t), can be
derived from Eq. (41) by letting ¢; =t; = ¢:

M 2
10=|37 — <mlrt>0a(a)| + Z Tt eiE). (68

Equation (58) describes the shape of an ensemble-averaged pulse.
As an example we consider the Gaussian shape for the input pulse at

z=0:
s(t) = exp [- (£2/27?)] .

Figure 20 shows the behavior of /I(t) for 500 Hz and T' = 50 ms in
the absence (a) and in the presence (b) of random surface scattering. The
wind speed was taken to be 10 m/s. (The theoretical curves in Fig. 20 were
calculated for the sound speed profile in Fig. 6 with the use of the MCF of
frequency and time separations indicated in Figs. 7c and 7d).

In the absence of scattering (Fig. 20a), each mode carries the Gaussian
pulse, which was launched at z = 0, independent of all the other modes.
Each mode suffers its characteristic bottom absorption and tra.vels at a
different group velocity.

If the pulses overlap, we receive a long pulse instead of a sequence of
individual short pulses. The signal is distorted by the group delay differences
of the modes. The total pulse width is proportional to the propagation
distance. ”
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The first arrival times belong to the lowest—order mode pulses having
the largest group velocities v,, and the last ones are observed for higher-
order mode pulses with relatively low v,. On the other hand, for a given
shallow-water environment, the modal attenuation resulting from sediment
absorption increases with the mode number. As a result, we can see on the
arrival pattern the largest peaks only for the initial time delays.

If the modes are coupled with each other due to scattering, the pulse per-
formance of the multimode waveguide is changed. Comparison of Fig. 20a
and Fig. 20b shows that multiple scattering leads to a decrease of the am-
plitudes of the resolved initial peaks and to a sharper drop of the intensity
at the end of the observation.

Consider now the energy loss of the temporal filtering caused by the time
and frequency decorrelation of the registered pulse. The results of numerical
calculations of the energy losses according to Eqs. (47), (54) as a function
of pulse duration T are presented in Fig. 21. The calculations were carried
out for fo =500 Hz, zo =100 m, and # =100 km. The wind speed was taken
to be 10 m/s.
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Fig. 21. The energy loss of temporal filtering versus pulse duration: 1 —
optimal quadratic processor, 2 — optimal linear processor, 3 — standard
matched filter

Figure 21 indicates that the coherence—induced gain loss increases mono-
tonically with pulse duration. When T exceeds the correlation time 7. (in
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the case considered 7. is of the order of 6 s), the corresponding curve tends to
a “saturation” plateau. The gain loss “gap” between the optimal quadratic
and standard matched filtering techniques is about 3 dB for the pulse length
of about 20 s.

5. Discussion and conclusions

In this section, we summarize the numerical predictions presented above
to conclude our study of the acoustic coherence effects on the array beam-
forming and temporal processing techniques in realistic shallow-water chan-
nels. .

5.1. Acoustic MCF

From an application point of view, the knowledge of the spatial-temporal
MCF of the registered acoustic field is of the uppermost importance to
optimize the signal processing techniques and, therefore, to decrease a
coherence-induced degradation of the processor performances.

In the framework of a modal approach, the total MCF can be expressed
as the weighted sum of the self-modal and cross—modal coherence functions.
Based on the wave-theoretical description we formulated second moment
equations for the quantities of interest in which an extra absorption term
modeling the bottom effects was included. The solution for the self-modal
functions was obtained by direct numerical integration of a coupled set of
the corresponding partial differential equations. For the cross-modes we
used an useful approximate analytical solution which is valid when the cha-
racteristic correlation length of surface irregularities is much less than the
typical mode cycle distance. Physically, the cross-modes describe interfe-
rence pattern of the acoustic field. Under the assumption made, this pattern
is fully determined by the coherent component of the propagation signal.
As a result, the cross-modal MCF's are exponentially decaying functions of
range. Therefore, with increasing range, the self-modal MCFs become in-
creasingly more important and exclusively these terms play a dominant role
in modeling the asymptotic behavior of the total acoustic MCF.

The application was illustrated by numerical computation of the ex-
pected acoustic coherence for typical shallow-water environments from the
Barents Sea under the assumption that the fully developed seas are the
dominant source of transmission fluctuations. Several conclusions may be
drawn from the presented analysis.

First, it was established that the spatial and temporal MCFs are sig-
nificantly affected by random rough surface scattering. As we increased
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surface roughness, the rate of coherence loss increased (for given range and
frequency).

However, of the most importance is the fact that the behavior of the
acoustic MCF in shallow water is fundamentally different from the corre-
sponding MCF behavior for the deep—water situation due to modal stripping
caused by considerably different modal attenuations. The major effect is the
increase of the coherence degree of the acoustic field.

5.2. Large—array beamforming

Similarly to deep—water environments, the following three key factors of
large—array beamforming were demonstrated distinctly in this paper. These
are, namely, (i) multimode spreading of the received signal angular spec-
trum,; (ii) signal coherence degradation; (iii) modal structure of the ambient
sea noise, which is a critical factor for the vertical array beamformers. An
inherent feature of shallow-water environments is, however, a very inhomo-
geneous behavior of the MCF of space, including the cross-element corre-
lations and wavefield intensity. This feature concerns both the.vertical and
horizontal MCFs and leads to essential dependence of the array gain on the
array arrangement in a channel.

A physical reason for such a complicated behavior is a relatively small
number of the modes propagating over long distances under the conditions of
modal stripping through the bottom interactions, and partial conservation
of the modal interference pattern. Therefore, the particular effects of the
factors pointed out on the array performance depend cardinally on many
parameters including the source ones (frequency region, depth, distance),
the environmental ones (type of the channel, or sound-speed profile, bottom
properties, speed of wind and other parameters characterizing the intensity
of the sound scattering), and, finally, the array parameters (total length
and elements arrangement). The numerical results presented permit us
to conclude that the problem of adequate predictions of the beamforming
performances in shallow—water channels is more difficult and requires a much
more detailed consideration taking into account all the parameters specified.

Several essential comments this study could be formulated, however, as
universal physical conclusions concerned with the vertical and horizontal
array beamformers.

Vertical arrays

A key factor of vertical array beamforming is the relationship between
the signal and noise modal spectra. While the sea noise spectrum is rather
stable and is determined by the environmental parameters of an underwa-
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ter channel, the signal spectrum is a function of the source location. This
dependence is most important for moderate distances, when the effect of
modal stripping is not so essential as to lead to a considerable deformation
of the modal intensities. Therefore, for a given set of parameters (frequency,
distance, array a.rrangement), some source positions are “masked” by over-
lapping of the signal and noise modal spectra.

In the case of separated spectra, of the most importance is the proce-
dure of modal noise prewhitening (achieved by the noise covariance matrix
inversion), which leads to a great enhancement of the output SNR and gain
above the level of G = N. All the noise-suppressing beamformers simulated
here (optimal QBF and LBF, adaptive PWBF) demonstrate this possibility
distinctly. On the contrary, the beamformers without purposeful noise can-
cellation (PWBF, MF) show a rather poor performance if the array length
is not sufficient for spatial selection of the “pure” signal modes. For any
modal spectra, short arrays arranged in the subsurface part of the shallow-
water channel are not so effective because the depth functions, mainly, of
high—order and quickly attenuating modes are located under the surface.

The modal noise suppression by adaptive PWBF allows us to consider
the PWBF techniques as a good choice for effective large-array processing.

Horizontal arrays

Of primary importance for large horizontal arrays is the modal spectrum
broadening which is “projected” on the array in the case of non-zero angle
of arrival. If the signal modal spectrum contains several groups of intensive
modes (as in our 31mula.tlons) the array angular response is also split in
the ‘field of the main lobe. This feature leads to noticeable oscillations
of the PWBF gain as a function of the array length, or, actually, of the
beamwidth. (An oscillating behavior of the PWBF gain is typical also
for vertical arrays due to the existence of several comparable peaks in the
beampattern.) This means that the PWBF gain can essentially vary as a
function of the source direction. The adaptive correction of the steering
angle can lead to a significant gain enhancement, which is rather essential
for the array lengths L ~ 50).

An obvious advantage of this approach over suboptimal beamforming
is its comparative simplicity because the array performance can be easily
maintained by re-forming of the beampattern. Such a useful possibility is
firmly restricted, however, by the case of residual signal coherence over the
full array length. Comparing the PWBF techniques with the optimal ones
for both the shallow-water and deep—water simulations we conclude that
the residual coherence is the cause of a relatively small additional gain of
the optimal QBF over all LBFs, PWBF included.
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5.3. Temporal filters

The general theory of random signal detection was also applied to shallow
water acoustics for the construction of temporal processors, optimal one
included. The key role in the temporal performance analysis belongs to the
MCF of time and frequency. We employed the wave-theoretical expression
for the MCF of interest for the study of the combined effects of random sur-
face scattering and bottom interactions on the shape of ensemble-averaged
pulse and on the temporal filtering performance.

The most striking feature in the behavior of the EAP shape is the fact

_that the largest peaks on the arrival pattern are observed only for the ini-
tial time delays. Physically it is rather clear, if we take into account that
the first arrival times belong to the lowest—order mode pulses having the
largest group velocities vy, and the last ones belong to higher—order mode
pulses with relatively low v,. On the other hand, for a typical shallow—
water environment, the modal attenuation resulting from sediment absorp-
tion increases with the mode number. As a result, the main contribution to
the total wavefield intensity versus time is made by the weakly attenuated
lowest—order mode pulses. Multiple rough surface scattering leads to a de-
crease of the amplitudes of the resolved initial peaks and to a sharper drop
of the intensity at the end of the observation.

The presence of rough surface scattering results in the energy loss of the
temporal filtering due to time and frequency decorrelations of the registered
pulse. It has been established that the corresponding coherence-induced
gain loss increases monotonically with pulse duration 7. When T exceeds
the characteristic signal correlation time the observed gain loss tends to a
“saturation” plateau. For given shallow water environments, the level of this
plateau depends essentially on the technique used: the minimal level corre-
sponds to optimal quadratic processor and the maximal one corresponds to
a conventional matched filter. Thus, for typical conditions from the Barents
Sea, the temporal SNR degradation at fo = 500 Hz and T" = 20 s is rather
substantial (of order 6 dB), even for the optimal quadratic filter.

5.4. Summary

In this paper, the effects of shallow-water sound were examined for various
types of array beamformers and temporal filters. Our approach was to in-
corporate the realistic calculations of the MCF of space, time and frequency
for comparative analysis of the linear and quadratic signal processors, spa-
tial and temporal ones included. It was shown distinctly that both the
signal coherence and sea noise mutually affect the processor performance.
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The Investigation of Acoustic Fluctuations
in a Lake Environment

A. V. Lebedev, B. M. Salin

INTRODUCTION

Fluctuations of the sound propagating in a sea environment were studied
extensively (see [1, 2] and the references therein). Such fluctuations are
caused by rough surface scattering and perturbations in a waveguide due
to internal waves, turbulence, and other factors. This paper is concerned
with experimental data obtained in a lake environment. The measurements
were carried out in 1997-1998 in the Sankhar lake. The Sankhar lake is a
carst lake with a mean depth of 15 meters that has the size of 1.5 km (1) in
“length” and 500 m in “width” (see the scheme in Fig. 1). As the lake is
deep, the temperature in summer conditions varies from 20 < 24°C at the
surface to 4°C at the bottom. The main variations occur within the depth
of 4 + 7 meters. The main goal of the measurements was investigation of
acoustic fluctuations and hydrophysical characteristics in such an interesting
environment.

SPATIO-TEMPORAL CHARACTERISTICS
OF ACOUSTIC SIGNALS

Acoustic signals were recorded by horizontal and vertical arrays (Fig. 1).
The arrays consisted of 64 hydrophones spaced 19 cm apart. Hydrophysi-
cal characteristics were recorded by a surface displacement sensor mounted
at the bottom near the pontoon, a temperature sensor, and a wind force
sensor (see Fig. 1).

Figure 2 shows spatio-temporal characteristics of the acoustic signal re-
ceived by hydrophones of the horizontal array at the carrier frequencies

!Including the bay of 500 + 600 m long.
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F =979.761 Hz and F = 1480.408 Hz. The spectra deplcted in Fig. 2 were
obtained after the following data processing;:

Naug

AAF) = V{a(AF)P) = J Tv‘l—g Z la(AF)2, 1=1,2,3, (1)

where Ngyg is the number of averaging and a;(AF) are defined as follows:

N
w(8F) = J 5 (AR @)

k=1

Here, N is the amount of hydrophones in the array (N = 64); k is the
hydrophone number; px(AF) is defined as:

pk(AF) = Z pi(tj) exp(i2rAFt;), (3)

Jji=1

where Mt; is the time during which each time series is analysed : t; = j/Fj,
F; is the sampling frequency (F; = 10.767 Hz), —F; /2 < AF < +F;/2; and
Pk (t;) the complex output of a hydrophone after heterodyne and low-pass
filters. The carrier frequency F,, coincides with the heterodyne frequency.

The data presented in Fig. 2b correspond to the array output for source-
receiver direction:

M
Z X(Ck (t;)) exp(i2mAFt;). (4)
Here, (i is defined as
Glt) = NZpk(tJ)exp( —i2nFn Az k/Co), (5)
k=1

where Az is the distance between the hydrophones in the array and Cj is
the sound velocity.

The procedure (5) allows us to select fluctuations along the line linking
the source and the array center if there are no additional reflections which
are a hindrance. As only one source was used, we can also employ the

following procedure to determine fluctuations along the source-receiver line
(Fig. 2c):

M
a3(AF) = % 3 &ulty) exp(i2nAFt), (6)
=1



"E" - emitter
"T" - temperature sensor

"8" - surface displacement sensor
"W" - wind force sensor

"HA" - horizontal array

"VA" - vertical array

“P" - pontoon

Fig. 1. Scheme of measurements in the Sankhar lake. The distance between the
emitter and the arrays was about 500 m.

where N .

Gulty) = %g% ™)
with NavgM

o0 = 537 3 i) ®)

Nayg is the number of averaging; T = NgygM/F; is the entire time of
analysis, in our case 7' = 10™40°.
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Fig. 2. Spectra of the measured acoustic signal: (a) non-coherent averaging over
elements of the horizontal array; (b) focusing to the source (5); (c) focusing to the
source (7). The frequency resolution is 42.057 mHz.
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Fig. 8. Spectral distributions of surface displacements.
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Looking at the spectra presented in Figs. 2, we can make the following
conclusions:

1. There are “modulations” within AF = +1.2 Hz (Fig. 2a and Fig. 2¢).
As the corresponding levels for Fig. 2c are ~ 10 dB less than for
Fig. 2a, we can conclude that the “modulations” are not caused by
the source-receiver direction.

2. Two frequency bands can be distinguished: (i) |AF| < 0.05 Hz and
(i) JAF| > 0.05 Hz. The first of them makes the main contribution
to fluctuations and is associated with the line from the source to the
array center (Fig. 2¢).

3. The amplitude-phase distribution over the array is complex and, ap-
parently, corresponds to additional reflections in the horizontal plane
(appearance of imaginary sources) (Fig. 2b and Fig. 2c).

The spectral dependence of lake surface oscillations for the wind force
of 2 m/s under which acoustic measurements were made is shown in Fig. 3.
Solid lines correspond to the Pierson-Moskowitz power-law spectrum [3]:

S(Q) = /P(Q), 9)
4
P(Q) = CG*Q7% exp (—g (%) ) , (10)

where C = 0.0081, Q = 2rAF, V is the wind force in meters per second,
and G = 9.8 m/s? is the acceleration of gravity.

Comparing the spectra presented in Fig. 2 and in Fig. 3 we can conclude
that the “modulations” within AF = +1.2 Hz are caused by oscillations of
the lake surface with characteristic wavelength A ~ 1 m (A = 2rG/Q? with
Q = 2n|AF}). Comparison of experimental data with Pierson-Moskowitz
dependence shows that there is a qualitative difference between sea and lake
environments. The energy of wind waves in lake environment is less than
that predicted by theory for fully developed wind waves and the spectral
maximum is high-frequency shifted. Such peculiarities of developed wind
waves is well-known [4]. The wavelength of wind waves which correspond
to spectral maximum in Fig. 3 in the lake is 6 times shorter than in the sea:
Aezp ~ 1 m, Apeor =~ 6 m. Futhermore in the lake there exist oscillations
with frequencies sufficiently less that (.25 Hz A ~ 50 m. Such waves in the
sea are absent. Thus, the first main difference between the sea and the lake
environments is in wind waves spectra.
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Using the data presented in Fig. 3, mean-square root displacements of
the lake surface can be estimated: /(£2) < 0.007 m. The Rayleigh param-
eter {2] is:

5T
=47rF (& )smx‘ (1)
Co

where x is the sliding angle. For the carrier frequency F' = 1480.408 Hz this
parameter is equal to 0.1sin x, that is less than unity for all x. As the space
scale of wind waves A = 1 m is comparable with the acoustic wavelength
A = 1 m, resonant scattering by surface perturbations is possible. This
scattering is of the Bragg type:

R

k, =k; + &, (12)

where k, and k; are the wave vectors of scattered and incident waves, cor-
respondingly and « is the wave vector of surface perturbations.
Consider the scheme of scattering shown in Fig. 4.
K

Fig. 4. Scheme of resonant scattering by the surface (ks = k; + k). ”S” is the
source of radiation, O” is the array center.

Equation (12) can be rewitten in the form

_ kf - lﬁ:,~2 —y

cos(f; + 0y) = BT (13)
k2 — k? + &2

cos((9, - 0.,,) = -—W— (14)

Assume that as for a sea condition resonant scattering is due to small
sliding angles [2]: x., xi < 1. In this case k; ~ k; ~ ko. Then, equations
(13) and (14) are rewritten as

A

cos(f; + 0y) = TN

(13)



A
'2_A.
Resonant scattering occurs if A > A/2, that is valid for carrier frequency
1480.408 Hz. The spatio-temporal spectrum of acoustic signal for this fre-
quency in the horizontal array is shown in Fig. 5. The region marked as
“0)” depicts souce position. The regions labeled by “a — 4” correspond to
resonant scattering: (a) 8, = 112°, 8, = 55° and 6; = 10°; (B) 0, = 112°,
0, = —10° and 6; = -55°; () 6, = —63°, 0, = —5° and 6; = —60°. The
spatio-temporal spectrum in Fig. 5 is averaged over 24 samples. As reso-
nant scattering is clearly distinguished in Fig. 5, it may be due to a regular
structure of 1 Hz surface perturbations only.

cos(f; — 0y) = + (14')

1

AF (Hz)

08 08 04 02 00 02 04 06 08

sin(0)
Fig. 5. Spatio-temporal spectrum of measured acoustic signal. The regions labeled
correspond to resonant scatlering. Source position is 8o = +5°.

We now estimate the area of the region "A” (Fig. 4), that meets the
resonant scattering condition (12). If the region ” A” scatters sound waves
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coherently, then the sizes of this region are equal to the sizes of the corre-
sponding Fresnel zones:

Ly = 2/[54], ‘ (15)
Ly = 2/A[AO|. - (16)

For the carrier frequency F' = 1480.408 Hz, the sound wavelength is A ~ 1 m.
Using the values of angles 6; and 6, for region “a” (Fig. 5) we immediately
obtain: L; = 19.5 m and Ly = 42.4 m (The distance between the emitter
and the array was about 500 m — Fig. 1), and the area of the region ”A” is

Sscat N 830 mz- (17)

Assuming cylindrical divergence and R <« 1 (small perturbations) we can
write down relative intensity of the scattered field.
I, _ 167%SO|

2\ 6
= ——— 1
I’. gHAg (C )Sln X*) ( 8)
where x, = arccos(co/cs) is the critical angle [2], ¢ is the sound speed
in the bottom. For a sand ¢, ~ 1800 m/s and x, ~ 34°. Using data
presented in Fig. 6 one can determine that 90% of total power is localized
within |x| < 35°, that is in a very good agreement with the value expected:

x| < Xxx-

0 —
F=1480.408 Hz
-10 -
@
z
3 -
g
20 —
:
60 30 () 30 60

% (degrees)

Fig. 6. Spatio-temporal spectrum on vertical array.

Simple estimations give the following level: Z, /Z; = —22 dB. Integration
of measured values (Fig. 2a) over frequencies AF = 0.5+2 Hz gives Z,/Z; =
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—25 dB. This value is closed to estimated one. Thus, we can conclude that
the 1 Hz modulations of the acoustic signal observed in experiment were
really due to coherent scattering of Bregg type.

