THE FORMATION
OF ACOUSTICAL
FIELDS
IN OCEANIC
WAVEGUIDES

Coherence phenomena

Nizhny Novgorod
1997



Published on the decision of the Editorial-Board of IAP RAS

The influence of waveguide propagation on the acoustical signal
processing was investigated in previous books of IAP RAS. As the result of
investigations shown, the coherence phenomena limit the possibilities for
acoustical reconstruction of the spatially-localized inhomogeneities
parameters in oceanic environments. The results of investigation of decreasing
the coherence of propagating and scattering acoustical waves in oceanic
waveguides due to influence of random inhomogeneities as well as the
possibilities for tomographical reconstuction are presented in this book.

The publishing of the book was made in the frames of Special Federal
Programme "Integratsiya®.

Reviewers

Professor S. N. Gurbatov,
Doctor V. Yu. Zaitsev

Editor

Professor V. A. Zverev

Editorial Group

A. 1. Khil’ko (assistant editor),
N. N. Kralina (secretary),
V. G. Burdukovskaia

ISBN 5-201-09300-0 © Russian Academy of Sciences
Institute of Applied Physics, 1997



CONTENTS

Preface .. i i e e e e e e e

E. Yu. Gorodetskaya, A. 1. Malekhanov, A. G. Sazontov, V. I. Talanov,
N. K. Vdovicheva. Acoustic coherence in a deep water: effects on array
signal processing ...........oii ittt ittt

A. I. Khitko, A. G. Sazontov and N. K. Vdovicheva.
Dilfraction of acoustic waves by an object
in a random oceanic waveguide . ... ... ... . i i it ii i

1. P. Smirnov, J. W. Caruthers and A. I. Khil'ko.
Multiscale coherence of the acoustic field of a noise source
in randomly inhomogeneous ocean . ............. .. o i,

A. V. Lebedev and B. M. Salin. Experimental method
for determining the scattering characteristics
of elongatedobjects . . ............ ... ... e

M. Yu. Galaktionov, V. V. Borodin, A. V. Mamayev. Numerical
and experimental study of sound field forming
in shallow water environments ............ i,

V. V. Borodin and M. Yu. Galaktionov.

New mathematical model of sound field fluctuations

in shallow water environments with boundary

and volume TOUGNNEeSS . ... ... it ittt ettt

E. L. Borodina, A. A. Stromkov and A. 1. Khil' ko.
Coherent structure of broadband pulse signals
in the shallow sea

A. A. Pokrousky. Using regularities in the behavior
of a two-frequency correlation function of acoustic field
in monitoring of oceanic inhomogeneities .......................

S. M. Grudskii, A. I. Khilko, S. S. Mikhalkovich.
Propagation of low-frequency sound in a hydroacoustic waveguide
with surface covered by a non-continuous ice layer

................

A. I. Belov and A. I. Khil' ko. Diffraction of acoustic waves
by spatially-localized inhomogeneities
in horizontally inhomogeneous shallow water oceanic waveguides



PREFACE

This book continues the series of collected papers. The books which
can be united into series of books deal with various interrelated
problems of synthesis and analysis of underwater acoustic signals.
These books are: "The Formation of Acoustical Fields in Oceanic
Waveguides” (in Russian), "The Formation of Acoustical Fields in
Oceanic Waveguides. Reconstruction of Inhomogeneities” (in
Russian), and "The Formation of Acoustical Fields in Oceanic
Waveguides” (in English) issued in IAP RAS, Nizhny Novgorod, in
1991, 1994, and 1995, recpectively. The basic features of these problems
are associated mainly with the properties of oceanic waveguides as
the channels of long-range sound propagation. The corresponding
calculations are often very difficult because of inherent
inhomogeneities and instabilities of oceanic environments. Moreover,
a full set of appropriate data on random inhomogeneities and their
temporal characteristics are unknown in practice, so one has to use
the approximate physical models and theoretical approaches. On the
other hand, a particular problem arising here is to optimize the
methods of reconstruction of the ocean inhomogeneities charac-
teristigs.

Many previous works in this field, our previous collected papers
included, show that the influence of randomly distributed
inhomogeneities of oceanic medium is very important for developing
the schemes of ocean remote sounding and ocean acoustical
tomography. In the context of long-range and/or large-array signal
receiving/processing, a key point is, therefore, ocean acoustic
coherence which is a central issue of this book.