CONCLUSION

After analysis made in this paper we can conclude that:

1. Wind waves in a lake environment differ from those in a sea environ-
ment mainly by spectral characteristics.

2. Surface perturbations in a lake environment are regular and resonant
scattering of sound by surface is clearly seen. Due to it the direction
of wind waves can be determined using acoustic measurements.
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PARAMETER ESTIMATION FOR UPPER LAYERS
OF MULTI-LAYERED BOTTOM
IN SHALLOW SEA

V. P. Antonov, V. V. Borodin, G. N. Kuznetsov,
A. A. Kuz'menko, V. P. Tebyakin

This paper contributes to reconstruction of the bottom structure in a shallow
sea, that is, to estimation of a number of layers, their thicknesses, and acoustic
parameters: sound speed, density, and attenuation. This problem has practical-
purpose applications in searching for mineral resources at a shelf, in laying
pipelines, in mounting drilling platforms. The two latter applications require the
bottom to be reconstructed up to small depths — tens or hundreds of meters, the
strength parameters of the bottom, which are determined by the density and
compressibility, being of primary interest in this case. Experiments show that an
ordinary echo-sounder, with a carrier frequency of about 12 kHz, can “see” such
shallow depths: even in deep ocean, it may yield a number of layers and their
thickneses (in ms) up to a depth of 150 m. However, one cannot determine the
acoustic parameters of the layers with the echo-sounder. On the other hand, there
are many theoretical and experimental works [1-3] on reconstruction of the
physical bottom model at low frequencies. By using low frequencies, one can
reconstruct the bottom for larger depths — up to several kilometers, low-
frequency sensing however requiring high-cost and bulky sound sources and
receivers to be used. In addition, the low-frequency resolution is insufficient to
estimate parameters of thin upper layers.

Here we consider the problem of bottom reconstruction up to small depths
where rather high frequencies are optimal, the acoustic equipment being less
expensive and bulk in this case but, in contrast to ordinary echo-sounding,
yielding quantitatively all acoustic parameters of the sea floor.

Consider a mathematical statement of the problem. For the shallow sea, we
specify a model that includes a water layer with the known sound speed profile
c(z), a system of N water-like layers with unknown sound speeds c(z) and
densities 7, , i=1,...,N , and an underlying elastic half-space with unknown
velocities of longitudinal ¢, and transverse ¢, waves and-density 7 . To be
specific, we stippose that there are linear-depthr dependencies-of the-sound-speeds
c(z) within the water-like layers. For sensing the medium, a ship-towed sound-
transmitting system is supposed to be used that emits complex signals of some
periodicity and period-to-pulse duration ratio. The signals are received by an
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antenna array of pressure sensors, the array being fixed or ship-towed. Figure
one shows the sketch of the experiment.
5 l:-l

— yid
{

Oy
|

____________

Fig. 1. Sketch of experiment no.1.

Thus, for each act of sounding, the model of measurements may be
formulated as

[
PG, =Py (¥, + [G(x,, 3.t -T)5()dT ,1€(0,7), s=L...,Ng.

-0
With this model, by supposing that the receiving aperture is in Fresnél or
Fraunhofer zone for the p-th ray congruency, the Green function may be
specified in the ray approximation, and the solving statistics may be written in
the form:

2
A,l<xa,xo)z K55, 5,00 %04 p(xa,xo)+@“ 9,1 (auds,ds))|
sl )

Z 44 265052 -0 )

py=l sy=l

Tl %) =— "

Here q(x,,0)= ). p(x,,0,)e" " 5°(®,) is the cross-correlation
®,>0
function between the signal of the s-th receiver and the sounding one,
n ] . . .
0, =222, r@)= > |s(o ,,)l2 e'“’ is the auto-correlation function of the
r ©,>0
sounding signal, K;,' is the inverted matrix of the cross-spectral densities for the
noise, M is the number of rays joining the points of transmission x, and reception
x,, 4, is the amplitudes of signals, ¢, - the ray arrival times, x , are the coordinates
of the array phase center, d;=x-x_, €,(x,,%,) is the unity vector that is tangent
to the p-th ray at the array phase center, but #,, (x,,x,) is the curvature matrix
for the p-th ray congruency at the array phase center.
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The apparatus that implements expression (1) must include the Fresnel-
compensation device and a unit that executes correlation with the sounding
signal.

In seismometry, phase relations between different receivers are often
neglected, and only arrival times are used. In this case, the solving statistics takes
the form:

(e,,,ds)

g+

2
+i<aepds,ds)]

= Knen) thfv( S evds)+ (@, -m)d, d;))

wv=l

Tol=3—

0]

The algorithm that solves the inverse problem of bottom structure
reconstruction consists in maximizing expressions (1) and (2) by choosing the
bottom model. Upon specifying the number of layers and their acoustic
parameters, one calculates ray parameters of the Green function: M, 4, ¢, e, and
2, and substitutes them to expressions (1) and (2) to obtain the solving statistics.
By exhausting the bottom parameters in accordance with a specified iteration
scheme, one maximizes expressions (1) and (2), thereby finding the bottom
structure parameters. Obtaining the global unbiased extremum from (1) and (2)
is significantly simplified if a priori information on probable model parameters
is known. For instance, it is advantageous to know a number of layers within the
near-surface sediment domain, along with their inclinations.

In practice, the number of bottom layers may be determined with an echo-
sounder if a ship-towed receiving array is used. If a fixed receiving array is used,
the number of layers is to be determined by vertical sounding when the
transmitting vessel passes over the array. In this case, the depth of sensing is the
maximum one, most intense reflections from all layers being obtained. Thereby,
the number of layers can be determined from the number of correlation peaks.

A wave-field computer code is required to determine the acoustic
parameters of bottom layers. Such code, RAY225, has been dgveloped by V.P.
Tebyakin. Figures 2 and 3 show the propagation times and arrival angles versus
distance between the source and receiver. The receiver is bottom-moored, the
source was towed at a depth of 30 m, the distance ranging from 0 to 1 km. The
density of gray color indicates the intensity of ray congruencies. Figure 2 shows
the ¢-R and o-R diagrams computed for a frequency of 100 Hz (1 kHz in Fig. 3).
Left fractions of the figures exhibit the R and o-R dependencies for “purely” water
rays, the right ones corresponding to rays reflected from the bottom layers. Figure 2
indicates a “rich” structure of the bottom-reflected rays: even twice reflected
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ray congruencies can be noticed because of low sound absorption in bottom
layers at 100 Hz. At a frequency of 1 kHz (Fig. 3), the structure of bottom
reflections is much “poorer”: absorption in the layers is significantly higher. In
addition, the figures show that the R and o-R diagrams are different for the
water-path and bottom-reflected rays, and correlation peaks which correspond to
the bottom-reflected congruencies may be distinguished from those which
correspond to the water-path ones if complex sounding signals and receiving
arrays of large wave size are used.
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Fig. 2. t-R and a-R diagrams for watér-path and bottom-reflected rays, 100 Hz,
0-1000 m.
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To estimate an accuracy of determining the acoustic parameters for the
bottom model, we use the Fisher information matrix which characterizes the
potential accuracy in parameter estimating. The Fisher matrix has the form

- 9G@,) 9GE,) 2
It,f"mnz>0 KI—VI(O)O) a a, l-‘("’n‘ . 3
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Here 0G/0é; are the partial derivative of the Green function with respect
to the parameter vector which consists of the following components:

é= %,cl,pl,fil,hl,oz,pz,ﬁz,...,hN,cN,pN,8N,c,,c,,pe,,8,,8,}. A computer code

has been developed to calculate the Fisher information matrix in view of data
acquisition over passage of the ship-towed array. As an interference, sea ambient
noise was used at Beauport 3 sea state. The power of transmitted signal was
specified to be 50 W. The central frequencies of sounding were 0.1, 0.5, 0.75,
1.0, and 1.5 kHz. The calculations were performed for sea depth of 100 m. The
sound speed profile in water is shown in Fig. 4 (on the left).
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Fig. 4. Sound speed dependence on depth.

The bottom model included three layers. The layer thicknesses were 1.5,
1.5, and 150 m respectively. The sound speed profile is also shown in Fig. 4 for
the water-like bottom layers. The following densities and attenuation decrements

were specified: p;=1.3 g/m’, §;=0.002, p,=1.9 g/m’, §,=0.004, p;=2.7
g/m’, 03=0.008. The parameters of the elastic half-space were chosen to be

¢;=5.5km/c, ¢,= 1.8 km/c, p,;=3.2, §;=0.01, §,=0.01.

Figure 5 shows rms errors of the estimated sound speeds and layer
thicknesses for the mentiéned three-layer bottom model, these values being
plotted versus length of the transmitter passage, for different central ﬁ'equencles
of sounding.

For the two upper layers, higher errors were obtained at the sounding
frequency 0.1 kHz. This fact is a consequence of a high level of the ambient sea
noise at low frequencies, the frequency band of sounding being rather narrow
(about 50 Hz), and the accuracy of estimating the ray arrival times being low. As
the frequency increases, the accuracy of estimating the parameters of the first
layer also increases, and the optimal frequency is close to 2 kHz. The optimal
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frequencies are 1 and 0.75 kHz for the second and third layers respectively.
These frequencies are governed by both decreasing the sound attenuation in the
bottom and increasing the noise at low frequencies.

As the figures show, the passage length must be higher than 0.5 km to attain
errors less than 1%. The error sharply falls off at 0.4 - 0.5-km spacing for all
frequencies. This effect is governed by the second, surface-bottom-reflected ray
that exhibits itself at this distance in addition to the “pure” bottom reflection.
The second ray allows one to survey the multi-layered medium at different

aspects from a single point, this effect leading to sharp drop in the estimating
erTor. :
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Fig. 5. Errors of measuring c and 4 as functions of the frequency and a number
’ of observations.

To solve the bottom reconstruction problem, V.P. Antonov has developed a
computer code that maximizes the solving statistics (1) and (2) with the use of
the Nelder-Mid algorithm. The computations are illustrated in Fig. 6 where the
convergence rate of the iteration process is shown. According to the plots, 20 -
25 iterations are sufficient for the estimated model-bottom parameters to
converge to the actual parameter values of the layers.

75



Clos1500 C1em1650 Clomid®2 Hiom1 5 Hisx165 Hiew1495 C20%1700 C29=1G70 C2e=1701 H20=15 H29=165 H2e=1492 (302700 C39=2970 C30=2686 H3o=150 HIs=165 Hiew1497

c.mis L C.mis Hm Cms Hm
M - 4 260 .
e 162 200llt e
1540} - 1 o I 180)
2050) |
50l
YW a0 =
) - P 1730| 15
W’N A 154 280 .
1480} | - 1700 -t A/ 152] N 2700] M [y 10| Waf
5 | Wise 1y
soff- 1 > v 185} -~ 43 ----- N Jo— 14|
: 1630 s M |
; vy 200
18 . 146
0 2 %N 0 D BN I ] EEL CEREL CIEE X
Laver 1 Laver2 Layer3

Fig. 6. Parameters ¢ and 4 of the bottom model versus the number of iterations.

To increase the rate of the iteration algorithm, it is important to choose the
starting approximation to the parameter vector, which is close to the actual
vector value. To do so, the inverse problem may be solved for two successive
positions of the transmitter relative to the receiving system. In the first position,
normal incidence and reflection from the bottom layers must be implemented;
the second position should be at the Fresnel zone relative to the first one. In this
case, an analytic solution exists for the system of equations for sound speeds and
thicknesses of the layers. This solution may serve as a starting approximation for
a general iteration method to solve the inverse problem for large antenna arrays
and long paths of towing, and higher convergence rate may be attained.

The developed algorithm of estimating model parameters for a shallow-sea
multi-layered bottom may serve as a basis for a technique to estimate and test
errors of experimental parameter reconstruction. The algorithm includes
procedures of both preliminary signal processing and optimizing the solution of
the inverse problem. By simulating the reconstruction procedure for various
propagation conditions, required specifications of the sound source and receiver
systems may be chosen.
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ACOUSTIC METHODS FOR DETERMINING BUBBLE
CONCENTRATIONS IN SUBSURFACE LAYERS

S.N.Gurbatov, B.Kerman, N.V.Pronchatov-Rubtsov, O.V.Lebedev

1. THEORY OF SOUND ATTENUATION IN SUBSURFACE
BUBBLE LAYERS

1.1 BASICS OF DETERMINING BUBBLE CONCENTRATIONS
IN PLANE LAYERED WAVEGUVIDES

Air bubbles in water significantly affect the sound propagation. It
can be explained that in a wide frequency band the scattering and
absorption are of resonant nature. Thus, at the resonant frequency
scattering cross section of an air bubble could be more than 1000
times larger than its geometrical cross section. If the bubble concen-
tration is rather high water compressibility changes considerably and
sound velocity changes respectively. Moreover, among the all possible
sound scatterers bubbles have the most clearly expressed nonlinear
properties. All these facts allows to consider acoustic methods as the
most adequate ones for the distant diagnostics of air bubbles.

A bubble as a resonance system can be described by its quality
factor Q and natural ( resonance ) frequency f,, which in adiabatic
approximation [1,2] is given by expression

1 3vpo.
fO - 27ra p [} (1)
where a is a bubble radius, v = ¢,/c, - index of adiabat ( in the air
¥ = 1.4 ), po - pressure in a bubble in the absence of sound wave, p
- water density. The resonant frequency fo of the air bubble located
at the depth z can be estimated as

fo=327/av1+ 0.1z,

where f, is in Hz, depth z - in metres, bubble radius a - in centimetres.

If bubbles are of different sizes, thejr size distribution can be de-
scribed by function n(a). Then n(g)da is the number of bubbles with
sizes from a to a + da in a unit volume ( m3 ).

For the coherent component of an acbustic field the water with
air bubbles often can be treated as a comtinuous medium with the
effective sound speed c.;; and with the greater absorption, which is
described by the absorption coefficient in a bubble media a(w). As
a rule, the density of the water with suspended air is only slightly
different from the density of the water free of bubbles.
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Analysis of these expressions for the variation of sound speed Ac
shows that if we may neglect the variability of the distribution func-
tion n(a) at the width of the resonant curve, then Ac= 0. So in this
case the absorption is determined only by the concentration of res-
onant bubbles of the correspondent frequency and does not depend
on their quality factor. The numerical expression for the absorption
coefficient o 1/cm ) is

a = a(w) = 725n(a,)a? , (2)
where a, is the radius of resonant bubbles ( cm ) ( their resonant
frequency is w = 2xf ) and n(a,) is expressed in 1/cm?.

As it follows from the previous results , the attenuation of a signal
of rather high frequency f mainly depends on the concentration of
resonant bubbles. If a plane wave propagates in the medium with
homogeneously distributed bubbles, its amplitude decreases as

ar

P=poe .
Thus, measuring the transmission loss (T'L,) on the path of range

TL, = ZOIogm% = IOIogIT0 = ar20log,ye = 8.64ar (3)

we can find out the attenuation coefficient a = T'L,/8.64r, and then -
the concentration of resonant bubbles ( see 2 ).

However, the problem becomes more complicated in natural waveg-
uides. It is concerned with the finity of a bubble layer. Here the sound
field has a very complex structure so the simple dependence of T'L,
on attenuation coefficient a(w) fails. Because of it the diagnostics of
subsurface bubble layer requires the more detailed analysis.

In this chapter we will try to show clearly the physical base of
sound field attenuation in a waveguide with subsurface bubble layer
and will discuss both the principal feasibility of determining the bub-
bles concentration and the difficulties which appear when solving the
problem.

To calculate the acoustic fields of high frequency one can use the
ray approach [ 3,4 ]. For the case of a layered waveguide, when the
sound speed ¢ depends only on depth z (¢ = ¢(z)), trajectories of gays
might be calculated from Snell’s law:

cosx(z)/c(z) = const ,

where x(z) - grazing angle at a horizon z. In the framework of ray
approximation the energy flows within the ray tube.
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In a general case, there are some rays which might come into the
point of receiver. Because of it one has to sum their amplitudes and
phases to calculate the field. Due to that at the long distances the
field structure becomes very complex and unsteady ( small changes
of sound speed profile could strongly influence on the rays phases ).
Thus, it is more expediently to use the averaged description.

For a plane layered waveguide the ray trajectory z = z(r) has a
range periodicity called ray cycle. The cycle length D(x,) depends
also on the source depth and departure angle of the ray x;.

At long distances, where » >> D to obtain the averaged on the
cycle length intensity of the field the contribution of a ray bundle dy;
is to be weighted by the probability that it irradiates a receiver at
depth z in the course of complete cycle near range r.

In [4] there was obtained the expression for average sound field
intensity:

:_ 4 [ E(xa,r)cosxs
=7 o Dlx)sinx(x1) " ®)
where x = x(x1) is the inclination ( grazing angle ) of ray at the
receiver horizon and E = E(x;,r) - attenuation factor introduced to
account for dissipation and reflection losses.

Within one cycle a ray once touches the bottom, being attenuated
in |V(x»)|? times in it. Here xj - is the ray inclination at the bottom
and V(x») is the reflection coefficient of the bottom.

If we consider attenuation coefficient a(z) to be depending on
depth, then the factor concerned with dissipation within one cycle
is

lo
B = cep(-2 [ a(a()al), (%)

where o is the length of a ray trajectory.
For the path of length r the number of cycles N = r/D(x1) and,
thus, the attenuation factor in (4) might be written as

E(x1) = |V2E,|"/P0) (6)

Expressions (4) - (6) allow to obtain the range dependence of
averaged sound transmission loss in a range - independent waveguide.
The generalization for a range- dependent ducts is given in [ 5 | and
is used in this work for calculation of sound field intensity.

Let’s consider some particular cases of sound propagation in the
isovelocity waveguide. In a homogeneous water layer with ¢ = ¢; =
cn = const the cycle length is:
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D =2H/tg(x1) , (7)

where H is a thickness of water layer - the depth of a waveguide. If
a =0 and |V| = 1, then from (4) we have

- 2 [*/2 ™ :

This formula shows the well known cylindrical law of field decrease.
Returning to a general case we can rewrite the expression for average
intensity in the following form :

x/2
I= %[) A(x1)dx1 9)
_ 2HE(x1,r)cosxa
A0) = D simaa) (1)

Here factor A is a factor which accounts both the effects of attenuation
and the effects, concerned with variability of sound speed, i.e. with
stratification. It might be seen, that for the isovelocity homogeneous
waveguide with @ = 0 and |V| =1 factor 4 = 1.

Expressions (4), (9) describe an average intensity of acoustic wave
in a volume near the point of receiving which is positioned at a dis-
tance r from the transmitter at the depth z. In real conditions the
averaging over the volume is substituted by the averaging over the
time of narrow-band noise signal. The spectrum width of such a
signal is chosen to provide the averaging of interference structure.

Let the bubble concentration n(a) and, consequently, the absorp-
tion coefficient depends only on depth. Then, as it can be easily seen
from (2),the integral

H
m:/ o(z)dz , (11)
°

is proportional to the amount of resonant bubbles in a water volume
below the square unit of the surface

4 H
M= swa?’/ n{a, z)dz , (12)
o

Integral f;° M(a)da is in this case is the gas volume in that water
volume.



Below we will be using m as it is expressed in (11). It is equal to
the integral decrement of absorption of the ray propagating vertically
through the depth of waterbody.

As it can be seen, the problem of determination of volume void
fraction leads to the problem of evaluation of integral m (11) using
the measured average intensity I (9). This quantity is determined in
a very complicated way by the depth distribution of the absorption
coefficient. In general, the problem is mathematically incorrect and
there is no solution for an arbitrary a(z).

We will consider the cases when the reconstruction of integral void
fraction which is proportional to the integral decrement of absorption
can be carried out in principle.

Practically, we have no precise information on hydrology ( the

"depth dependence of sound velocity, bottom properties). That is
why the possibility of solving the inverse problem of reconstruction
of integral absorption using the loss function in the absence of infor-
mation on the hydrology of waterbody will be considered.

In the second part the homogeneous bubble distribution in a layer
of constant depth h will be considered. - In Chapter 2 we presume
that all parameters of bubble layer are explicitly determined by the
wind velocity. This parameterization of bubble distribution leads the
integral problem to the determination of functional dependence of
average intensity on a single parameter ( absorption coefficient in
first case, wind speed - in another ). ]

Thus, in a first case there is a functional dependence I = I(«) and
by solving this equation with respect to a = a(I) we can practically
determine measuring I. .

It is more convenient, though, to consider the relative signal at-
tenuation induced by subsurface bubble layer

TN — I(a)

ATL(a) = —10log10 Taz0)’ (13)
where I(a = 0) - the average field intensity in the absence of bubbles
which can be measured in calm.