We tried to collect here recent results on acoustic coherence in
oceanic waveguides obtained by scientists not only from [IAP RAS but
also from other Russian research centres engaged in underwater
sound. The most part of the papers is based on new experimental data
which were effectively used for developing adequate calculations and
empirical models of oceanic inhomogeneities. I do hope that the results
presented allow a reader to estimate the state-of-the-art in this
promising field and to be introduced in the current studies of the
acoustic coherence and its effects on the tomographical reconstruction.

It is my sincere pleasure to thank all the authors who submitted
their papers to be collected in this book.

Vitaly Zverev



ACOUSTIC COHERENCE IN A DEEP WATER:
EFFECTS ON ARRAY SIGNAL PROCESSING

E. Yu. Gorodetskaya, A. I. Malekhanov, A. G. Sazontov,
V. I. Talanov, and N. K. Vdovicheva

INTRODUCTION

Long-range acoustic signal propagation in underwater channels is known
to lead to loss of the signal coherence in space, time and frequency, which
results from multiple sound scattering by random inhomogeneities of the
oceanic medium (see, e.g. [1, 2]). From an application point of view, the
knowledge of the spatial-temporal mutual coherence function (MCF) of
the registered acous'ic field is of the uppermost importance to optimize the
signal processing techniques and, therefore, to decrease a coherence—induced
degradation of the processor performances.

Following the general idea of spatial-temporal processing factorization,
we restrict ourselves to the study of coherence effects mainly in spatial
domain, which is of a particular interest in large-array beamforming. Pre-
viously, the problem of array processing under the conditions of reduced
signal coherence was studied by several authors [3-6] on the base of a gen-
eral theory of random signal detection against the noise background [7, 8],
but without invoking specific models for underwater sound coherence. On
the other hand, the subjects of numerous works on the ocean acoustic co-
herence are restricted, as a rule, to the propagation problem itself.

In this paper, we present our recent results on combined consideration
of the sound wavefield coherence and array signal processing in long-range
deep-water environments. A distinctive feature of our study is incorporat-
ing realistic calculations of the signal MCF of space [9-11] to predict the
coherence effects on the array beampattern and gain for several types of
processors, optimal ones included [12-14].

A specific scheme of our study is as follows. To calculate the ocean
acoustic MCF, we develop a technique of the radiation transport equation
(RTE) and derive in a closed form an useful approximate solution for the
multimodal MCF. In our analysis of array processors, we exploit, as a basic
approach, the eigenvalue—eigenvector decomposition of the signal covariance
matrices. Generally, this approach can be effectively used for various detec-
tion criteria, the maximum likelihood (ML) and signal-to—noise (SNR) ones
included. Our particular interest concerns here the small-signal asymptotics



of the ML detection performance, which is a reasonable choice for long-range
underwater acoustics.

The body of this paper reflects the scheme summmarized above. Section 1
reviews the wave-theoretical model of acoustic transmission in a random-
inhomogeneous oceanic waveguide. It contains a brief discussion of the RTE
technique that has been developed to calculate the ocean acoustic MCF for
long-range multimode propagation. Section 2 gives the most significant
aspects of large-array processing of partially coherent signals with empha-
sis on comparative analysis of linear and quadratic beamformers. Next,
Sec. 3 addresses the numerical simulation of acoustic signal propagation
and array processing for realistic deep-water environments from the North-
West Pacific. Calculations of the expected acoustic coherence in the special
cases of internal-wave medium fluctuations and fully developed wind seas
are employed to show in detail the acoustic coherence effects on the array
beampattern and gain for several types of beamformers including both hor-
izontal and vertical array configurations. Finally, Sec. 4 suminarizes the
results obtained and gives the most essential conclusions from this study.