1.2 INFLUENCE OF INDEFINITY OF WAVEGUIDE ACOUSTIC
PARAMETERS ON THE ACCURACY OF MEASUREMENTS
OF BUBBLE INDUCED ATTENUATION

Now let’s consider the homogeneous bubble layer of thickness h
and constant absorption coefficient o near the surface. We will be
considering the dependence of losses on the absorption coefficient for
different hydrologies supposing the thickness of bubble layer being
the same.
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First we consider the isovelocity water layer settled down on a
liquid bottom without absorption (c, > c‘:}, then one can introduce
the critical angle x., which might be calculated from Snell’s law:

2A \
cosx*zz—:,x*zv—c—bf. (14)

Here c; - is the sound speed in the bottom and Ac = ¢, —c;. If the angle
of ray inclination at the bottom x5 = x1 < x«, then |V| = 1, otherwise
V becomes less. Taking into account the fact that for /D > 1 the
number of ray reflections is great, obviously, the rays which leave the
source at the angles x; > x. are being attenuated almost completely
g’see 6 ). It allows to change the upper limit of integration in (9)

om 7/2 to x. ( if, for instance, ¢, = 1580m/s and c¢; = 1420m/s, then
X« = 0.47 ).

From Fig.1 it is seen that within one cycle attenuation factor is

By = e L gl 0s)

where S. = 2h/siny; - the length of the ray cycle part within the bub-
ble layer. Then (10) might be rewritten as follows (for the isovelocity
waveguide):

A=ezp [—-

2ahr ] [ 20chr ahrxf]
~ ezp |— - .
Hcosxy

T i (16)

Here we took into account that the main contribution is being made
by the rays of angles x; < x«-

0 T

Fig.1
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From (16) we can make the important conclusion, that at small
angles of inclination A does not depend on x;. The reason is that for
the rays with x; < 1, S. is rather great, but the number of cycles is
small. And these effects compensate each other.

There are two main effect concerned the attenuation in a thin bub-
ble layer. The first is the decrease of amplitudes of all the rays: they
decreases as exp(~2ahr/H). And the second one is the narrowing
of angle spectrum up to xuu = /H/ahr. If xau > x» We can ne-
glect this effect, and then from (8), (16) one can obtain the following
expressions for averaged intensity and transmission loss:

F_ 2 —2ahr/H
I= T_HX*C ’ (17)
Io arh
TL = IOIOgl()—I— =TLy+ 8.64—2[—— =TLo+ ATL . (18)

Here TLo = 10in(rH/2x.) transmission loss in the waveguide free of
bubbles and the second item describes the additional losses due to
the bubble layer. From the comparison of this expression with TL,
for the homogeneous bubbly media (3) it is seen that for such a layer
TL is less in h/H times. The reason is that only the part of a ray
trajectory goes through a bubble layer. It must be mentioned, that
additional loss are proportional to the quantity of bubbles along all
the path.

It is convenient to depict the dependence of additional losses, in-
duced by appearance of subsurface bubble layer on the attenuation
as a function of losses for plane wave ATL,:

h arh
ATL, = TLyz = 8.64— . (19)
In these variables the functional dependence ATL{ATL,), which

corresponds to (13) becomes linear :

ATL(a) = ATL,. : (20)

It means that by measuring of additional losses it is easy to determine
ATL, and, consequently, the absorption coefficient.

The expression (17) was obtained under the assumption that one
can neglect the narrowing of field angle spectrum due to the stronger
attenuation of rays of steep angles. In this approximation I does not
depend on x., i.e.on the sound speed in bottom ¢,. That is why
possible errors in determination of sound velocity in bottom does not
affect the precision of determination of attenuation coeflicient.
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We have assumed above that for angles less that the critical one
x» the bottom reflection coefficient |V| = 1 and the narrowing of angle
spectrum was neglected. In an absorbing bottom for small angles of
ray inclination V can be approximated as

Wi(x)| =1-Sx ~e %, (21)

where coefficient S depends on sound velocities in water and in bot-
tom and on attenuation coefficient in bottom. From (6),(7) and (10)
it is easy to obtain the expression for A:

A(x) = e—anhr/He—xz(uhr/H-{-Sr}H) . (22)

As it can be seen from (22), the absorption in subsurface layer leads
both to the lowering of general level of angle distribution of intensity
and to the narrowing of angle spectrum. Using (9) and (22) the
average intensity might be rewritten as follows

I‘ - ;%X*e-za’"/hF , (23)
™
F= \/;x*((l +ah/5)5eE) < O VL +oh/S)Sr/H)

Here erf(z) = 2/y/7 f; exp(--t*)dt - error function, which has the fol-
lowing asymptotics :

‘o) F2(1-%) , z<1 )
erf(z) = a2
-t » e>1

For additional losses ATL due to the of subsurface bubble layer
using (23) one can write the following expression:

erf(x«\/Sr/H)\/1+ah/S
erf(x«/St/H(1 + ah/S)) |

As it can be seen, the relation between the additional losses ATL
and the absorption coefficient « becomes more complicated when
taking into account the effects of absorption in bottom and the nar-
rowing of angular spectrum. But the main problem is that parame-
ters x. and"S defined by hottom properties as usual are not known
precise.enough. But still the situation is not so doomed for the isove-
locity waveguide, especially when considering the relative error § in
determination of attenuation coefficient :

(25)

ATL = ATLP + 10logi1o [
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,_ Do ATL- ATL,
T a T ATL,

(26)

In (26) we assume that as an estimation we calculate o using ex-
pression(20), which is valid for the bottom without absorption. Then
Ac is an absolute error in determination of the absorption coefficient
calulated by the exact expression. As it follows from (25), the relative
error 6 is always relatively small (6§ < 5% ), and it decreases as the
absorption coefficient a grows.

All that leads us to the conclusion that the determination of «
can be carried out rather successfully for the isovelocity waveguide.
In this case one can use the simple approximate expression (20) to
estimate absorption.

In an arbitrary case to compute averaged intensity (4) analytically
seems to be impossible, so one has to do it numerically. Some results
are presented below. The calculation has been made for the following
model of waveguide : the path length is 20km, sound speed in bot-
tomn ¢, = 1580m/s, sound speed in water at the bottom c, = 1420m/s
(critical angle x. ~ 0.47 ~ 28°), depth of the waveguide H = 100m.
Two models of bottom has been used: half-space without and with
losses (the imaginary part of the refraction index 5 = 0.008). Model of
the bubble layer: thickness h = 6m, absorption coefficient o = 0.0025.
(For the case of the waveguide with homogeneously distributed bub-
bles, i.e. h = H, the bubble induced loss would be 432dB - see (18)).

At Fig.2 angle distribution of factor A is shown for bottom without
(a) and with (b) absorption. As it might be seen from these figures,
for this case the effect is clear: all the rays radiated reach the subsur-
face bubble layer and are attenuated in it, so it leads to the decrease
of signal level. It is remarkable, that in an isovelocity waveguide the
introducing of the bottom absorption leads to general decrease of sig-
nal level approximately on 5dB, but almost does not affect the bubble
layer induced attenuation value (ATL =~ 26dB in both cases ). This
result is in a good agreement with (18). Calculating ATL from (18)
one can find that the bubble induced attenuation in the case of layer
thickness 6m is less than for homogeneously distributed bubbles in
h/H = 0.06 times.
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Fig.2(a) Factor A as a function of departure angle of ray in a
isovelocity waveguide without absorption in bottom.
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Fig.2(b) Factor A as a function of departure angle of ray in a
isovelocity waveguide with absorption in bottom.

In arbitrary case the problem of determination of absorption co-
efficient is reduced to solving of the equation (13) or in the new
variables (19) to solving of the equation

ATL = ATL(ATL,) (7)

with respect to ATL,. In the isovelocity waveguide this dependence
becomes linear (20) for small absorption coefficients. In Fig.3 this
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dependence is depicted for a isovelocity waveguide for unabsorptive
( dashed line ) and absorptive ( solid line ) bottom. At Fig.4 the
corresponding graphics for § (26) are depicted. It is seen that in
the isovelocity waveguide the situation looks rather suitable for the
determination of absorption coefficient.
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Fig.3 Additional losses ATL as a function of ATL, for a isovelocity
waveguide.
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Fig.4 Relative error in determining bubble concentration as a
function of ATL, for a isovelocity waveguide (u = ahr/H).
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In a case of ”summer” profile of sound speed the picture seems to
be more complicated ( Fig.5(a) ). As it is seen from Fig.5(b) there are
three groups of rays (A factor for these rays presented on Fig.6(a),(b)
for both models of bottom ): A - the rays of small grazing angles,
which do not reach the bubble layer; B - the rays, which reach the
layer but don’t touch the surface - their inclination at the bound of
bubble layer is small and because of it the attenuation of these rays
is great; C - the rays reflected by the surface.

0 1400 14120 14140 14560 14L80 15100 c,mfs

20 A

40 -

60

80 1

Fig.5a Sound speed profile in a ”summer” waveguide.

Fig.5b Ray trajectories in a ”summer” waveguide.
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Fig.6a Factor A as a function of departure angle of ray in a
"sumnmer” waveguide without absorption in bottom.
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Fig.6b Factor A as a function of departure angle of ray in a
”summer” waveguide with absorption in bottom.

It is seen, that the influence of bottom absorptivity is significant
and at rather great values makes the the bubble induced attenuation
to be hardly distinguished. Obviously, this effect is concerned with
the fact that all the rays which reach the bubble layer have a great
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inclination at the bottom and due to it are strongly attenuated there.
So their contribution to the averaged field intensity is less than for the
bottom without absorption. For unabsorptive additional losses due
to the bubble layer ATL » 6dB, and for the boitom with absorption
ATL ~ 2dB. .

In Fig.7 the calculated dependence of ATL on effective absorption
coefficient ATL, for the unabsorptive bottom ( dashed line ) and the
bottom with absorption ( solid line ). As it can be seen, the depen-
dence ATL(ATL,) has a "satiation” at large absorption coefficients.
Moreover, there exists rather strong dependence on the bottom prop-
erties.

AT,
dB

4 - Vd

0 L L U 1
0 10 20 30 40 ATL,,dB
Fig.7 Additional losses ATL as a function of ATL, for a "summer”
waveguide.

This result can be explained qualitatively using the simple model.
Let us divide all rays into two groups. The first type of rays which
does not graze the bubble has an summary intensity A. The second
type of rays go through the bubble layer and their intensity can be
approximated as Bezp(—a.r). The average intensity of such a signal
can be written qualitatively as

I=A+Be ™", (28)

where a. is some effective absorption coefficient. In this case from
(28) one can obtain the following expression for the function of rela-
tive losses :
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A+ Be=oer
A+B

If almost all the rays graze the bubble layer (B >> 4), then from
(29) there follows a simple relation between ATL and a which is valid
in a rather wide range (ezp(—a.r) >> A/B). That means that in this
case the problem of determination of absorption coefficient « can be
effectively solved.

In the opposite case, when only a small fraction of energy-carrying
rays grazes the bubble layer, from (29) we have

ATL = -—lOlogm (29)

B
ATL =~ —10logyo(1 + I(e"“" -1)) =~
~ —1010910(e§-(e“’=' -1)). (30)
From this expression it is seen that for small absorption coefficients
ATL =~ 8.64—§-a¢r .

It means that there exists a simple relation between o, and ATL,
but the coefficient of proportionality strongly depends on the hy-
drology. And when the absorption coefficient « is large, the ATL
"satiates”:

B
ATL ~ 8.64— .
A

It significantly complicates the problem of determination of the
absorption coefficient in ”"summer” conditions.

2 INFLUENCE OF BUBBLES ON SOUND ATTENUATION IN
PLANE LAYERED WAVEGUIDES

2.1 WINDSPEED DEPENDENCE OF SOUND ATTENUATION
IN A ISOVELOCITY CHANNEL

In this part we will use another parametrization of bubble concen-
tration assuming that it is completely determined by the wind speed.
In paper [6], basing on the results of [7,8], it was shown that the
concentration of bubbles n(a) which appears due to the sea surface
agitation may be parameterized and written as
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(@) = NoG(e, 2IX(U)Y (=, 1) (1)
where U is the wind speed in m/s (its basic value was U=13 m/s), z
- depth (m), ’

z
= - 32
Y(z,U) = exp( L(U)) , (32)
_ 0.4 , ULT1.5m/s
L) = { 0.4+0.115(U —=7.5) , U > T7.5m/s
No =16 x 10°cm™* , x(U) = (U/13)*,
(a'/a'l)2 ’ a<a
G(a,z) = 1 , a1<a<as (33)
(az/a)d(z) ) a>az

and the limit bubble sizes a; and a, are expressed as

a; = (34 + 1.24z) x 107%(m) ,
az = 1.60.1 , (34)
d(z) = 4.37+ (2/2.55)% .

Thus, using (31) and measuring the transmission loss at differ-
ent frequencies it might be possible in some cases to solve the in-
verse problem - to reconstruct the size distribution. Then, one of the
questions appearing is the feasibility of parameterization for the size
distribution n(a) of subsurface bubbles in inner lakes.

In the framework of this model the bubble concentration near the
surface is proportional to U? and at the wind speeds U > 7.5m/s, the
thickness of bubble layer begins to increase. Taking an integral over
z we obtain the bubble size distribution at a square unit of surface,
and by integrating over size o with the factor 4/37a> a we obtain the
volume void fraction at the square unit of surface. It is obvious, that
all these quantities are completely determined by the wind speed
U and in this case the problem is reduced to to the determination
of effective wind speed using the measured transmission loss ATL.
Then, using the parametrization (31) - (34) it is easy to reconstruct
all parametres of bubble layer.

In this part to compute an average intensity of acoustic field we
will use the computer program which is based on the method of adi-
abatic invariant. This method is described in Appendix. The pro-
gram for computation was enhanced and now it takes into account
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Fig.10 Transmission loss as a function of receiver depth z at
different wind speed values for a isovelocity waveguide model.
Source frequency f = 1kHz, source depth z, = 25m, range r = 20km.
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Fig.11 Transmission loss as a function of receiver depth z at
different wind speed values for a isovelocity waveguide model.
Source frequency f = 1kHz, source depth z, = 10m, range r = 20km.

95



2.2 INFLUENCE OF LOCAL CHANGES OF HYDROLOGY ON
TRANSMISSION LOSS IN A ISOVELOCITY WAVEGUIDE AND
WIND SPEED DEPENDENCE OF TRANSMISSION LOSS IN
"SUMMER” CONDITIONS

As it follows from the results above there exists the principial pos-
sibility to determine the effective wind speed U (and, corerespond-
ingly, the parameters of a bubble layer) measuring transmission loss
along a path. But the loss function is extermely sensitive to changes
in the waveguide’s hydrology. In order to prove it, let us consider the
sound propagation in channel with the slightly heated (the tempera-
ture deviation at the surface is 1°C) thin subsurface layer. There the
sound speed near the surface is 1422.3m/s (previously 1417.9m/s), at
depth 5m - 1418.1m/s, and below this depth coincides with a typical
isovelocity hydrology. The wind speed dependence of losses T'L(U)
for this model is shown in Fig.12. In Fig.13 the wind speed depen-
dence of bubble induced attenuation ATL(U) is shown in a double
logarithmic scale.

Comparing Fig.8, 9 with Fig.12, 13 it is seen, that the presence of
a slightly heated layer of a thickness only 5m leads to the significant
change of additional losses at the horizon z = 75m. Such a strong
sensitivity might be understood if we pay attention to the dependence
of transmission loss on receiver depth (Fig.14-17).
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Fig.12 Transmission loss as a function of wind speed U at different
frequencies for a isovelocity waveguide model with slightly heated
subsurface layer. Source depth z, = 25m, receiver depth z = 75m,
range r = 20km.
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the absorption in a subsurface bubble layer, which is described by
the absorption coefficient a(z) related to the bubble concentration by
the expression (2). The line-broken approximation of the absorption
coefficient was used in computation.

Below we discuss the results of computations of a wind speed
dependence of losses TL for the range-independent waveguide of a
depth 100 m at the path 20 km long.

A typical isovelocity profile (sound speed at the surface - ¢ =
1417.9m/s and near the bottom - ¢ = 1421.4m/s) was chosen for mod-
eling of sound propagation during winter months. This is a weakly
expressed subsurface waveguide channel where all rays reach the sur-
face and are mearly linear.

In Fig.8 the dependence of losses on the wind speed TL(U) is
shown for five frequencies f (0.5, 1, 2, 5, 10 kHz). In Fig.9 the
wind speed dependence of bubble induced attenuation is depicted in
double logarithmic scale. It can be seen from Fig.9 that ATL ~ U3 at
U < 7.5m/s and ATL ~ U* for U > 7.5m/s, i.e. in this case additional
losses due to hubble layer-are determined by the integral void fraction
at the square unit of the surface.

)
m -~ / a(z)dz ~ Nox(U)L(U) . (35)
0
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Fig.8 Transmission loss as a function of wind speed U at different
frequencies for a isovelocity waveguide model. Source depth
29 = 25m, receiver depth z = 75m, range r = 20km.
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Fig.9 Additional loss as a function of wind speed U at different
frequencies for a isovelocity waveguide model. Source depth
zo = 25m, receiver depth z = 75m, range r = 20km, basic wind speed
value Uy = 10m/s.

From these figures it is seen, that for high wind speeds (U > 10m/s)
it is reasonable to use relatively low frequencies f < 2kHz, since in
this case bubble induced attenuation is not too big (less than 50 dB
at U < 20m/s) and, simultaneously, is sensitive to the wind speed.
For small wind speeds it is better to use high frequencies.

In Fig.10, 11 the dependence of transmission losses T'L on receiver
depth z at the frequency f = 1kHz is presented for various wind
speeds (source depths zo = 25m and 10m). One can conlude from
these figures that bubble induced attenuation depends weakly on the
position of source and receiver. This result can be explained if we take
into account the fact that in isovelocity conditions all rays reach the
surface and the influence of a subsurface bubble layer on the atten-
uation of signal level is almost equal at all horizons. The singularity
at the depth z = zy is due to the behaviour of a ray focusing factor
and is beyond the computation precision of ray approach.

Thus, in isovelocity conditions transmission loss function is rather
sensitive to the appearance of subsurface bubble layer and the use
of the frequency band 0.5kHz — 10kHz allows to consider the whole
range of wind speeds we are interested in (3 — 20m/s).
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Fig.13 Transmission loss as a function of wind speed U7 at different
frequencies for a isovelocity waveguide model with slightly heated
subsurface layer. Source depth z) = 25m, receiver depth z = 75m,

range r = 20km, basic wind speed value U, = 10m/s.
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Fig.14 Transmission loss as a function of receiver depth 2 at
different wind speed values for a isovelocity waveguide model with
slightly heated subsurface layer. Source frequency f = 1kHz, source

depth zo = 25m, range r = 20km.
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Fig.15 Transmission loss as a function of receiver depth z at
different wind speed values for a isovelocity waveguide model with
slightly heated subsurface layer. Source frequency f = 1kHz, source

depth z; = 10m, range r = 20km.
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Fig.16 Transmission loss as a function of receiver depth z at
different wind speed values for a isovelocity waveguide model with
slightly heated subsurface layer. Source frequency f = 5kHz, source
depth 2o = 25m, range r = 20km.
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Fig.17 Transmission loss as a function of receiver depth z at
different wind speed values for a isovelocity waveguide model with
slightly heated subsurface layer. Source frequency f = 5kHz, source
depth zy = 10m, range r = 20km.

It is seen that if a source and a receiver are positioned at the almost
same level, then the subsurface bubble layer does not practically af-
fect signal level. It is due to the fact that at these horizons the field
is determined mainly by the rays radiated at the small angles. Those
rays graze the surface and are significantly attenuated in the sub-
surface layer, so they contribute insignificantly onto the field energy.
That is why their attenuation practically does not affect the signal
level at these horizons.

A bubble layer strongly affects the filed intensity near the surface.
It might be explained by the fact that near the surface the field is
formed by the rays which are attenuated strongly in the subsurface
bubble layer. The decrease of a signal level near the bottom is ex-
plained by the existence of a waveguide channel and.the field near
the bottom is determined by the rays which trajectories partially go
. through a bubble layer.

We have demonstrated above that bubble induced attenuation is
significantly sensitive to small local changes of a sound speed profile.
There also exists a very strong dependence of the additional losses
on the global changes of hydrology. At Fig.18, 19 the dependencies
of transmission loss on a wind speed and on a receiver depth for
the weak near-bottom channel are shown. This channel represents a
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inverted profile with the sound speed near the surface ¢ = 1417.9m/
and near the the bottom ¢ = 1421.4m/s.
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Fig.18 Transmission loss as a function of wind speed U at different
frequencies for waveguide model with weakly near-bottom sound
channel. Source depth z, = 25m, receiver depth z = 75m, range
r = 20km.
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Fig.19 Transmission loss as a function of receiver depth z at
different wind speed values for waveguide model with weakly
near-bottom sound channel. Source frequency f = 5kHz, source
depth 2o = 25m, range r = 20km.
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The effect of the "satiation” is worth noting. It is connencted with
the fact that in a near-bottom sound channel a considerable fraction
of rays never go through subsurface layer. That is why after rather
strong attenuation of the subsurface rays the following increase of the
sound speed does not affect signal level in any way. The qualitative
theory of this phenomenon is given in the end of Chapter 1.