1. OCEAN ACOUSTIC COHERENCE:
WAVE-THEORETICAL DESCRIPTION

The acoustic propagation problem in a random ocean is of a great inter-
est for various applications concerned with underwater detection, commu-
nication, and the ocean acoustic tomography. The significant unusual char-
acteristics of the ocean medium are the presence of an underwater sound
channel and the anisotropy and inhomogeneity of the sound-speed fluctu-
ations. Thus, the study of the combined effects of anisotropic scattering
and regular refraction on acoustic coherence is of great importance in un-
derstanding statistical behavior of oceanic sound transmission. From the
theoretical point of view analysis of this problem reduces to evaluating the
MCF of space, time and frequency. The MCF contains important statistical
properties of the acoustic field that has traversed a medium with random
fluctuations. For example, the coherence time and coherence lengths that
determine the maximum effective integration times and array lengths that
can be utilized in sonar systems are contained in the MCF. The MCF of
frequency controls the coherent bandwidth and also describes the behavior
of the ensemble-averaged pulse for a pulse-transmission experiment.



1.1. Preliminaries

Recently, the systematic investigations examining the propagation of the
MCF in a refractive oceanic waveguide containing random inhomogeneities
have been carried out in the framework of a ray oriented approach using
the path integral formalism. The predictions of acoustic coherence from the
path integral theory and its comparisons with single-receiver measurements
are fairly well summarized in the book by Flatte et al. [1]. It should be
noted that a solution for MCF equivalent to that obtained by path integral
methods can be derived as the first approximation of the second moment
equation when only one path of multipath configuration is treated (15, 16).

For low—frequency long-range propagation the ray theory is not ade-
quate and the wave-theoretical description like the normal-mode method is
more suitable. The use of this approach introduces the effect of sound-speed
profile in a direct and systematic way. Applied to ocean acoustics the modal
treatment has been developed in a series of publications (see, e. g. [17-32]).
The statistical description of a stochastic waveguide propagation usually
deals with a set of differential equations for the self~modal and cross-modal
coherence functions, which predict the evolution in range of both the energy
and correlation characteristics of an underwater acoustic field. These equa-
tions can be solved at least with the aid of a computer. For low-frequency
regime a general computer program has been developed by Dozier and Tap-
pert [21] and Beilis and Tappert [22] to evaluate the effects of volume and
rough surface scattering on the transmission loss as a function of range and
depth in a canonical-model random ocean. However, when a large nurnber
of propagating modes is present, the numerical integration becomes rather
cumbersome and, hence, there is a need to develop approximate analytical
methods. Most of the research to date using a normal mode decomposition
has been restricted primarily to the average wavefield intensity evolution
which was obtained by means of a diffusion approach [17, 20, 27, 28] when
a discrete set of guided modes is regarded as a continuum. The analyti-
cal works concerning the correlation characteristics of a miltimode signal
have also been tried by use of a matrix analog of the Rytov approximation,
although their results are applicable only to the case of short propagating
distances [26, 30, 32].

A considerable progress in theoretical study of acoustic coherence for a
large class of scattering models in long-range ocean environments has been
recently achieved by Sazontov [9, 10], who proposed an efficient method
for solving the RTE for multimodal propagation. Below, we present an
useful approximate wave—theoretical expression for the total MCF which is
valid for a wide range of refractive index profiles and types of scattering
irregularities. It is important to hawe7 such a solution since it enables one



to study acoustic propagation and loss of coherence in realistic underwater
environments.

1.2. Volume scattering in a deep oceanic channel.
Problem formulation

Consider an underwater sound channel of depth H, in which the re-
fractive index is the sum of the deterministic background profile ng(z) de-
pending on vertical coordinate z and the stochastic field u(r, z,t) modeling
the acoustic medium fluctuations. Here, r = (z,y) 1s the horizontal two-
dimensional position vector and t is the time. The coordinaec system is
chosen with the z-axis downwards. The perturbation p is assumed to be
a Gaussian random variable with zero mean, and can be described by its
autocorrelation function

< p(ry, z1, b)) p(re, z2,t2) >= Bu(|r1 — r2|, 21, 22,1 — t2).

The angular brackets < .- > indicate ensemble averaging.

Let a nondirectional acoustic source be located at coordinates (0, zo)
and emit a signal having time dependence g{t) = s(t) exp{—iwot), where
wp = 27 fp denotes the radian carrier frequency. In terms of normal modes
the complex envelope of the acoustic pressure field P(r, z,t) in an irregular
oceanic channel far enough from a source can be formally represented by

M(w)

P(r z,t) /dwg(w —iwt Z

Here, g(w) is the frequency spectrum of the transmitted signal, ¢, (z,w)
denotes the n-th vertical eigenfunction of the deterministic background
medium associated with the eigenvalue «2(w), M is the number of propa-
gating modes, and p,(r,w,t) are the random normal mode amplitudes. In
writing (1) we ignored the farfield contribution from the modes of continu-
ous spectrum. The normal mode functions ¢, (z,w) satisfy the eigenvalue
problem

pn r.w.t) p,(z,w). H

2
diiz—z-go,,(z,w) + [k2nd(2) — k2(w)] pn(z,w) =0, n=12,...,.M (2

together with appropriate boundary conditions and an orthonormality re-
H

lation, t. e., fdz onl(z,w)pm(z,w) = dnm. Here, k = w/cq, where cg is some

0
reference sound speed.