The problem of diagnostics of a bubble layer becomes consider-
ably more difficult to solve in "summer” conditions. Upper layers of
water are well-heated and there exists the deep sound channel. Here
we present the computations for the sound speed profile depicted in
Fig.5a. In a "summer” waveguide the intensity of acoustic field near
the surface is low. This is due to the fact that rays, which reach
the subsurface layer are of a great inclination at the bottom and so
are greatly attenuated in it. At the rest part of a waveguide - in
the middle and below, the field mostly is determined by rays which
does not reach the subsurface layer. Because of that the diagnostics
of a subsurface bubble layer by measuring transmission loss becomes
siginificantly difficult. In Fig.20, 21 the dependencies of transmission
loss on receiver depth z are presented for the frequency f = 10kH:z
and wind speeds 0m/s and 20m/s. At this frequency and at the wind
speed 20m/s the bubble induced attenuation should be maximal.
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Fig.20 Transmission loss as a function of receiver depth z at wind
speed values U = 0,20m/s for a "summer” waveguide model. Source
frequency f = 10kHz, source depth zy = 10m, range r = 20km.
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Fig.21 Transmission loss as a function of receiver depth z at wind
speed values U = 0,20m/s for a ”"summer” waveguide model. Source
frequency f = 10kHz, source depth z, = 5m, range r = 20..m.

From Fig.20 it is seen, that at the receiver depth z = 10m bubbles
practically do not affect sound attenuation. It is explained by the
fact, that in ”"summer” waveguide an acoustic field is formed mainly
by the rays which do not reach the surface. As moving a receiver
nearer to the surface (z = 5m) Fig.21 the intensity decreases, which
is due to the greater attenuation of the rays forming acoustic field
in the bottom because of their more steep angles there. Then, the
intensity of a field begins to depend on the amount of bubbles in a
subsurface layer. Though this dependence is very weak: at the wind
speed 20m/s the additional losses due to bubbles are about 2d B, which
is obviously not enough to sove the problem of diagnostics.
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APPENDIX: CALCULATION OF AVERAGE SOUND FIELD
INTENSITY IN RANGE - DEPENDENT WAVEGUIDES USING
ADIABATIC INVARIANT METHOD

In [4] the expressions for average intensity of sound field in plane
layered waveguide are introduced within the framework of ray ap-
proach. The generalization of this approach for the range - depen-
dent ducts might be found in [5]. There the agreement of the results
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obtained from ray and wave theories is discussed as well. Below
we follow these two works in general, though some details might be
slightly different.

Let us consider the cylindrically symmetric waveguide with the
sound speed profile ¢ = ¢(z,r). The sound field generated in such
waveguide by point harmonic source in the adiabatic approach of
normal waves method is given by [4] :

— 2_7" = ‘Pﬂ(ZO:o)‘Pn(zar)ez i r ” r—£1—r
P(z,r)—\/TX:—‘/{n—('3 p( b/{,.()d 4) ., (36)

n=1

where (zo,0) - the coordinates of source, (z,r) - the coordinates of
receiver, £,(r) - the eigenvalues, p,(z,r) - the eigenfunctions.

The intensity of sound field, averaged over range r in this case is
described as follows :

_ 21 & a0, O)Plenz ) [ L f
<I>= ".:‘/;1 Reéu(r) c:cp( 2!Im£n(r)dr) . (37

If the number of propagating modes is great and the depth depen-
dence of wave number k(z,r) = w/c(z,7) at any fixed range r has the
only one maximum, then to find out the eigenfunctions one can use
the WKB approximation [9]:

Pn(z,7) =2 \ / ;1% cos / vn(z,7)dz+ ®a(r) | , (38)

n n

Dn('l‘) =2Re {,.(r) / Zg;:;j s (39)
va(2,7) = VE3(2,7) — (Reéa(r))? (40)

where z,,(r) and z/(r) - the depths, within which the normal wave is
concentrated, |®,(r)] < = - the additional phase, depending on the
kind of normal wave. Substituting (38) into Eq.(37) and averaging
over depths z and z; we obtain
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=8 3 Re () exp | — r méu(r)dr
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n=1
(41)
The real part of eigenvalues might be found from the expression
for the phase integral in WKB approximation :

"
Zn

J(r) = /V,‘(z, r)dz = nw + 0,(r) , (42)

where |6,,(r)| < 7 - the additional phase, depending on the kind of
normal wave.

Within the WKB approximation each normal wave might be con-
sidered as the system of rays :

Re&,(r) = k(z,7)cosx(z,7) . (43)

If the parameters of waveguide slowly varies within the ray cycle,
i.e. each cycle does not strongly differs from the previous one, then
for the particular ray one can suppose J to constant. ( In fact, it is
the condition of adiabaticity and J/w is an ray adiabatic invariant ).
The assumption made allows to obtain two important conclusions. At
first, using J one can link the departure angle of ray x, with its angle
at the horizon of receiver x. Second, in Eq.$41) one can change the
summation over n to the integration over angle xo glor x ). Using (42)
and taking into account (38)-(40) and (43) the following expression
might be obtained: '

dn = fi_{ — V(XO)O)D(XOI 0) dXO — V(Xr r)D(X)r) dx . (44)
s 27 27
As a result we find:
x/2 T
<I>—3/ e —Z/ﬁ( r)dr | d (45)
7] xDGun) T X xo
0 0
or
1\’/2 ° T
4 1
<I>=—/——————-ez —2/ r)dr | dx. 46
rJ tg xo D(xo,7) p( J Alar) ) X (46)
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Here

lor) = 25

is the loss function for bottotti intetacting tays, V(x’, r) is the bottom
reflection coefficient, and angles x and x' ate connected by Snell’s
law:

(47)

k(z,r)cosx = k(H(r), r)cosx’ , (48)

where r is introduced as a parameter.(The gemneralization of (47) for
the case of bubble layer induced atteriuatiott might be made easily).
Thus, the formulae (45)-(48) allows to calculate the average sound
field intensity in a range - dependent waveguide.

The description of numerical algorithm presented below requires
to consider the medium of propagation. The values of sound speed
¢(zij, ;) at the fixed distances r; supposed to be given on the up-
per (z = 0) and lower (z = H(r;)) boundaries and at some depths
z;; betweeni (see Fig.22). To make the following computation more
convenient the waveguide is divided into the space segments, using
the linear iiterpolation both of wave nuinber square k*(z,r) and of
lower waveguide bouhdary H(r) as it is shown at Fig.23. A seg-
ment is triangle-shaped, if one of its boundaries is the inclined bot-
tom, and is of rectangle shape otherwise. In segments of the first
kind the wave number approximation is k%(z,7) = ao + a1z + aar,
the wave niumber in the second kind of segiments is approximated as
k%(z,7) = ag + a1z + azr + agzr. Thus, for a fixed range r the depth
dependence of wave number square is line - broken, so it allows to
?se the implicit expressions for camputation of the integrals (39) and

42).

’)I.‘he bottom is represented as a structure which consists of some
liquid layers upon the liquid or solid half-space. The reflection co-
[eﬂicient of suc% bottom is calciilated using the recurrent relations
3].

]Taking into account all the above one cah calculate the trans-
mission loss using adiabatic approach in accordance to the following
algorithm.
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First, the invariant values J(xo,,0), the cycle lengths D(xo,,0)
and the loss functions f(xg;,0) for the rays which leave source at the

angles xo; = Axl are to be calculated. ( Here ! = 0,1,..,N,Ax =
x*/N,N +1 - is the number of rays ).
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Then, for the distances ry = Ark, k = 1,2,... the characteristics of
rays and the sound field intensity at the receiver horizon are to be
calculated. These computations are conducted as follows.

First of all, the invariants J(xm, ri) of rays of inclination angles at
the minimal sound speed horizon xm = Axm (m =0,1,...M, M =
Int(x/2Ax)) are calculated. If J(xm,7) < J(X01,0) < J(Xm+1,7k),
0 <m < M -1, then the ray of departure angle reaches the horizon
of the minimal xo; sound speed at the angle x;, which might be
calculated using the linear interpolation :

J(Xo,l’ 0) - J(me rk)
J(Xm-l'la rk) - J(Xm; rk)

and for this ray the cycle length D(x;,r:) and loss function B(xi, ri)
are to be computed. The rays for which J(xo,,0) > J(xam,rx) do
not reach the range r; so they are not considered in the following
computations. Thus, the characteristics of all the rays which reach
the horizon of the minimum sound speed at range ;. are determined.
Integral of losses in the expression (45) is to be computed for each
ray using the trapezoid rule:

X1 = Xm + Ax (49)

r4+Ar

/ ﬁ(r)dr:]ﬂ(r)dr+

0

) 480+ &) (50)

Then from found angles x; the angles at the receiver horizon might
be calculated using the Snell’s law %48). If the ray of departure angle
x0,0 = 0 reaches the receiver, then the integration is made over this
departure angles (45). Otherwise, the integration is to be made over
the angles at the receiver horizon (46). It allows to escape the diver-
gence of integrand. The integration of (45) or (46) are made using
the trapezoid rule.

References

[1] Clay C.S., Medwin H. Acoustical oceonography: Principles and
applications./ A Wiley-interscience publication. New York -
London- Sydney- Toronto, 1977.

[2] Devin C. Survey of thermal, radiation and viscous damping of
pulsating air bubbles in water. // J.Acoust. Soc.Amer. 1959. V.
31. N 12. P. 1654-1667.

107



[3] Brekhovskikh L.M. Waves in layered media. New York: Aca-
demic, 1960.

[4] Brekhovskikh L.M., Lysanov Yu.P. Theoretical furidamentals of
ocean acoustics. Berlin. Springer, 1982.

(5] Smith P.W.Jr. Averaged sound transmission in range-dependent
channels. // J.Acoust.Soc.Am. 1974. V.55. P.1197-1204.

(6] Hall M.H. A compreheiisive inodel of wind-generatad bubbles in
the ocean and predictiotis of the effects on sound propagation at
frequencies up to 40 kHz. // J.Acoust.Soc.Amer. 1989. V. 86. N
3. P. 1103-1117.

[7] Thorpe S.A. On the clouds of bubbles formed by breaking wind-
waves in deep.waters, and their role in air-sea gas transfer. //
Phys. Trans. R.Soc. Lond. 1982. A-304, p.155-210.

(8] Jonson B.D., Cooke R.C. Bubble population and spectra in
coastal waters: a photographic approach // J.Geophys. Res.
1979. V. 84. P. 3761-3766.

[9] Ahluwalia D.S., Keller J.B. Exdct and asymptotic representa-
tions of sound field in stratified ocean. In: Wave propagation
and underwater acoustics. / Ed. J.B.Keller, J.S.Papadakis. New
York. Springer-Verlag, 1977.

108



ESTIMATING PARAMETERS OF SIGNAL SOURCES
AND CHARACTERISTICS OF NOISE FIELD
BY USING SPATIALLY
SEPARATED VECTOR - SCALAR MODULES

G. M. Glebova, G. N. Kuznetsov

This paper presents a generalized approach to problems that may be solved
with the use of receiving antenna arrays consisting of the vector-scalar modules.

Introduction

Measuring parameters of sources that emit vibrations and outer noise of the
systems, which are located under water and incorporate many mechanical
components, is a complex and important problem. It may be rather effectively
solved with the use of a system of “interior” diagnosing, that is, by means of
vibration and noise sensors that are close to the probable sources of intense
vibrations. Then, by using statistical correlation processing for instance, one may
estimate both power of the single sources and the effect of these sources on the
total level of vibrations and noise [1, 2].

Nevertheless, this efficient method is not always feasible and, in principle,
sufficient. To this end, in addition to or instead of interior diagnosing, exterior
measuring may be carried out, that is, the noise sensors (receiving elements) may
be used that are located externally to the noise-emitting system within the
waveguide [3]. Such situations are common for both aero- and underwater
acoustics (aviation and marine applications are meant). Recently, this problem
has become urgent for monitoring the mechanical quality of oil and gas
condensate pipelines, compressor and control systems, drilling installations, and
so on. It is substantial that the probable noise and vibration sources are of
significant spatial extent and may be distributed in both horizontal and vertical
directions. For instance, a powerful source of vibrations and noise may be even
located within the ground when the drill passes the elastic basic rock.

To monitor the exterior acoustic field and to perform system diagnosing by
measuring the noise, one should develop a measuring instrument that
incorporates an underwater multi-channel array, a transmission system for
data and control signals, and a system for signal processing, visualizing, and
storing.

As a rule, to analyze the noise field in both shallow and deep seas, spatially
distributed multi-element arrays are used that consist of scalar pressure sensors.
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-Here, we consider and discuss the advantages of the spatially distributed four-
component vector-scalar modules (so called pV-receivers) as applied to the
problem at hand. In other words, the systems are considered that measure the

three orthogonal components, - ¥, ¥, and V_, of the vibrational velocity in

addition to the scalar pressure field p.

A specific measuring scheme depends on technical aspects of the problem
to be solved and on conditions under which the measurements are to be carried
out. Here, we propose a version of the general computing scheme with reference
to both parameters of the receiving system and the waveguide transfer function
for the region at hand. Obviously, such measurements are feasible only if the
receiving system and waveguide are both acoustically calibrated, this being the
necessary condition of creating an adequate model to compute transfer functions
for the pressure and vibrational velocity fields.

As a basis for the processing algorithm, the maximum likelihood method is
used that yields the optimal estimates for the measured data and/or computed
parameters of the noise-emitting object. A sub-optimal method is also considered
that is based on measuring the members of the covariance matrix for the signals
and interfering noise (so called direct-resolution method [3]).

It is worth mentioning that we solve the problem in the quasi-stationary
approximation, that is, the signal is supposed to be stationary at all receivers
within the interval of primary estimation (the realization duration t). This
approach allows one to use a well-developed technique, the method being
equally valid when the receiving modules and noise sources are fixed and when
the receiving array is towed (or drifts) at low speed relative to the fixed noise-
emitting installation or object. A large-sized vessel slowly passing over the
receiving system fixed within the waveguide (or passing over it at a long range)
is just the case.

Here, parameters of the noise sources are considered for a general problem
statement when the source coordinates are not known a priori (unknown
location of the condensate pipeline out-break being the example), and detecting
the noise source and estimating its power and coordinates are to be performed
simultaneously. For a specific case of measuring the noise field of moving
vessel, the use of reference receivers is advantageous, those being fixed at
known positions on the vessel and serving as reference points to measure the
current distance between the vessel (noise-producing object) and the receiving
vector-scalar module. In this case, coordinates of the noise source are to be
redetermined relative to those of the reference source, the latter coordinates
being treated as known to the required accuracy.
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1. Model for measuring procedure

Two problem statements are known to be of practical interest, therefore two
versions of the model for measuring procedure are considered here. Figure 1
illustrates a scheme that may be used to monitor noise levels of individual parts
of a pipeline. The receiving array and pipeline are close to the sea floor and are
separated by at least d = 1 - 5 km in distance. The modules are separated by / =5
- 7 km. The receiving system and pipeline are supposed to be significantly
distant from each other to simplify in-sea arranging the array and maintaining the
whole system. The module outputs are digitized and cable-transmitted to the data
acquisition and processing station. By signal processing, sources of increased
noise are detected and located, coordinates of the sources being related to those
of the pipeline.

Fig. 1. Acoustic system monitors the noise field of a pipeline: 1 - vector-
scalar modules; 2 - probable source location of increased noise; 3 - pipeline; 4 -
transmission cable.

Later on, simulations and computations are carried out as applied to marine
pipelines and acoustic systems of monitoring and diagnosing the pipeline state.
Nevertheless, the general measuring scheme and processing algorithm remain
nearly the same if geophones are used instead of hydrophones and the pipeline,
along with the receiving system, is located in a marshy region, within ground or
eternal frost.
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Figure 2 shows the scheme of measurements for a situation when a multi-
component distributed source’ ! moves relative to the bottom-moored measuring
system 2 which consists of A spatially separated vector-scalar modules. Upon
being digitized 3, the signals are cable-transmitted 4 to the data processing
station 5 which may be either ship-borne or ahore-mounted.

\

S S e

(@)

Fig. 2. Acoustic system monitors the noise field of a vessel: 1 - noise-
generating vessel; 2 - receiving system; 3 - signal transmitting system; 4 - cable;
5 - data processing computer.

2. Signal and interfering noise representation

The sources are supposed to emit signals that may be treated as Gaussian
noise. The source coordinates are denoted by

r,=(x,,Y,,2,), (M=1,...,N) where N is a number of individual signal
sources, X,,Y,,Z, arc Cartesian coordinates of the signal source, the

coordinate origin is placed to one of the receiving modules in x,y-plane and to
the sea surface in z-direction. The receiving array consists of A/ four-component

modules located at points 7,, = (X,,,V,,2,), (M=1,...,M).

The module outputs represent a total signal emitted by the sources that
compose the noise-producing object and sources of the additive interfering noise
which is also supposed to Gaussian. The module outputs U, (¥) are entered to

the computer which processes the signals and estimates unknown parameters of
the sources, that is, source coordinates, their power levels, and correlation
between different sources.
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Information on unknown parameters of the sources is contained in the time
functions U, () measured by the receiving modules. Suppose that the duration
1 of realization is sufficiently small to neglect the signal variability (caused by
receiver or source moving, for instance). For fixed sources, the transposed vector

U" may be represented as
U'=U,0).U,0)V,©,).U,,).... U@,.U (,),
where
% 2ni
Um(mi).:jl;— IU,,,(t)eXp(—j(o,.t)d‘, W, =% ’m=l,...,l.l,. (l)
%

Here the m-th component of vector U, which corresponds to frequency ®;, is

the expansion of U,,(¢) into Fourier series within the measurement duration T,
p = 4-M. In (1), the asterisk stands for the matrix complex conjugation and
transposing. The main advantage of the signal representation (1) is that the
Fourier members which correspond to different frequencies do not correlate if
the measurement duration T does not exceed the correlation interval for each
U, (?) and is less than the maximum cross-correlation interval, including the
spatial one, for different signals. )

With arrays consisting of pressure sensors, at a fixed frequency,
dimensionality of vector (1) is determined by a number of receiving elements of
the array: p = M,

U,(p)=p,, m=1..,1 ¥))

(here and later on, to simplify the notation, we omit the frequency dependence).

With the vector-scalar modules used for measuring the sound field, the
maximum dimensionality of vector (1) (at a fixed frequency) is p = 4- M
because each output of the M modules contains four measured components of
the sound field: the pressure and three projections of the vibrational velocity.
Thus, there are several ways to form vector U and to develop algorithms for
estimating parameters of the signal sources. We propose to specify the vector of
measured data in the form
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where p,and V,,(r = x,y z), are the sound pressure and projections of the
vibrational velocity on the directions x, y, z, which are measured by the m-th
receiving module. In general, components of vector U(p,V), which is
measured either at a single point or at several points, are linearly independent
characteristics of signal propagation in the medium. Therefore, the jointly
measured scalar and vector components yield more full and accurate description
of the sound field while the form (2) is a specific case of the general
representation (3). If each modple measures only the three components of the

vibrational velocity, the dimensionality of vector Uis p =3+ M, and

4
UM =1V , k= M+m, k=1..3-M @

Vieo k=2-M+m

.

This expression is also a specific case of (3).

By representing the input signals according to (3), one can generalize a
well-known theory of signal detection and estimation onto receiving arrays that
consist of the vector-scalar receivers. It is also possible to use the developed
technique to estimate statistical properties of the noise sources at hand.

For Gaussian processes with a zero expectation, the signal statistics is fully

determined by the covariance matrix whose members (Um((o,)-U (@ j)>

may be easily computed for a given model of the signal and interference.
Because the Fourier components are independent at different frequencies, the
members of the covariance matrix are not equal to zero if only i = j. For vector U
corresponding to a fixed frequency, the covariance matrix has a dimensionality
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of p-p and may be treated as a sum of the signal matrix S and the interference
one O:

K=(U-U')=8+Q ®

or, equivalently,
K =(U, U, ) =80+ Qs ksm=1p. ©

Here ( ---) stands for the operator of statistical averaging.
If the vector is formed according to (3) for a fixed frequency, the signal
covariance matrix is the block-structured one of dimensionality 4-4:

pkp;: kax:rx ka;m kaz:n
ka p ;: ka Vx:n Vxlc V;m ka v ,

zm

Vyk p ;1 Vyk 4 ; Vyk V;m Vyk Vz:n ’

xm

Vzkp;t Vsz‘ Vsz;m Vszz:n

xm

kkm=1,.... M. (7

Here p, and V, m (k,m=1,..M, r=x,y, z) are the sound pressure and

projections of the vibrational velocity on x-, y-, and z-direction, which are
produced by the sound sources at the k-th and m-th receiving modules.

Up to date, information on the vector field of the interfering noise is
insufficient to exactly represent the members of the interference covariance
matrix in a general form. This insufficiency is caused by both multi-component
character of the interfering noise and their significant variability depending on
the sea state, current velocity, and intensity of the ship’s traffic in the region.
Specific methods of arranging the vector receivers (bottom-mooring or
suspending them within the water layer, decoupling the modules from the whole
construction) are to be accounted for as well. The used interfésence model and
actual frequency dependence also influence the cross-correlation coefficients for
the signals received by the pressure sensor and by the sensor of horizontal and
vertical components of the vibrational velocity, even if all signal parameters are
measured at the same spatial point. For instance, high-frequency cross-

correlation between p and V), predominates at high sea stares. At low
frequencies, if an intense far ship’s traffic or storm take place, cross-correlation
between p and Vx or between p and Vy is sometimes strong. In addition, the
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correlation depends on the sea depth and on the bottom parameters, particularly
on stratification of the sediments. To this end, prior to proceeding with the
measurements, one should study the interference field in the specific region
where the receiving modules are to be mounted, the environmental conditions
being also investigated. To be specific without loss of generality, we assume that
the interfering noise is spatially incoherent, that is, independent at outputs of
adjacent receiving modules (if they are significantly separated in space). With
such noise model, the covariance matrix is also block-structured one, 4-4 in
dimensionality, each block, both diagonal and side one, being a diagonal matrix:

op)y QAp.x) Apy) Apz
Ap:x) Ax) Axy) Ox,2) ®
op,y) 9xy) Q) QAyz
Ap,z) Ox,z) Ay,z) A2)

Here Q(*) are diagonal matrices whose members are
0u(*)=G2(+),,, (kym=1,., M), Where G*(*) is a variance of the

noise in a single measuring channel of either pressure or vibrational velocity
component, §, =1 at k=m and §,, =0 at k= m. Quantities
Q(*,*) are also diagonal matrices that characterize the noise cross-correlation
in the pressure and velocity channels or in channels of different components of
the vibrational velocity. All models for the interfering noise imply that the
relation

o’ (@) =(pc)’ {o’ )+’ () + ¢’ (D} ®

is valid.

The mentioned assumptions allow one to simplify modeling significantly.
In practice, one should obtain the matrix from measurements and use it to
estimate parameters of the signal model.
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3. Methods of matched space-time processing and efficiency
criteria

Consider the maximum likelihood method, the high-resolution method for
signals of the form (3), and the sub-optimal algorithm that is based on measuring
the covariance matrix for the received signals.

Maximum likelihood method for estimating the parameters

A general problem statement is as follows: the vector of unknown
parameters 8 is to be estimated from measured values of U. It is supposed that U
is a complex vector quantity (of dimensionality 4) which is Gaussian-distributed

with a zero mean value, (U ) =0,, its covariance matrix K having members

K, =(U,U). The optimal estimates of 8 are known to be yielded by roots of
the system of equations

p,.-zé-ln{ fwuI6} =0, i=1,.0, (10)

where f(U/6) is the probability density of the measured vector U, @ is the

dimensionality of vector 0, this dimensionality being equal to the number of
unknown parameters. For Gaussian signals, in view of the covariance matrix

K= (U'U'>, equation (10) may be reduced [5] to
| oK

B, = UKaGK-'U—T(K-'g‘;J 0, i=1..0,a1
i

where Tr is the matrix spoor. If the process is stationary and if the measured
values may be estimated for several realizations,

B = %§ﬂ(r),
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the latter relation may be represented

0K
B=Tr{ K K'R-E =0, i=1L.,0. (12)

00,

Here E is the unity matrix, K is the estimate of the covariance matrix for the
received signal, the members of this matrix being of the form

Kim =%§U'U:» , Lm=l..p (13)

and K denoting its theoretical value. It can be shown that the requirements for
vector U are met for all versions (2) - (4) of the vector-forming procedure. For
random acoustic fields that are Gaussin-distributed, relations (11) and (12) are
valid, these relations determining the rule for maximum likelihood estimating. If
systems of different (vector or vector-scalar) types are used, the method is to be

modified by computing matrices K and K in view of the established rules 3)-
(4) for forming vector U of the measured data.

Estimating algorithm based on measuring covariance matrix

In nearly all problems of underwater acoustics, computing the maximum
likelihood estimate is rather intricate procedure. In practice, sub-optimal data
processing is often used that relates the measured quantities (or functions of
those) to the theoretical models. One of such sub-optimal processing algorithms
is a direct consequence of expression (12). By equaling the round-bracketed
expression to zero in (12), we obtain:

K=K oKk, =K,,, I,m=1,..,p. (14)

This estimating algorithm may be treated as a specific case of the
maximum likelihood method. The algorithm is based on measuring the
covariance matrix of the received signals and valid for all types of receiving
arrays - scalar, vector, and vector-scalar ones. Expression (14) is a consequence
of the fact that the covariance matrix provides a full dgscription for Gaussian
signals with a zero mean value. Algorithm (14) is known as the direct-resolution
method. It has been studied by Alekseev et al. [4] and Gitel’son et al. [6] as
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applied to estimating parameters of both correlating and uncorrelating signals. If
arrays of equidistant elements are used and the received signals are produced by
uncorrelating sources, the Prony algorithm [7] is well-known to solve the
system (14). Gitel’son et al. [8] has modified this method to estimate parameters
of correlating signals that propagate from the source to receiver in a waveguide
and may be presented as a superposition of rays or normal waves. Here, we
propose to use the Prony algorithm for the vector-scalar arrays as well.

' The members of matrices IA( and K are complex values except for the
diagonal members that are real. Because of symmetry of matrix K (K, = K;, ),

system (14) may be reduced to pz real equations that, in general, may yield

|.12 unknown parameters.

Consider the system of equations as applied to measuring parameters of the
signal sources that compose a multi-component noise-generating object (see
Figs. 1 and 2). A full description of the sound field may be obtained with the use
of the velocity potential for a signal source of unity power:

@(¢,r,,r,) = O(r,,,1,) - exp(—j2nft +v,). @15)

Here 7, and r, determine the receiver and source positions respectively,

Y , is a random initial phase. For the m-th receiving module, the sound pressure

and vibrational velocity projections which are produced by a group of point
sources of different powers may be specified in the form

N
p.(t) = —j2nfp D a,®(t,r,r,), m=1,.., M,

n=1

al 6CI)(I o0(t,r,1,)
—Z ) r=xy,z, (16)

where a, is the random amplitude corresponding to the n-th source, the variance

being equal to the source power. Members of the signal matrix may be obtained
by Fourier-transforming the correlation matrix of the received signals (if there is
no noise) to yield:

S,= <UIU') Z Aq(ph(p Lm=1,.,u , a7

ng=1
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where, to reduce the notation, we denote:
(- j2nfp®(r,1,) atlsms<M,n=1,.,N

(18)
‘—aq’g’"’"), r=xatM+1sms<2M
r

S
H
I

r=yat2M +1<m<3M
andr=zat3M+1<m<4M

\

Here A,,q = <an.aq> is the complex covariance of the n-th and g-th signal
sources at some spatial point, at the coordinate origin, for instance:

Aw= anexp G, > ng=1..,N, (19)

where Qng is the mutual power of the sources, Bm’ is the phase delay for the »-

th source relative to the g-th one at frequency w.

Finally, system (14) takes the form

A N
Kin= %Aw(ph(pm.p 0, ILm=1,...,p, (20)

where Q is a matrix that determines space-time characteristics of the noise,
particularly, matrix Q has the form (8) for spatially uncorrelating noise.

If there is no correlation between different signal sources, the number of
upknown parameters is equal to 4N. If the correlation exists, the number of
unknown (real) parameters is equal to 3 - N + (M +3 N)/ 2 — 1 and involves the
following terms:

N signal powers Ang» IG5
N - I phase delays of the signals relative to a single one which is treated as a
reference signal, that is, B = B-B.> and B.=0 for the reference one;
ng " q

sz__ N)‘Z mutual powers ng?
3N spatial coordinates of the sources.
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In the aforementioned list, three initial terms characterize cross-correlation
relations between the sources if they are specified as Ang=an¥p(~Jj [an) (the

corresponding number of unknown quantities is (N* + 3N% —~1), the system
of equations being nonlinear with respect to a,, andp, . Because well-
developed methods for solving systems of linear equations are preferable,

comp'lex quantities 4 g e usually treated as unknown ones. As 4, - A;n
and Ann is a real quantity, the number of unknown parameters that

. - . e 2
characterize the cross-correlation coupling is increased upto N .

Members of the interference matrix le in (20) are to be measured
experimentally. On the other hand, if the spatial noise coherence is unknown,
power levels of all the components (pressure and projections of the vibrational
velocity), along with correlation coefficients between the components, should be
also treated as unknown parameters.

High-resolution estimates of source location

With signals of the pV-receivers, so called goniometric version of the
processing algorithm may be proposed that has asymptotically infinite resolution
and is based on algebraic properties of the covariance matrix.

Usually, the problem statement may be formulated as follows: coordinates
of N uncorrelating point sources are to be found by using an array of M perfect
pressure receivers. Outputs of the M sensors are represented by stationary
random processes with zero mean values and the covariance matrix K, the latter
being obtained by Fourier-transforming the correlation matrix of the received
signals. It is supposed that the sources are fully coherent over the array aperture
and cross-correlation matrix of the i-th source may be specified as a matrix of
unity rank:

*
S =a0ne;. @1)
Here a; is a power of the i-th source, @, is the direction vector that

determines a profile of the wave front, components of this vector depending on
coordinates of the source and receiving sensors; vector (; may be called
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«propagation model». It is also supposed that the noise does not correlate with
the sources and me be described with matrix O = oJ where J is the spatial

coherence matrix, and o is the noise power. Hence, the cross-correlation matrix
of the received signals may be represented as

N
K =) a00 +a. 22)

i=1

Thus, the problem is reduced to finding N direction vectors @, and the

corresponding source coordinates from the measured matrix K. This method
known as the goniometer is based on the «classic» relation [9]:

KerS = |¢,|

4
i=l,N’

1
where Ker is a kernel of the signal matrix S = ZS, , and |(0,~ li_l  isasetof

vectors that are orthogonal to all direction vectors. If w is a vector which
belongs to KerS, Sw = 0 and hence

J'"K-w=0c-w, 23)

that is, w is the eigenvector J ™' - K corresponding to the eigenvalue o which is

a minimum one because S is a pesitively defined matrix. If matrix J of spatial
noise coherence is unknown in practice, the kernel of matrix X may be found

instead of that of J™' - K because two symmetric matrices may be diagonalized
simultaneously [10]:

WIWw* =1 and WKW" = A,

where A and W are matrices of eigenvalues and eigenvectors of matrix J ' - K
respectively. In addition,

WIKW* = A.
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As a rule, the kernel cannot be reduced to a single vector corresponding to
the minimum value of X because this vector is sensitive to inaccuracy of the
measurements. The linear combination of junior eigenvectors for the cross-
correlation matrix may serve as the kernel:

B= fg-w,,

i=M=M,

where M|, is a number of the junior eigenvectors that are attributed to the noise
sub-space. Choosing the values M, and weighting factors &, is governed by a
compromise between the robustness and accuracy réquiremems: at small M,
the kernel is sensitive to random inaccuracy of the measurements, this leading to
poor resultant accuracy; at large M|, some sources may be lost. Finding the
matrix kernel is only the first stage in high-resolution estimating procedure for

the source coordinates. Further, one should test orthogonality of the kernel and
direction vectors that model the signal propagation:

-1

P(x,3,2) = {¢"(x,5,2)- B- B - (x,,2)}

The above considerations are valid if the receiving array consists of
pressure sensors and sensors of the vibratrional velocity components and the
received signals are specified according to (3). Actually, for a point source, the
rank of the signal matrix is equal to unity, and the noise does not correlate with
individual sources. Hence, the cross-correlation matrix may be also represented
in the form (22). In this case, the direction vectors ¢, are to be calculated

according to (18) in view of the fields of pressure and vibrational velocity
components. Further considerations are independent of a specific form of
matrices K, S, and J and components of vectors ¢ that model the propagation
channel. Therefore, the high-resolution coordinate-estimating method is
applicable to processing signals of vector-scalar arrays and may be matched to
signals that propagate in limited or stratified media.

2]

Estimating accuracy of measurements

In inverse problems, a main task is to compensate for the estimate offsets.
To this end, a global extremum must be found. Variances of the estimates
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obtained with the developed models are also of interest. Because -of quasi-
deterministic or random character of the signals and interfering noise, along with
a finite. observation time, the parameter estimates involve errors that may be
calculated as follows.

A potential accuracy, which may be attained in estimating & at given
conditions (that is, source and receiver positions, signal-to-noise ratio, and so
on), is to be calculated by using the Fisher information matrix [5, 11]:

_ K K| i1, (25)
Bu=Tr (K K ﬁ’e,] ij =1L

The lower bounds for the covariance of the estimated parameters (¥ and

@, are known to be members of the matrix that is inverse to the Fisher

information matrix. In particular, variances of the unknown parameters are
diagonal members of the matrix

o’(6)=(B"),- 26)

Now let us derive expressions for estimation accuracy of the parameters
corresponding to the solution of system (14). Due to symmetry of the matrices

involved into the system K = K, the matrix members are determined by

complex values that are within the main diagonal and above it. Values K,
determine both the matrix and vector

G=|K“’Ku,---, K Kn Kn, ..., Kiae I’ @n

/12 in dimensionality. Components of the vector are members of the covariance
matrix that are arranged in an ordered fashion within the rows, starting from the
diagonal member in each row. In view of vector G and similar estimate of vector
G, system (14) may be expressed as G = G. Supposing that this system of
equations may be solved by the least-square method, in view of correlation

between the measured components of vector G, one can calculate variances of
the parameter estimates as diagonal members of the matrix [12]:
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c=@F'B)" @)

- aaeG' , F is the covariance matrix for the

measured values, whose members are F', =cov @ l(;"). Matrix F can be found

in a following way:

F,=cov(G, G,)=cov(R, K,)=(R; Ru)-K, Ku =(UU,UU,)~K, K,

By expressing the 4-th order moments of the Gaussian signals in terms of the 2-
nd order moments, we obtain

Fo= (UUNUUY+ ({UUNUU ~ Ky K= KK,

that is, covariance of members of matrix K is determined by the expectation of
matrix K itself. Then, by substituting the obtained expression into (28), one can
expreqs a member of the error covariance matrix as follows:

oK 1aKmn - aK, —laK,’m\]
Com {,maf ) | = | B G )

In the matrix form, it is equivalent to

-1
Cp= (TY(K_l aIg K QK)]

and is the same as the estimate variance in the maximum likelihood method.

Thus, applying the direct-resolution method to estimation of unknown
parameters froin the investigatig system is a possible way to implement the
optimal method.
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4, Results of simulation

Algorithms of estimating parameters of the signal sources were simulated as
applicd to specific problems of underwater acoustics. It is supposed that an array
of A/ modules is bottom-moored and oriented along the x-axis within a
waveguide, 100 m in depth, the array being symmetric with respect to the
coordinate origin (sce Fig. 3). The pass-band of a narrow-band filter and the
observation time are specified in a fashion that Af - 7 =1, with the central

frequency f, = 100 Hz. The signal-to-noise ratio (for sound pressure) is equal

to 1 at the reception point. If there are several signal sources. this signal-to-noisc
ratio correspond to the first source of mentioned ones. The interfering noise is
supposed to be uncorrelating.

The signal that propagates froin the source to receivers is represented as a
sum of several colierent components. The signal was computed with Belov’s
computer code in an integral representation. The waveguide was specified as a
planar stratified medivm. The upper layer of the waveguide is water with the
sound speed profile ¢(z) and density p(z) = const . The water layer overlies

a system of water-like layers, /1, in thickness, with densities p,, damping
decrements &, . and the sound speed that varies linearly in depth. In turn, this
system of lay=rs overlies a uniform elastic half-space with density p,,, damping

decrement &, . and speeds ¢, and ¢, of longitudinal and transversal waves
respectively

Signal source

Receive system

Fig. 3. Sketch of measuring procedure.
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Comparison of resolution for arrays of different types

Consider the computed potential accuracy of estimating the source
parameters for diffrent types of the used arrays, namely: scalar, vector, and
vector-scalar ones. The following coordinates cf the point signal source (relative
to the receiving modules, see Figs. 1, 3) are specified: x = 100 m, y = 3000 m,
z=T70m.

'If the receiving array consists of a single moduie (that is locats at the
coordinate origin), the signal arrives as a single plane or spherical wave, the
source coordinates may be found by using only the vector-scalar moduie. For
such situation, Table | summarizes rms errors of estimating the source parameter

c(® ), 0=8,x,y,z, where S is the source power, x, v, = are the source

coordinates.
Table |
Type c(s)/s o (x),i c(y),.i 6(z),i
recetving modules
U(p,V) 1.003 122.6 82.1 122.7

If the signal propagates as a single plane or spherical wave, unknown
source parameters are determined by projection components of the vibrational
velocity in a manner that

V.~Sx, Vy~Sy, V,~Sz. 29)

Therefore, with such model of the propagating signal, it is impossible to estimate
all the four unknown source parameters by measuring only the vibrational
velocity components. Additional information on the sound pressure,

p~S, (30)

allows one to obtain the source parameters, even if the simplest model for sound
propagation (3) is used.

If the propagation conditions imply that the signal is a coherent sum of
several components (rays or normal waves), expressions (25) that relate the
vibrational velocity components fail, and singie modules of both vector and
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vector-scalar type may be used to detect the source parameters. Table 2
summarizes the estimation accuracies for such propagation model.

Table 2
Type of receiving s .
modules o(s)/s c(x).i | o(y)i c(z2).
uw) 12.1 326.5 9578.7 129.6
U(p,V) 1.1 683 356 |, 342

An intricate struciure of the wave froni at multi-ray or multi-mode
propagation is more informative than that of a single propagating wave, either
plane or spherical one. That is the reason of higher accuracy in the vector-scalar
coordinate estimating for the received signals that are sums of coherent
components, in comparison with the aforementioned case (see Table 1).

Consider the computed accuracies of estimating the source parameters by
using a receiving array that consists of four equidistant modules located in line.
The computations were carried out for different values of module spacing.

Table 3
Type of Intermodule | 5 (s)/S | 6(x),i c(y),i|o(2)i
receiving spacing, m
modules
U(p) 20 241 T | 21260 | -
25 1,72 45,5 1360,6 -
50 1,06 11,6 346,7 -
uw) 20 1,03 6.8 353 7.1
. 25 1,03 5,0 348 17,1
50 1,03 1,8 19,2 17,1
U(p,V) 20 1,03 3,64 17,58 | 17,1
25 1,03 3,0 17,3 17,1
50 1,03 1,5 15,5 17,1

Analyzing the error correlation function shows that, with the use of the
vector or vector-scalar modules, the estimated source powers nearly do not
correlate with the imeasured x-, y-coordinates, the correlation coefficients being
approximately equal to 0.2 - 0.3 in z-direction. This fact allows one to break up
the algorithm of estimating the unknown parameters into two independent
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procedures (power estimation and coordinate estimation), thereby significantly
simplifying the processing software and making the computations faster.

The computations show that the advantage of the vector-scalar receiving
modules (in comparison with the scalar ones) is especially high if the aperture is
of the same order of magnitude as the distance, or if low-frequency broad-band
signals are processed.

Goniometer simulation

To analyze detecting the source coordinates with pl-receivers, we
simulated the aforementioned high-resolution method (see section IIi). In theory,
even if the only pV-receiver is used, locations of at least three individual sources
can be determined. Therefore, the following situation was simulated. The source
coordinates were specified to be (0, 0, 100). Three individual source of equal
powers were placed ar the same depths, their coordinates being
7, = (100,1200,60), r, =(200,1000,60) and r, = (300,1100,60). The
scanning weights were matched to the structure of the propagating signal. Figure
4 shows the output response of a single p¥-receiver that scan the x, y-plane, the
focal point coinciding with the actual source position in z-direction. Similar
output responce is presented in Fig. 5 for a recciving system consisting of two
pV-receivers which are 10 m apart from each other on the x-axis. Figure 6 also
shows the output response of the two-module receiving system (of two pl-
modules) for a situation when there are five individual equal-power sources at
points 1 = (100,1200,60) , r, = (200,1000,60) , r, = (300,1100,60),
r, = (400,1100,60) and r; = (500,1150,60). A receiving system that consists of
scalar sensors can resolve three individual! sources if there are at least four
pressure receivers in the array. Figure 7 presents the output response of the 4-
element equidistant scalar array located at a depth of 100 m, the interelement
spacing being equal to 10 m in x-direction. With the high-resclution signal
processing and matching the algorithm to the propagatior channel, this system
rather well determines the source locations though its near-field radius is only
=120 m. Of course, the p¥/-array is much more effective because, first, there no
false peaks and the riumber of detected sources corresponds to the true one, and,
second, a high 1esolution of closely located sources is attained, even with a
single pV-module rather than with finite-aperture array.
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Fig. 5. Output response of receiving array consisting of two pV-modules
(3 sources).
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Fig. 6. Output response of receiving array consisting of two pV-modules

(3 sources).

Fig. 7. Output response of receiving array consisting of four pV-modules
(3 sources).

According to the computations, when the array aperture increases, the
signal-to-noise ratio rapidly decreases for the receivers that are far from the array
center. As a consequence, these receivers do not significantly contribute to the
source resolution. Thus, the signal processing for detection of the noise source
parameters shows that an optimal aperture exists for both scalar and vector-scatar
receivers, this aperture yielding the maximum resolution. For the same channel
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number of either scalar or vector-scalar array, the latter one exhibits higher
resolution and accuracy. especially if low-frequency broad-band signals (broader
than a half-octave) are processed.

The output responses shown in Fig. 8 illustrate the effect of changing
frequency on the resolution of a single vector-scalar receiver and that of a scalar
array consisting of four sensors that are equidistantly spaced by 10 m in line.
Two individual souices of equal powers are located at points », = (100, 1000, 60)
and r, = (200, 1000, 60).

)

Fig. 8. The goniometer output response (two sources): a) vector-scalar
module, f = 100 Hz; b) scalar array, f = 100 Hz; c) vector-scalar module, f = 30 Hz;
d) scalar array, f= 30 Hz; e) vector-scalar module, f = 10 Hz; f) scalar array,
f=10Hz.
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Estimating directivity of sound source

If a directivity pattern of the source is to be estimated, a source model is
usually specified that is represented by a point multi-component unit consisting
of several elementary monopoles, dipoles, quadrupoles, and so on. The
directivity pattern depends both on relative power levels of the elementary
sources or their orientations in space and on the cross-correlation coefficients or
phase shifts between them. If the cross-correlation relations are to be accounted
for, a number of unknown source parameters is significantly increased, and
hence the problem becomes more intricate, especially at low signal-to-noise
ratios. Attempts to suppress the measurement errors by increasing the data
acquisition time may not lead to the desired result because of instationarity
caused by variations ot noise at the source, changes in the transfer functions,
instability of relative source and receiver positiens, and so on. If vector-scaiar
receivers are used, the source directivity can be estimated at short observation
times because the measurements may be performed at a close vicinity of the
receiving array. In this case, the source usually cannot be treated as a point one;
it should be rather considered as a system of several individual sources separated
in distance. Positions and types of the eiementary sources are supposed to be
known for physical reasons or from a priori data. Another opportunity consists
in using the experimental reconstruction [13, 14], further aigorithm serving as a
starting point for this approach.

We has shown that the accuracy of parameter estimating from the system of

equations (20), of the form K = K, is the same as that potentially attained. In
addition, analyzing the Fisher information matrix show that estimating the
source coordinates and power may be broken up into two independent
computing procedures, this break up having nearly no effect on the accuracy of
parameter estimates. Therefore, to estimate the source directiviiy, we use the
system of equations

A N
Klm = EA"‘I(PIn (pmq

as a basis. If the source coordinates are known, this system may be rewritten in
more “traditional” form that corresponds to the system of linear equations:

G=hB0. (€2))
Heie, vector column G is obtained from the measured sound field, B is a matrix
of coefficients, pz - N? in dimensionality, which relates the pz measured data

(members of the covariance matrix) to N 2 unknown source parameters. Matrix
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B is to be calculated with the use of the waveguide transfer function that depends
both on its parameters (including the sea-floor ones) and on geometrical
characteristics of the system layout (coordinates of the sources and receiving
modules). ’

With the least-square method used relative to the parameters to be found,
solution of equation (31) may be obtained in the form

6 =(B'B)"'B'G , (32)

if (B*B) is a full rank matrix. This matrix may be singular in the only case
when a redundant parameter is being estimated. For instance, if linear form
G@®)=f,+ f,0 + f,0 is used instead of G(O) = f, + f,0 . In general,
redundancy takes place if the columns of matrix B are linearly dependent. For
the problem at hand, ciosely located signal sources may also result in a weakly

detemined matrix (B*B), the solution being inaccurate in this case. To provide
robustness of the solution, additional limitations should be imposed on values of
the vector O of unknown parameters. The solution is regularized by adding the
equations

€0,=0, i=1,..,N,

where N is the number of unknown parameters. Constant € is called the
regularization parameter, and solving relative to the desired parameters yields:

6=(B'B+ ezE)" B'G. 63)

The regularization provides that no singular value of matrix B can be less
than € and hence the least-square solution exists always. A choose of the
regularization parameter depends on the noise level. At low signal-to-noise
ratios, the noise level increase at singular values. In practice, it is advantageous
to specify € to be equal to the maximum singular value which is supposed to be
determined mainly by the noise in free-space far zone.

Figures 9 and 10 show the computed directivity patterns for the source
whose model coresponds to three point monopoles arranged in line and
separated by 5 m. The receiving array is supposed to consist of four equidistant
pV-receivers, 50 m apart from each other. The center of a muiti-component sourcc
lies at point r = (0,100,60). Belov’s integral-form computer code was used to
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calculate the acoustic field that is produced by each soarce at the receivers.
System (20) was used to find members of the covariance matrix for individual
sources. The found members are nearly the same as the theoretical ones.
Therefore, the directivity patterns, which were computed for the theoretical data
and for those yielded by simulations of the measurements, nearly coincide
(curves / and 2 nearly cannot be distinguished from each other in figures). To
calculate the directivity pattern of the multi-component source for standard free-
space conditions, the following formular was used:

L) = 2.9,(0)4,,0,6)

where @(@) is the transfer function for an infinite homogeneous medium. In
addition to the estimated unknown parameters and computed directivity patterns,
the accuracy was calculated for estimating the covariance mawix of the
individual sources according to (25). In computing du'ectlylty patern  £(0)
according to (28), the accuracy was also recalculated to estimate rms erors of the
patterns. In Figs. 9 and 10, 66% confidence intervals are shown for values L(9)
(curves 3 and 4 ). In both figures, a direction of 0° corresponds to the x-axis
along which the sources are located. The phase shifts between the sources were
specified by using a generator of random numbers.

Fig. 9. Directivity pattern of 3-component sound source. It is obtained from
measurements by normalizing to free space conditions. Waveguide depth is 100
m. Correlation coefficients between the sources are p = 0.7, phase shifts are

B,=1807°, B,=14°
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Fig. 10. Directivity pattern of 3-component sound source. It is obtained
froin measurements by normalizing to free space conditions. Waveguide depth is
100 m. Correlation coefficients between the sources are p = 0.7; phase shifts are
A, =807, B,=-186".

Conclusion

The proposed method of forming the vector of measured quatities allows
one to apply the well-developed efficient algorithms to processing and analyzing
the data when vector-scalar receiving arrays are used. It is shown that the system

of equations K = K may serve to implement the optimal processing method and
may be treated as a basis for solving a number of practical-purpose problems.
The presented calculations illustrate a high resclution of the vector-scalar
receivers, especially if finite-aperture arrays are used. The advantage of the
vector-scalar receivers is most pronounced when broad-band signals are received
within the near zone. It is shown that a group of vector-scalar receivers spatially
resolves components of a complex source and yields the correlation coeficients
and phase shifts between the individual sources, this serving as a basis for
prognosticating directivity patterns of the complex sources in free space. The
developed technique and computer software allows one to solve a number of
applied problems in underwaier acoustics and hydrophysics.
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EMISSION TOMOGRAPHY RECONSTRUCTION
OF BUBBLE PLUMES ENTRAINED BY BREAKING
WIND WAVES

LP. Smirnov, JW. Caruthers, A.I. Khil'ko, and P.A. Elmore

INTRODUCTION

The goal of this article is to offer some ideas and schemes for
estimating parameters related to localized distributions of point noise
sources. The example system of noise sources envisioned in this work is a
collection of individually oscillating bubbles which were produced at the sea
surface by breaking waves and entrained to some distance below the surface.
This collection having thereby formed a cloud of tiny sound sources whose
characteristics we wish to determine. The method developed here for
accomplishing this we will call emission tomography. Emission
tomography involves the passive observation of a localized collection of
sound sources using a complex system of linear antennae. The system
provides a series of two-dimensional projections of the noise distribution.

From a physical point of view, the indicated process is reduced to a
solution of an inverse problem consisting of the reconstruction of an
extended inhomogeneous, non-stationary noise acoustical source in a
randomly inhomogeneous refractive oceanic waveguide. This problem is
closely associated with observations of broadband acoustical noise point
sources. However, such problems are usually formulated for moving
low-frequency point sources, so that a central use of this problem consists
cf separation of distortions, which are introduced by oceanic multi-wave
oceanic environment.

We shall begin with a discussion of the current understanding the
characteristics of bubble plumes entrained by breaking wind waves, and
their numerical simulations appropriate for our application will be
presented. This will be followed by the development of the principles of
emission tomography in a form applicable to reconstruction of some of the
characteristics of the plumes. Finally, their tomographic reconstruction is
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1. BUBBLE PLUMES IN THE OCEAN

A large portion of intensively fluctuating and oscillating bubbles are
just under a breaking wave on the surface of ocean. Some fluctuating
bubbles rise to the surface [1,2]. This process produces broadband acoustic
noise in the ocean. On the one hand, such noise can mask desired signals
for passive and active acoustical image systems. On the other hand, such
noise can be the signal of interest. It may be necessary, for example, to
estimate parameters of a cloud of bubbles arising due to engineering
activities or hydrophysical processes on the ocean surface. In such cases
there is the problem of remote diagnostics of noise sources associated with
clouds of bubbles, in particular, those arising from the breaking surface
wind waves.

Two factors compound the problem of tomographical reconstruction
of noise-source parameters associated with cloud of bubbles produced by
breaking wind waves: multi-channel propagation caused by the influence of
the refractive nature of the inhomogeneous oceanic environment and non-
stationarities of noise acoustical sources which limit the time available for
averaging. The existence of inhomogeneities resuits in additional decreasing
of the coherence of radiated noise that limits the effectiveness of
reconstruction of the noise-source characteristics [3]. In addition to volume
random inhomogeneities, the rough surface plays a role; however, we shall
not consider surface-wave effects.

The inversion of received noise-source signals has been investigated
in terms of reconstruction of their location and signal characteristics in a
homogeneous waveguide [4]. Other aspects of the formulated problem have
also been investigated [5-11]. In particular, some were: (a) Coherence of
bubble-plume noise were investigated experimentally [5], (b) Phenomena
associated with the low-frequency bubble-plume oscillation as the collective
oscillation [8], (c) Analysis of various aspects of underwater sound
generation by breaking wind waves [9], and (d) development of physical
models to describe the bubble-plume noise generation by different types of
breaking wind waves [10,11].

Our present effort will attempt to reconstruct the noise-source
location, size, and evolution in an inhomogeneous refractive oceanic
waveguide with additive noise. We shall also investigate the influence of
randomly distributed oceanic inhomogeneities on the reconstruction
efficiency of the bubble-plume parameters.
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1.1. Characteristics of bubble plumes

As follows from both theoretical considerations and experimental
measurements, weak and moderate spilling as well as plunging breaking
wind waves can exist. Noise generation is a complex phenomenon which is
developed in space and time domains. Acoustical sources associated with
noise radiating of by bubble plumes are localized in regions limited by depth
and width in the order 1.5 - 2 m [12,13]. The length of a noise source is
close to the breaking area of the wind wave, that is approximately 4 - 6 m.
The density of bubbles are distributed nonuniform within this regions: the
major part of bubbles are situated near the surface of the ocean. Thus, the
high density region of bubbles in a plume can be in a layer with a depth
about 20 - 40 cm. The void fraction in this region can be more than 15 - 20%
in the bubble plumes. The average sizes of bubbles is about 0.2 - 0.4 mm;
while the range of sizes is from 0.05 - 2 mm. The duration of the noise
radiation is of the order of 1 - 5 5 [12,13] and is broadband (10' - 10° Hz)
[1,8,14,15] and partially coherent [21].

A dominant source of the noise is now understood to be bubble
related. Individual damped bubble oscillations create higher frequency noise
(above 500 Hz) at sound pressuce levels of 75 - 80 dB relatively 1 uPa at
one meter. The acoustic frequency that each bubble produces is inversely
proportional to its radius [18]. Since a range of frequencies radiates from the
cioud, a distribution of bubble sizes populates the cloud (for a review of
bubble distribution measurements in bubble plumes, see [19]). In addition
to individual bubble oscillations, the bubble cloud often undergoes a
collective oscillation [1,8,17]. This mode of oscillation radiates low-
frequency (tens of Hz) acoustical noise at sound pressure levels of 100 - 110
dB (collective oscillations seem to occur only with plunging breakers [1]).
Higher frequency noise is observed to be continuous throughout the air
entrainment process. Low-frequency noise, however, is observed to occur
only during the middle of the entrainment process [8]. Laboratory
experiments [10, 20] seem to indicate that many of the detectable individual
bubble and collective oscillations probably are close to the surface.

1.2. Modeling bubble-plume acoustics

We may consider the characteristics of a bubble plume to be the set
x={r,flr) ,N, ¥(r,r)} , where r is the plume’s central position, f{r) is a
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function describing the geometric form of the plume in a fixed coordinate
system with originat » , N is the number of actively oscillating bubbles

in the plume, and ¥(r.r) is the autocorrelation function of a pulse radiated by
a bubble at the point r .

Consider a system of N»1 bubbles in the region @ forming the
plume. Let the bubbles have random positions, r,, i=1, N, within the region,
so that the plume’s form is specified as a statistical variable with f{r) the

probability density function of the bubbles within Q . The mean number
of bubbles, n, in any subregion, Q’, can be found by integration of this
function over the subregion:

n =foff(r)dr.

We develop the form of the plume as both a Gaussian and a non-Gaussian
model. However, only the Gaussian form will be carried forward in
subsequent development. An ellipsoidal geometric shape for the plume is
considered.

We assume that each bubble, once excited, will produce a damped
oscillatory impulse specified by &tr)=E(r). Let ¥(rr)=¥(r) be the

temporai autocorrelation function for each impulse. Then,

(@) = [ TEOE s~ [TEDEEDr

where T is the observation interval. The energy emitted by each impulse is
W,=¥(0) . For later reference, we note here that ¥ (1) is a deterministic
function for a given bubble, but that the bubble positions and initiation times
are random. So that, the set {¥(z),i=1,N} is a random functjon.

Initially, we follow a single-ray approach in which it is assumed that
the impulse from any bubble arrives at an observation point, R , (assumed
to be large compared to the dimensions of the plume) through only a single
unique ray. We later generalize this to a multi-ray approach. The total

signal, n(t.R), received from the plume at the observation point and over the
observation interval [0, T] can be written in the form

W) = T AR-T)omleR) = AL Ee-TyenluR), M
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where n(t.R) is the random stationary background noise field and 4, and T,
are the propagation amplitude and time, respectively, from the ith bubble to
the receiver. Although the individual bubble pulses are damped oscillators,
the received field, n(.R), is stationary on the observation interval. An
exact expression for the 1mpulse time delay has the form

= T+l ”_) Mq,' o(q))

-where T is the tiine delay for the central point, r , of the region ‘Q (57)
is the scalar product of vectors, & andz are the direction of the ray and the
sound speed at the central point, respectively, with e, defined by (€e,)=0 , 9,

is the angle between directions to central and ith points of the bubble plume,
and O(g, represents higher order terms. Since we have assumed large

propagation distances, the amplitude is/éppfoximately independent of the
bubble position in the plume and its propagation time is approximated by

T, ‘~ f+@.
c

Figure 1 shows these parameters graphically.

Ray
Path

Figure 1. Sketch showing bubble
plume spatial variables.

Writing signals in the form of (1), for two observation
points, R, p=12 , we have

WR,) = 4L EfT0)eAR,), =12
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For the above equation, we have also assumed the signals are linearly
filtered as the first step in processing, and denoted them by (7).

The cross-covariance function between the received, filtered, random
signals (assumed to be stationary) at the two points is

T
KR I,Rz’t = (ﬁ (’ 1,R|)ﬂ(tpR2)> = f ﬁ](’) ﬁz(t +0)dt =
0

T
= AlAzz E fzi(t 'T(tl))zi(’ﬂ_T?))dt * <ﬁ(t|’R|)ﬁ(t2’R?» = @

= 443 fE;(t -I)E(t+a-TP)de + fg(t,lR ~R,|)dt =

-4 4,Y ¥ (e Ti'%) + Tg(lR “R) .

where T is the integration time of the filter, () denotes statistical averaging,
and the form of the filtered noise is prescribed by the equation. Finally, we
write this as

KR,.R,;7) = k(1) +k,(7) )

where the definition of the two terms on the right is specified by inspection
of (2).

In the above development the integration time, 7, is presupposed to
be sufficiently large in comparison with correlation time of the partial
pulse', then

Tuz) 7(2) 7(1) (’i"';ez“el) =T +(’i"’;a
I CT 12 ‘—. 4

=e, = ¢-e T, = Tz‘Tn-
As the number of bubbles becomes large (i.e., N-«= ), then, according

to Bernoulli’s theorem, we can replace the sum of independent random
variables in (2) by their mathematical expectation. We also re-insert the
explicit dependence of ¥, on r; to get

T,, T, &, &, are the corresponding parameters for central point of region,
e

' But less than the duration of the plume’s existence and sufficiently small so that the
second (noise) term in Eq. (2) remains less than the first (informative) term. 143



koA ALY He-1%r ) = 4,4 Nﬂ(‘l’(t o )] "‘) ))f(,)d, -
= A4 N]ﬂ‘<~y(r T,- mr)) fr) dr @

The above procedure, in effect, takes the discrete noise sources in the region
Q and smears them over the region into a continuum . We define the
following quantity

K(zr) = A,A2N<‘i'( r-f,,—i’-'?f@,r] ) 5

and substitute it into (3) to get
k() = m‘ K@,nAr)dr .
Q

Substituting this into (3) we get

KR.R,1) = fl]k(t,r) Ar) dr+k ) , ©)

which is a Fredholm integral equation of the first kind. Equation (6) will be
the basis for the development of emission tomography as developed in the
Section 2.

1.2.1. Gaussian temporal model for individual bubble statistics

Let us assume the following Gaussian model for the autocorrelation
function of a single pulse, &(,r):

(‘f’(t,r)) = W(r)exp( —ﬁz] cOS®,T , )

T

where o, is the central frequency, <, is the correlation time, #(r) is the

filtered energy of the impulse (corresponding to the previously defined
discrete energy W,). As follows from (7), the statistics of all bubbles pulses
is assumed to be the same, except the full energy, that may depend of the
bubble radiation point, r . If the passband of the filter is sufficiently small
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in comparison with the original bubble-pulse bandwidth, then the form of
(7) is really defined by the transition function of the linear filter, so it may
be considered to be known, and its parameters, o, and t, , can be changed
by the observer.

1.2.2. Gaussian spatial model of a bubble plume

' Let the probability density function, f(r), of the source spatial
distribution have the form

Sy = ——

V(2n)® detA

where the symmetrical, positive semi-definite matrix A describes the
spatial form of the plume which we chose to be an arbitrarily oriented
ellipsoid (r; A"'r) < 1 with the center in the origin of the coordinate system

Suppose also, that full energy of pulse depends on the point of
emission by analogous formula

W(r+r) = Woexp( —%(r;Gr)] , 9

exp( —%(r;/\"r)) , 8)

where G is a positive semi-definite matrix. Matrices A and G may depend

on the each other. For an example, the case of the similar matrix, G = AA™!
may be considered. When 1=0 , the energies of all pulses are equal.

If the distributions, Egs. (7,8,9), are substituted into (4), then the
following expression for the correlation moment is obtained (see Appendix
A):

k, = kSVBy exp(-Bg?-(1-B)p?)cos2Ppy , (102)

where
k(o) = AANW
12 = 1772 0

®,T —
p= —=, e =ct, v=LE@)I,
2 (10b)
t-T
q= 2% = el = [2sin2],
T 2

y = det(I+A7'G), B! = 1+v2D?

The above parameters have the following meanings: p is the base of
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impulse; q is the relative delay, i.e., the difference between pulse travel

times to the hydrophones from center of the plume in units of t, ; / is the

scale of coherence of pulse; v is the relative generalized size of the plume
in direction of vector e in units of L ;0 is the angular size of the antenna

base from center of the plume; and ¢ is the angle between vectors e, and
e, .

Graphs of k,,/k3\/y as functions of v for given values p and g are

represented in Fig. 2. For fixed values of the parameters p and B the

mutual correlative moment, £ , is maximal:
0 vioip? 0)
k™ = k&’«||—$;m( ”Tﬁ) = kY VBy exp(~(1-p)p?) , an

when ¢ =0 (i.e., t=T,,). For a fixed position of the antenna, we can
change the relative delay, q, artificially in an electronic manner and get
maximum value of the moment.

Figure 2. Plots of k,,/ k,(g) v of as a function of (v®) for (a) g=0 and (b)
q=0.5.

From the last remark the possibility of measurement of the parameter /,
follows. For this purpose we can measure the dependence of the electronic
delay that maximize the moment on the angle a between the line of
hydrophones and the direction to the plume. This dependence has the form

At=(2d/l)cosa . Measuring this function, we can find the relative size,

p = d/l, , and the direction angle to the plume. Also note, that for given
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values of the base, p, and the relative delay, g, the maximal value of the
correlative moment depends only on the product vo .

In limiting cases it is possible to derive from (10) an approximate
formulas for the integral correlative moment:

if vb«1,then Kk, = k5 exp(-g2-v*0%p?)cos2pq

if vb» 1, then k, = kS exp(-p?)/ve .

1.2.3. Non-Gaussian spatial model of a bubble plume

Let the plume’s probability density function be
1) = C(r;0r) CXP( -%(";C "')) ’ (12)

where € = (TrCQ;/(21:)3detC)'l is the normalizing constant’, Tr(.)is the trace
of the matrix (.).

In describing the plume form, matrices C, Q are assumed
symmetrical, positive definite. In particular, for Q=/, C™' = 2r;I the

plume of spherical-shell form can be obtained from (12). The equation for
the correlation moment in this case is derived in Appendix B:

= —k‘°\/ﬁexp( -Bg>-(1-p)p?) x

(13)
x ((2+B+2(l3 - ')fp -¢?%) cos2Bpg - pg(B-B™") sin2Bpq) .

In the particular case when ¢=0, i.e. 1=T,, , the maximal value of the
moment kY is

k™ = ;k‘°’ Bexp(-(1-B)p?)(2+p+2(B-p")p?) .

2 The ¢ondition of normalization for the density function f(r) is

ff(r)dr =C f(r,Qr) exp( -%(r,C"r)] dr = CTrQ7Cy(2n)’detC = 1 .
R? R?
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The results of comparative calculations of the correlative moments
(Egs. (10) and (13)) as functions of v and & for given values of p and g

are represented in Fig. 3.

Figure 3. Correlation moments as function of v and ¥ for an ellipsoid (left
column) and for a spherical shell (right column).

Plots of the function ABp)=yBR+p+2(B-1/p)p2exp(-(1-p)p?) for
different values of the parameter p are represented in Fig. 4. Let us note in
that figure that for any fixed p>2 the function f£{B,p) has the local

minimum at some B*€(0,1) which is the root of the cubic equation
2p*(1+2p%)B* +(3+10p ) P> +2(1-2p*)B+2p? = 0 .

For this root we can derive the asymptotic (forp» 1) expression

1
pi2p*+1) -+ 2p?

This fact can be used for the experimental estimation of the plume
size. While increasing the angle size of the base ©, the moment first

decreases then begin to increases. The minimum point corresponds to
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V'O. = .};—lnM.
B

min sz—l

So, if we know & __ we can estimate the relative size of the plume v .

3

mm

p values

a 0.1
b 1.0
c 20
d 3.0
e 50

~

flep)

01 0.2 03 04 05 06 07 o8 09 8 1

Figure 4. Plot of function f(B,p) for several values of p.

1.3. The case of small antenna size

For small sizes of the plume (in comparison with radii of curvature of
the phase front) and the base, d, of the receiving system, taking into account
the theorem of duality for the geometrical acoustics approach, we can write

d - RJFo
() = RVFv,

where d =dsina is the cross size of the antenna, v is the angular size of

the plume from the central point of the antenna, R is the distance to.the
plume, Fis vemcal focusing factor of horlzontal-layered medium. So,
L(e)

’e

vo = L&)y .

L

Sy ey,
"
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where p_ = d /I, is the relative cross size of the antenna base.

Hence, for small plumes and receiving systems we can also use
instead of (10) more simple and convenient formula

2,22
k, = k9—! exp[ -1 ,,”2) cos—24_ (14)

N Lol Leply?

As function of the product p y

O (vl
k,,(0) k,zmexp( “(M)z‘) , 15)

is strictly monotonically decreasing, taking its maximal value for zero value
of the argument. It decreases for three times when p y ~ exp(1-p?) . So, the

condition of high correlation in two points can be written in the form
By < exp(1-p?) . (16)
From this, we see that correlation is large for a small angular size of a plume

and small size of an antenna. When time of correlation, 7 , increases, the

base of impulse, p, increases also, and this can lead to a conclusion about
decreasing correlation. This conclusion is wrong, however, because the
condition (16) by itself is correct only for bounded values of p. Actually, the
correlation (11) is small for small values of T because, in this case, the

base of the receiving system exceeds the spatial scale of the correlation of
the impulse, and for large values of t,, the correlation becomes large,

independent of this parameter.
1.4. The multi-ray approach

The results of the above sections can be simply generalized for the
case of multi-ray type of pulse propagation. Let signals in two receivers be

R = XA, Y L1, JnR) . p=1.2,
J i

where index j marks rays connecting the receiver with the plume. The
mutual correlation moment of signals after linear filtering is
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T
KRRy = [,()f(+v)dt =
0

T -
- ? YAA Y [H-10r JEb-12,r, )t =
- ; ZIAUA._,J.,Z'_: @(Tfl'f,’,r,) +TZ(R,-R)) »

where 7‘;]2,) = Tflz)—T(;,) = f‘,’éx@;e”/)/(?, i,‘;t)s ﬂ,_')—i(,") R eﬂ;EE(Z’LE({') .
For pulses with correlation function (7), equal energies, W, , and

Gaussian form of the plume (8), we can derive (see Appendix C) the
following formula for the moment:

2 2 .2
a0, 209
oEAUAz, \/—1— p[-" ) ;/]cos !
1+v" 0

2 2 ’
1+v ﬂz 1+v
i 1/’012:’

where .= le,d , q,=T5 %, , p = 0/2, v,=LE Nl .

If the size of the antenna array is small in comparison with the scale
of ray map, then sets of rays connecting the plume with different
hydrophones can be considered as similar in the sense that, for any ray for
the first receiver, there exists a close one for the second receiver. Neglecting
correlation among pulses from different sets of rays’ and differences in
amplitudes of pulses in different receivers, we obtain the following simple
representation for the mutual correlative moment:

N
k(1) = NW, ¥ 4 exp i)
12 0 J T3 292 242
T i 10 12

* Assume, for example, that the difference in impulse delays for different rays are

much more T -
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2. THE APPROACH OF EMISSION TOMOGRAPHY

A set of unknown characteristics of a bubble plume,
x={r.fr) N, ¥(v,r)} , was defined in Section 1.2. Let us assume that we have

some indirect knowledge of x based on a measured set of data, u, from
which we seek to understand some of those characteristic. In general, the
problem is stated in the form of an integral equation, i.e.,

u=Ay, (17)

where integral operator 4 describes the properties of the transmitting
medium and the receiver system. Symbolically, the problem reduces to the
solution, y = A7'u . Practically, however, (17) is ill-posed, and, therefore,
can be solved only with the use of additional information about the bubble
plume. A means of solving such an inverse problem can be based on
computerized tomography [22].

2.1. Multi-element array of receivers

In the capacity of the indirect available information, », about bubble
“plume, we could use the matrix k{r) = ) = {k,0)} = {HR.R 1)} of the mutual

correlation moments of signals received on pairs of hydrophones of an
antenna system and passéd-through preliminary filters. We now have a
matrix of Fredholm integral equations of the first kind representing all pairs
corresponding to the single pair represented in (6):

k (t)+ [[fl((t,r) flr) dr = ki) . (18)

The noise correlation is a matrix of values representing all the hydrophone
pairs, i.e., k,(1)={k, (1)} .
Other parameters in the equations of the previous section must be

subscripted,with ij as well. We repeat those here for completeness. The
kernel (5) takes the form

K(,r) = {K e r)} = A AN <‘i’(t—7_‘,.j-(r -}';'e'yi),r» =
= A AN W(r) exp(—(t—f,.j—(r -re,/ E))2 / 1:2) cosmo(t—ij—(r—?';é'y. / a) .

Since the parameters, 4 N, W(r), are not known a priori, we restrict

iy ,p ,Js
the set of possible solutions of (18) to a set of Gaussian functions (8). We
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also consider only the case of equal energy pulses, i.e., W(r)=1, .

2.2. Plume parameter estimation

In this section, the possibilities of reconstructing the forms of bubble
plumes are considered. A geometrical acoustics approach for describing
sound propagation in a waveguide is used. A plume is presupposed to situate
under the free surface in the search region Q at the vertical distance H to
the antenna system know a priori (see Fig. 5). The receiving antenna system
is assumed to be a collection of linear hydrophones antennae situated on the
bottom in a symmetrical form about their geometric center. For every pair
of hydrophones, the mutual correlation moment of the received, prefiltered
signals, k,,.(t) , are measured.

Y ;z %
§

—_

——
—-
-
s
7
’

1
i

Figure 5. Scheme of the experimental system.

As a method of regularization, the reduction of (18) to nonlinear
algebraic system is used. For this, we restrict the set of possible solutions of
the integral equation to the parametric one, using appropriate information
about plume’s form (e.g., ellipsoidal as use here). Now one can converge
(18) to the system of nonlinear algebraic equations

kO +k B exp(-B,a;-(1-B,)p?) c0s28,pa, = k) a9)

ni )
with respect to the unknown values 7 and A defining the position and

form of the plume, respectively. Some of the quantities defined in (10b)
must now be subscripted as follows: 153



B,;.' = l+v§.fr2

ij 2

v, = L@, ©,=le). g, =[-T)r,.

The reconstructed parameters are of a geometrical type. Because of
the multi-extremality feature of such functions, global searching of the
parameters, minimizing a residual function, is not the best way to solve the
problem. So, we split the procedure into a sequence of sub-procedures
(steps). Each step to the definite group of parameters estimation is defined.
The method of choosing a group is the minimal dependence of it
determination with respect to other groups. The received estimations in the
next steps may be used. Such an approach makes it possible to take into
account the specifics of a problem and the roles of different parameters in
the correlation function.

First group of reconstructed parameters is the coordinates of the
plume center, r . Plume dimensions, A , forms the second group. As
established in Section 1, for small plume-angle size, the maximum of the
correlation moment approaches the artificial time delay (the same for all
plume sizes), that compensates the time delay for the plume center. This
allows for finding the plume center with high accuracy for unknown plume
dimensions. Conversely, it allows the possibility for artificial compensation
of the time delay for increasing the accuracy of determining plume
dimensions in the next stage.

2.3. Bubble plume form reconstruction with a triangular receiver array

Let us consider an antenna array in the form of a triangle, i.e., three
linear arrays of hydrophones. The plane of the triangle is assume to be the
horizontal xy-plane. The center of the plume, O, is disposed at some
unknown point,(x,y,z), with relative linear dimensions L, ,; ; the centers of

the linear antennas (1,2,3) are disposed at known points,0,,0,,0, (see Fig.
6). Let the coordinates of hydrophones on linear antenna arrays be x, ,,(?) ,
7125, 1=1.2k . The hydrophone pairs / and 2k+1-/ are symmetrical about
the center of each antenna.
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Figure 6. Delta-Frame antenna system for observing bubble
plumes.

The plan of reconstruction of the plume parameters includes the four
steps shown in Table I. We consider the four steps in detail in the
following:

Table I: Procedures for reconstruction of plume parameters

Step | Procedure

1 | Determination of the coordinates, (x,y,z), of the plume
center, O.

2 | Estimations of relatives linear sizes of the plume L,,, in

common planes of the plume center and linear antennas 1,
2, and 3, respectively.

3 | Reconstruction of the original sizes and space orientation
of the plume.

4 | Correction of the plume parameter.
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Step 1. Determination of the coordinates, (x,y,z), of the plume center, O.

The time delays from the plume center, r,,.()) , to the / hydrophone
of this pair is

o Fiaa(D R (241D
aT, 3Gy ) = =22 -

c
) %'(‘[(’?—x 123D+ 0y, 530 +27 - ‘/(’7 X 532k 1=D)+(r-y, , (2k+1-D)) 427 ) .

We seek to minimize the function
Fxyz) =
: . qON @, n\2 ©),n\2
= Y [eT@pzd -a1O0f + 5Ty - TEOf +(s Tz - T0F |
=1
where a7(9, the measured (electronic) maximal time delays from the

hydrophone pairs moment is maximal. This, of course, is possible only if
the plume life is much greater than the integration time, 7. The minimum
value of this function provides the estimated location of the plume’s center
point, (x*,y*,z").

These measurements should be made in a wide band (for small value
P), since, for narrowband measurements, the dependence of the correlative
moment of g has multi-extremal character that leads to problems in
measuring time delays.

Step 2. Estimations of relatives linear sizes of the plume L, ,, in

common planes of the plume center and linear antennas 1, 2,
and 3, respectively.

Consider one of the linear antennas. Use the previously measured
time delay, a7, for electronic steering of antenna into its traverse planes.
Then consider the pair of hydrophones with maximal base, (1,2k). As
follows from equations (2) and (11) for the respective time delays, the
maximal value of the correlative moment is

kllgzx =k1(32—\/-1_—— exP(YmaxP 2)+T3(d) P (20)

2
1+ max

where d is the antenna length, v is the relative generalized size of the
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plume in the plane of linear antenna and the plume center,
= -v202, /(1+v*6%.) , and @__ is the angular size of antenna from the

ymax

plume center. The angular size for the antenna can be can be determined
from
0> /2 =1- (7 =x)(x T2+ Ty )0 T ) 2 2

max 4
"\

R D R AR

Yo = \/(x"xzk)2+(y‘—y2k)2*z 2 s

once the center position of the plume is estimated (step 1).
Measuring values of &, for different p (by receiving signals
through narrowband filters of width 1/z, at different central frequencies,w, )

we can estimate the informative parameter, v, . However, k3 and Tg(d)

are unknown, and must be eliminated. In the case ng(d)\/ 1 +vze§m| «k? the
function

k@) exXplln, PYT1v6,, gld) 1k
BEP)  explyy i TyT w0 18

where p, is a fixed value of p, may be considered. The coefficient vy, can
be determined by the method of least squares. If the correlation moment of
the background noise, Tg(d), can be measured, then greater accuracy can be

obtained by the function
ki (p)-Tg(d)
ki (p)-Tgld)

- exXp(lpa@?-PD) s (21)

= exp(Y,, (P 2-P))

From this formula we find a generalized size

Vemax = - Ymax 4
l""Ymax

L = vlé.

Accordingly, the generalized sizes L,,, are found in this step.
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Step 3. Reconstruction of the original sizes and space orientation of
the plume.

In this step, plume dimensions and spatial orientation are determined.
The general formulation of the problem is: For m given unit vectors (i.e.,
antennas orientations, three in our case), e,i=1,m and corresponding

generalized dimensions, L(e) , the original dimensions of the plume (the
diagonal of matrix C, ) and the plume’s orientation in the space (matrix U)

are to be determined. (See Appendix A for C=U*C,U.)
The problem may be transformed to solving of nonlinear algebraic
system (Appendix A, Eq. (A.2))
(Ue,,CoUe, ) = L(e)/2
(Ue,, CoUe,) = L(e;)12

'Ue ,C.Ue \ = L¥e )/2
< m> 0 m> m:

with respect to six unknown values, the ellipsoid axes and angles of its
orientation. Here m is the number of the observations of the plume
dimensions.

Denote L2(e,)/2 =17 we then have for m>3 the system for ellipsoid
semi-axis, o¢,,0,,0, , given by
2 2 2 2 22 2
oley; + 0%, + 03e; = /|
cfe,z, + <s§e,,_22 + c§e223 = 122 (22)

22 . 22 22 2
Oley +0ye5; +05e33 = Iy,

where ¢, j=1,3 are coordinates of vector Ue, in the fixed basis associated

with the antenna.
Main determinant of the system is

2 2 2 2 2
€ €2 €3 e e 1
2 2 2| _| 2 2
A=ley, epeyn|=le epnlf,
2 2 2 2 2
€3 €3 €33 e ex 1

158



and, for given coordinatese, , it is possible to find ellipscid sizes from (23)
by Cramer's rule:

—L,i=13 23
o, = —,i=13.
! ! ( )

In general case, however, the orientation of the ellipsoid, U, is not
fully known, so the righthand parts of (23) depend on unknown parameters
of matrix U. In this case (23) may be used for obtaining partial information
of the ellipsoid parameters. Let us, for example, consider a horizontally
oriented ellipsoid (i.e., two of its axis are situated in the horizontal plane).
In this case operator U is a rotation in horizontal plane. It may be defined by
a single parameter, for example e,, .

L] Let m=2 and unit vectors e , are orthogonal to each other and lay

in horizontal plane. These conditions is fulfilled for cross antenna,
when the angle between axe 00, and vertical is small enough.

Then e,,~0, e,,~0 , so from (22) we receive the system

22 22 2
oley; +05¢1, ~ ]
2,2, 2.2 2
016y +0x8y = L

(24)
Lengths and orthogonality of vectors Ue,, Ue, is retained, then

2 2 2 2
€ T €xn, €y = €5,

2 .02 2 2
e ey =eptey =1

and from (24) it follows

o} = ,
P (25)

2 L

o, = ,

where unknown parameterz=1/e/ -1 defines ellipsoid turn in

horizontal plane.
By summation of expressions in (25) we receive the estimations of
ellipsoid sizes
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SO

160

2 2 2 42
oy +o, = I7+l;,

0?,2 < l,2 +122 .
As right parts of (25) must be positive, then we can do the following

estimations of unknown parameter ¢ also
t<t*orxl/t”,

where ¢* = min(/2,17)/max(I?,1}) . For the angle of ellipsoid rotation ¢
(e,, =cos@) we receive the respective inequalities

2 12
cosp > | —= or cosp € |—— .

2 42 2 52

I+l I+l

Let m=3 and units vectors e,,, lay nearly in horizontal plane.

These conditions is fulfilled for any antenna of triangle form, when
the angle between axes 0,0 and vertical is small enough. As e ;=0
for all i, then (22) transforms to
2 2 2 2 2
ole) toye, = I
22 2.2 2
Gley +0ey = I

2,2 22 g2
G653, 10,85 = &3

or
Ac%el +oi = I}
Ac%el +ol = I} (26)

2, 2 _ 2
Ac%e;, +0; = Iy,

where Ac?=o’-0] . Let

e, = cos@
e, = cos(@+a)
e; = cos(¢-P),

where the parameter ¢ defines the ellipsoid orientation with respect
to antenna, a, B are closed to external angles of the antenna triangle.



Excluding unknowns Ac? o5 from (26), we receive the equation

1(132 -1})sin2a +(1 -17)sin2B

(Z-1})sin*a+(12-17)sin’p

12 1=0
for t=tgg . So,

2tg9 _, (-1D)sin’a + (I} -13)sinp
1-tg%¢  (Iy~1)sin2a+(f; -1f)sin2B

tg2¢ =

The solution of this equation is

o = Larctg|2 (3 -1))sina+(12-17)sin?p .,
(Z-1})sin2a + (17 -17)sin2B| 2

where m is an integer number for which ¢ belongs to the
interval (—g, 12'-) . Then from (26)

12-17
o,f=12_' 2 I. inZ(p’
sin(2¢ +a)sina
212 @7
2 - 12+ i 2 71 i sz(p
sin(2¢+a)sina

If, for example, /7 = I} ,then¢ = w2 . So, one of horizontal ellipsoid
axes is directed along bisectrix of the external angle o of antenna
triangle.

In particular case, for antenna in right triangle form,
when o = B = 2n/3 , formulas (27) are simplified: -
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l 13 12
= —arctgly3 —=m ,
M 2 g[f I:ol;-ﬂlz
12-1
& - -2y,
sin( 2(p+3ZE
;-1
of = 1+ 2 1 cos?g .
Vi ( 27
sin 2(p+?

So, reconstruction of the horizontal ellipsoid sizes is possible with
triangle antenna system.

Step 4. Correction of the plume parameter.
In this step we can do a local search of the plume parameters in the
neighborhood of the acquired approximations. This gives next

approximation to the plume parameters. A schema for a possible receiving
system is presented in Fig. 7.

field observetion

'

receiving errey observation field points 2oom'regime

=

“-—-

Figure 7. Schema of bubbles plume reconstruction.

2.4. Numerical simulation of plume reconstruction

Numerical simulations were made for realizing the above multi-step
process of plume reconstruction. A equilateral triangular array of three
linear antenna with 10-m side was considered. One of it sides was parallel
to the x-axis of the coordinate system with the origin at the triangle center.

162



The plume was of ellipsoid form with axes ¢,=1.5,0,=0.3,0,=0.3. The

angle between the plume’s first axis and the x-axis is denoted by ¢ . The

correlation function of random background noise was assumed to be of the
form

g(IR| —Rzl) = Obnexp(lRl _Rzl/llm) ’

where o, is the intensity and 1, is the spatial scale of the noise.

Some results of the simulation are represented in the following
figures. Two pairs of positions and orientations, (x=0, y=0) , ¢=n/7(=0.449)
and (x=3, y=-3), @=n/6(=-0.524), respectively, were considered. In both cases
the plume center is 20 m above the frame. Images of the original two
plumes in the xy-plane are shown in Fig. 8. Figures 9 to 13 show the
reconstructions under various specified parameters for given intensities and
noise scales along with the resulting estimated values of the plume axes and
orientation.

S ®) e b

-4 2 2 4 -4 2 0 2 4

xo(m) X(m)
Figure 8. The original plumes defined by the parameters:
(@) x=0, y=0, ¢=n/7(=0.449) and (b) x=3, y=-3, ¢=-n/6(=-0.524) .
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Figure 9. Plume reconstructions intensity and noise scale 6, = 0, /,, = 1 with
the resulting determined plume parameters: (a) ¢,=1.5, 6,=0.3, ¢=0.449 (b)

0,=1.499, 5,=0.310, ¢=-0.538 .
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Figure 10. Plume reconstructions intensity and noise scale ¢,, = 1, /,, = 1
6,, = 0, /,, = 1 with the resulting determined plume parameters: (a)

0,=1.481, 6,=0.297, 9=0.449 (b) ©,=1.480, 6,=0.307, ¢=-0.537 .
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Figure 11. Plume reconstructions intensity and noise scale 6, = 5, /,, = 1
with the resulting determined plume parameters: (a) 6,=1.411, ,=0.288, ¢=0.451
(b) ,=1.408, 5,=0.295, ¢=-0.534.

When background noise was small the accuracy of reconstructing
plume parameters was very high, especially over the center of the antenna.
The inclination of the e, ,, -plane to the plume (see Section 2.3) tends to

decreasing the accuracy of (27) when the plume is not over the center of the
triangle. When background noise was high the accuracy of reconstructing
plume parameters was poor. Most of all the accuracy relates to the plume
generalized sizes, that were determined by formula (21). At the same time
the accuracy of the plume center and orientation determination was very
high for all levels of noise.
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Figure 12. Plume reconstructions intensity and noise scale 6, = 1, /,, = 2
with the resulting determined plume parameters: (a) ¢,=0.685, 6,=0.155, ¢=0.461
(b) ©,=0.676, ¢,=0.154, ¢=-0.507 .
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Figure 13. Plume reconstructions intensity and noise scale G, = 5, /,, = 2
with the resulting determined plume parameters: (a)
6,=0.340, 6,=0.774, ¢=0.463 (b) c,=0.335, 5,=0.770, ¢=-0.504 .

2.5. Bubble Plume Size Determination with a Linear Arrﬁy

Let the antenna line (x-axis) be orthogonal to 00, , where O,
and O are central points of the antenna and the plume, respectively, and the
n-plane contain the x-axis and the line 00, (cf. Fig. 14). Let &, be the

angle in the n-plane subtending the ith pair of hydrophones (-x,x) as seen
from the center of the plume. The angle @, takes on the discrete values
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9,=0,, +iab, (0,,<0<0_) .

Frame x-axis
RS 1 Xj

Center
of Plume "0

Figure 14. Observation of the bubble plume from the
receivers on the x-axis.

Assuming vd__«1 , we obtain from (11) the relative value of the

correlative moment for the ith pair,

8O} = k@) (O ) =

exp| - L
‘/ mzo’ ""'zolz
After summing these values weighted by 28,20 we obtain

2

0
may Zﬁ vzoz ., max l )
Z20ig(ﬁf)A0 = exp( L4 ) dd =e™? exp( P )
, 6£J755§ e f i
_ 2pe -+’

® 14202, ] ( 1+v20%, ]] (28)
v »
B
w? P‘

where
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mE.(o_oL_ = 30

2‘—;’ amm,mnx min, max °

y 1
= —} dw .
O(s) {exp( 2)

Plots of the special functions ®(s) and

ol
P P

for given values a_, »a , are represented in Figs. 15 and 16.

4
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170 15 20 25 3.0 35 s
-1

Figure 15. Plot of the special function defined in Eq. (28).

Then taking into account real estimations of parameters

[0
[n] =;'_£.a1’
2c
a, = =1,
WyT,
= ._—__ﬂl
P 2

we can replace (29) with its limit for p-~ (see plots).
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Figure 16. Plot of the special function defined in Eq. (29)
for a..=1, a,,=0.01.

For any fixed value a® we can obtain the limit by the L'Hopital rule

0( plea ) 3p2¢( l ) _p e p( p! )_E*Zaz)
l]n" \ p4 - ]i]’n p pz-m2 [!3 pzwz -
I

= 2pe””

- __liml+2(a/p)2ex pz( p? _1]] __exp(-a?)

D e 2
So for p»1
o oo o ) o 5] . eobeidomtet)
r? r? 2

exp( mzﬁmm) exp( w0’ )
w?

(30)

As f’,<0 , then the function f£,(x) is monotone decreasing forx>0,
so it is invertible, and we can write
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®=/G),
L-%1'0),
)
where f;! is the inverse function.
When w?0?_ -0, ®%0’_>1 and G=1/w?, we have the simple

formula, L = 2¢/(wy/G), for the size of the plume.
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APPENDICES
A. Mutual Correlation Moment for a Bubble Plume of Gaussian Form

After substitution (7) and (8) to (4), we shall obtain

k,(0)= k(°)4| R ﬂ]exp( ( "+("") +i® (T *(r'e)) (r;(A"+G)r)]

-0 [ R, =
ki sl,dmme"P[ E ”“’ole]J’ (A.1)

J= mexp[[ 27'|1] (l’;e) (T;E) 2( (A' +G)r)]

where £ = A, 4,NW,, I, = c3, .
For integral J calculation let introduce matrixes

E = 21§'2ee" s
C'=A"G,
D = (C'+E)"

where e* is the transposed row vector e . Note, that matrixes C and D are
symmetrical, positive definite (so, are invertible). Symmetrical, non negative
definite matrix E has the single rank.

Then, Zla'z(r;e)2+(r;(A“+G)r) = (rEN+(r;,C'r) = (D 'r) and using of
Poisson integral we obtain

J = ]]] exp(i(r;k))exp( -%(r;D -1 r)) dr = f(k) /(21[)3 detD,

where
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After substitution of the found value J to (A.1) and some simple
calculations we have the next expression for the moment £, :

detD "12 ‘”o - - .2
0) = (0) ——exp| ~——=-——(e;De) | cos{®w,T,,-20,T,,): “(e;De)) ,
k0) deth ? 2@ =&P°) (0572-2074; o)

where k = l—4('t‘12/rli)2 ((DO‘I,’E)‘Z .
With a view of further simplification of the received expression for

the correlative moment let use the next formula (see [23, p. 33 number
4.61])

D = (C'+E)™" = C-BCEC ,
B = (1421, (eCe))™" ,

(it is implemented for any positive definite matrix C and for any matrix E
of special above described type).
Fulfilling transformations, we receive

1
1421 (e ¥e)
21{2(8;(:8)2 _ (e,Ce)

(e;De) = (e;Ce)-P(e;CECe) = (e;Ce)- (Ce;Ece) =

= (e;Ce)- ~ > = B(e;Ce) .
1425, %(e;Ce) 142, “(e;Ce)
Hence,
-1-2 0)2'( —2 2
Dz, 2% epe) = 12 ..°.(1 -4ft,,/ TPyt ) BleCe) =
g 2@ 22

-2 2
= 1‘.3 + &(e’Ce) s
7 2

3

T, —ZmO?,zlg'z(e;De) = 0T, (] —2145'2 B(e;Ce)) = 0,BT, ,
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detD _ 4et(C-BCEC)det(A™) = det(C-BCEC)det(C ~")det(A™C) =

detA
= det(/-PEC)det(CA™") = ydet(/-BEC) ,

where [ is the identity matrix,
y = det(A"'C) = 1/det(I+AG) .

Let calculate determinant det(/-pEC) . Omitting signs of summation
with respect to repeating indexes symbol, we have

1-cee,C,, -cee,C,, -celejcj’
det(/-BEC) = det(/-cee’C) = | -cepe,C,, 1-cee,C,, -ceel; ,

-ce,e,C,, —Gee C,. l-celejCJ,

where ¢ = 2Bl . And, finally,

det(I-BEC) = 1-0(e,e,Cy, +e,e reseCs) = 1-c(e;Ce) = B,

-
m('m2

Now the expression for integral correlative moment become rather
simple:

2
T

) T, 0, _
k,(0) = k;'yByexp| -B ——-+Ec;(e,Ce) coswfT,, .

Let represent (see [23]) symmetric positive definite matrix C in the
form C=U*C,U, where C, is a diagonal matrix with eigenvalues o’, 62,67 of
matrix C, indiagonal,and U* is orthogonal matrix of rotation to coordinate

system with axes, directed along eigenvectors of matrix C. Then (e;Ce) can
be then represented in the form

(e;Ce) = lel*(&;Ce) = |el*(&U 'C,U8) = lel((U&;C,U8) .

The value
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L@) = [AUEC,U?) (A2)

belongs to segment [c,,.0,..J, where

.2 2 2
2min{o},05,05} ,

2 2 2
2max{c),63,03} ,

and (in case G=0 ) characterizes the magnitude of the plume in direction of
unit vector &* . In particular, when this vector is parallel with principal axis
of the ellipsoid, (A.2) is equal to the length of corresponding semi-axis.
Granting this we call L(é) by generalized size of the plume in direction of
vector . For example for sphere witho} = o = o} = 2r; we have

L(é) = 2r,for any unit vector &.

Introducing parameters
®,T —
p=E ——;—’5, 1§ =CT,
Vv = —L(é), q = E N
I T
0= |e = 25in$, '
lel >

and taking into account the equality

_ 1
P 14202

we obtain the final representation for integral correlative moment

“In the small angles approach we can assume that vector ¢ is directed along traverse
line, i.e. is orthogonal to the line connecting central points of the plum and antenna
and lying in common plane of center and hydrophones.
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k,(0) = klz \/—YGXP[ [‘fz %L (é)llell )) cos(wefT,,) =

- k‘°’ p( .pw 2pq  _ (A3)
l+v2'02 |“'2”z 1+V202

= k9 VBY expl-Bg>-(1-Blp>)cos2Ppq .

B. Mutual Correlation moment for Bubble plume of
non-Gaussian Form

Consider only the case G=0 in formula (9), that corresponds to pulses
with equal energies, let calculate the integral moment for function (13):

k0) = k cm]}](nQr)exp[ ( . ‘,—g’) vio e, +E-LrC )) dr =

-2
= kJC® exp( -E'zi+ia)o?,2]J , (B.1)
3

s o -212) e _ el Vo
= [irn oo ioy-Z) 2 - o sgrc ) ar

K3

For calculation of integral J let (by analogy with Appendix A) introduce
symmetrical matrixes £ = 2/, ’ee* and

D =(c"+E)" = c-BCEC,
1

1421 %(e;Ce) |

where e* is the transposed row vector e . Then the integral can be written
in the form

J = ﬂ]'(r;Qr) exp((r;v)——;-(r;D"r)) dr

®, 2T,

v = [i-ro'—-—lzz] e
z =
T

175



Introducing the vector

VIE(B:]_;.D_-E] v = Dy, tErvvl,
we have

(r;v)—-;-(r;D"r) = —%(t;D"t)+—;-(v,;D“vl)
and

Jex| —%(v;Dv)) = f]]‘(r;Qr)exp(—-;-(r-vl ;D"(r—vl)))dr =
= ﬂf(t; )exp(—%(t;D "t))dt—(v, ;Qvl)ﬂ]‘exp(-%(t;D“t))dt =
= (Te(DQ)~(Dv;Qdv)) {(2m)’ detD .

So,

= (THDQ)-(Dv;Qdv))|/(27) detD exp(-;(v;Dv)) -
= y(2ny’ detD (Tr(Q *D)-(Dv;QDv)) .

Substituting this value to (B.1), we'll find the integral correlative moment.
Taking into account awkwardness of this expression in common case we

consider the case C = rZ1/2 only. In this case

klz(o) = k(o) 2\/5 exp( % 12 "’o’o |¢|2)]

: 4 T8 . _
([ Tr(DQ) +5[ ';0 ,2':]) cos® BT, - 1’9:—1'1- smmoBtlz] ,
]

133

6 = (De;Qde) .

If besides Q=/, then
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2 2
THDQ) = TiD = :;—Tr(l—ﬁvzee‘) - %’-(2+ﬁ) ,
4 4
8 = (De;De) = %’—I(l»ﬂvzee‘)ef = %’B’Ielz ,
k0) = Sk /B exp(-pg?-(1-B)p?)
« (@+B+2(B-B") (r2-97) cos28pg - pa(B-B") sin2Bpg)
Parameters p,q,B,v, 0 are the same as in Appendix A.

C. Mutual Correlation Moment for Multi-Ray Approach

Replacing, as in Appendix A, statistical averaging by mathematical
form, we obtain formula

ko0) = NY 34, 4, m< [-m (rie, /)]> fr) dr.
i g’

Fer pulses with equal energies, correlation function (7) and Gaussian form
of the plume (8) we can receive the formula

B = VW, T jE/A,jAzjm”/cos(coo?(,'é/“Zmo?%I) Ig*(e,:D,e,)) »

where

detD o)y
v, = ,l detC,exP[ (t,z tg)i °” @ﬂ/,Dﬂ;e”/)] 5

Yy = l-4('t12 1:5)z ("’o"e) 2

= (C'+E))" = C-B,CE,C,
By = (1+21 (e, ;;Ce,)!
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After calculations we have
k0) = NWOE EAleZJ/@ x
Jj j!
- agld, )
x exp( - Bﬁ;( (i‘,‘{) /1:5)z +—4-?—"/— leﬂflz) ) cosmoB”/i(,’{) =

2 2 o2
PN, 2p9 1
exp[ - ’1 Z;Z 4 cos- ’j,lo’
+V +v
o'y’ vy’

= NW, ) Z;A,jAzj/
i

1+v
vV

A
where 0,/ = le,d , g,=T13"/7, ,0 = @5 /2 v, =L )1, .
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E. Yu. Gorodetskaya (NN University), A. I. Malekhanov (L4P RAS),
A. G. Sazontov (IAP RAS), N. K. Vdovicheva (IMS RAS). Acoustic
coherence effects on signal processing in shallow water channels.

This paper presents the results on shallow water acoustic coherence and its
effects on large array beamforming and temporal pulsed signal processing. The
focus is to incorporate the realistic calculations of the mutual coherence function
of space, time, and frequency for comparative analysis of the linear and quad-
ratic signal processors, spatial and temporal ones included. The numerical simu-
lations are carried out for the typical shallow water environments from the Bar-
ents Sea where the effects of rough surface scattering and bottom interactions are
significant. It is shown distinctly that both the acoustic coherence and sea noise
mutually affect the processor performance. It is concluded that the adequate
predictions of the signal processing performances are more difficult as compared
with the deep water channels and require a much more detailed incorporation of
the environmental conditions for a given set of source parameters.

A. V. Lebedev (IAP RAS), B. M. Salin (IAP RAS). The investigation
of acoustic fluctuations in a lake environment.

This paper is concerned with investigations of acoustic fluctuations in a
lake environment. Some peculiarities in the fluctuations which are observed
in experiments are discussed.
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(Altair),
A. A. Kuz'menko (AKIN), V. P. Tebyakin (AKIN). Parameter estimation
for upper layers of multi-layered bottom in shallow sea.

This paper contributes to reconstruction of the bottom structure in 2
shallow sea, that is, to estimation of a number of layers, their thicknesses,
and acoustic parameters: sound speed, density, and attenuation.
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Laboratory AES-CCIW), N. V. Pronchatov-Rubtsov (NN University), O. V.
Lebedev (NN University). Acoustic methods for determining bubble
concentrations in subsurface layers.

The acoustic methods for the distant diagnostics of air bubbles in shallow
water is developed in this paper. The features of resonant nature of the
(including nonlinear) scattering and absorption of propagating wide frequency
band signals in environment with air bubble clouds were used for this aims.

G. M. Glebova (Rostov-na-Donu University), G. N. Kuznetsov (Altair).
Estimating parameters of signal sources and characteristics of noise field by
spatially separated vector-scalar modules.

This paper presents a generalized approach to problems that may be solved
with the use of receiving antenna arrays consisting of the vector-scalar
modules.

1. P. Smirnov (NN University), J. W. Caruthers (NRL), A. 1. Khil'ko (IAP
RAS), P. A. Elmore (NRL). Emission tomography reconstruction of the bub-
ble plumes entrained by breaking wind waves.

Bubble plumes created near the sea surface in shallow water are ani-
sotropic in three-dimensional space and are temporally variable. In addition, they
emit sound in a broad range of frequencies. The applicability of using an inverse
method associated with emission tomography for reconstructing the space/time
distribution of a bubble plume are investigated. Based on the spatial and tempo-
ral characteristics of the sounds they emit, reconstruction of the distribution and
evolution of the plumes may be possible using time segments of sound received
at separated hydrophone arrays. The necessary space/time apertures for recon-
struction are estimated based on the coherence function of the radiated noise. It
is shown that random inhomogeneities of the oceanic medium reduce the spatial
resolution of the tomographic reconstruction.
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L. P. Smirnov (NN University), J. W. Caruthers (NRL), A. 1. Khil'ko (IAP
RAS). Bubbles cloud tomographical reconstruction in random inhomogene-
ous oceanic enviornment.

The possibilities of estimation of location and spatial parameters of the re-
fractive index local random parturbations by measuring of pulse signals time
delays fluctuations are discussed. The mutual coherence function of the received
and probing signals for delays is used for tomographical reconstruction proce-
dure. Computer simulations were conducted for realistic scenario in the refrac-
tive oceanic waveguide.

V' V. Borodin (AKIN), M. Yu. Galaktionov (AKIN). Fundamentals of the
high-frequency forward-scattering sonar.

The investigation of the efficiency of high-frequency forward-scattering
sonar is conducted using an real models refractive oceanic waveguides in present
of surface and volume random inhomogeneities.

A. L. Matveyev (IAP RAS), A. G. Sazontov (IAP RAS), N. K. Vdovicheva
(IM RAS). Data analysis of acoustic transmission fluctuations from the Bar-
ents sea and its comparison with theory of surface scattering.

Theoretical predictions of the vertical coherence based on wind seas scat-
tering are compared with the observed spatial coherence of the signals received
by vertical arrays operating in realistic shallow water environments. It has been
established that vertical coherence function predicted from a wind seas model is
in good qualitative agreement with the presented measurements.

B V. Kerzhakov (IAP RAS), V. V. Kulinich (IAP RAS), M. A. Raevskii (IAP
RAS), A. A Stromkov (IAP RAS). Experimental chek of the mode theory of
sound scattering in an ocean waveguide with rough surface.

The prognosis of frequency spectra of the tone signals for an acoustical
range in the Okhotsk sea is made in a framework of the mode theory of sound
scatiering. The results of numerical simulation are compared with experimental
data obtained in various seasonal and meteorological conditions. The transfor-
mation of energy of modes in a coastal shelf is taken into account in modelling.
It is shown that the conclusions of the theory are in reasonable agreement with
observations data.