In a waveguide with large scale (compared to the wavelength) inhomo-
geneities, the expansion coeflicients p,(r,w,t) obey the coupled parabolic
wave equations:

0 1 5? .
(8_.’1,‘ — ifc,,(w) - m —8_;(/3) Pn(l',w, t) = zzn: Vnm(l‘,W,t)Pm(rawyt)a
3)

where z-axis is taken in the main direction of wave propagation, and
Vam(r,t) is the matrix coupling coefficient (depending on ¢ as a parame-
ter) defined according to:

k2
Vam(r,w,t) = m;znm(r,w,t),
H
unm(r,w,t):/dzno(z)u(r,z,t)<p,,(z,w)<pm(z,w). (4)
0

Note, that parabolic approximation consists of considering solutions in
which waves are traveling only at small angles to a particular direction;
in the ocean this direction is in the horizontal, labeled here by z.

The important correlation properties of an acoustic wave that has tra-
versed a random oceanic waveguide are described by the second moment of
the pressure field

By (r1, 21, trz, 22,t2) = < P(r1, z1, 1) P*(r2, 22,12) >, (5)

where the asterisk denotes complex conjugate. Inserting the field expansion
from Eq. (1) into Eq. (5), one finds that

[s 0] o0
Bp(ry, 21, t1|rz, 22, t2) = /dw1 /dwgg(wl)g’(wz)[‘(-l-)e—wltl + lwzt?,

(6)

where [(ry1, 21,wn, t1|r2, z2,ws, t2) is the total MCF defined as

a2, @1)Pm(22,W2)
nom ﬁn(wl)nm (w2)
Frm(1,2) =<pa(1) pja(2) > .

The labels 1 and 2 refer to two different horizontal position points, times and
frequencies. Thus, the evaluation ofgthe total MCF applied to the stochastic

F(l‘l,21,W1,t1|r2,22,w2,tg) = nm(1;2) (7)



waveguide propagation requires the knowledge of the cross—modal coherence
functions I'y,, (1,2).

In Ref. [32] the basic RTE for the cross-modal MCF I',,,(1,2) taken at
two horizontal position points ry = (2, 1), r2 = (2, y2) in the same z plane,
at two different times and frequencies has been derived from Eq. (3) under
the Markov approximation:

o .. .. F i (# 1 ) _
['a—x"—”cnm_zgnmm £nm(3p +Zm ]an—

(8)
[Z Ann’(l 1) Fn‘m + ZAm’m 2 2 nm] E ""I 1 2 Fnﬁn’

n',m'

with the definitions p = y — yw, R = 05y + ).
T =4 =l Kgm = Kn(W1) = Km(wa), &4 = 0.5 [k7 1 (w1) + k5! (w2)],
Eam = Knlw1) — w71 w2), Ann(1,1) = Y A2 (1,1), and the coupling

m

matrix A7 (1,2) is given by

nn'

+ +
nn' (l 2 /dn nn' 12 7))6’ ( Fnm = Kn‘ml)',”

1
nn’ (l 2; 7)) <V""’(x+ §7I> yl:wl’tl)vmm'(x - 5"792:w21t2)>:

where k= 0.5(kn(w1) + &m(w2)). As a consequence of Eq. (8), we obtain
the conservation relation

ad 7
=Y /r,.,,(x,p=0,R,r:o,w,w)dR=o.

n=1_"n,

1.3. Asymptotic expression for the cross—modal MCF

The set of coupled integrodifferential equations (8) is very hard to solve
exactly and numerical simulations are needed. If M becomes too large, the
numerical integration of these equations becomes impractical. However, in
the quasi—classical approximation, when the WKB formulae are valid for
pn(2,w), it is possible to construct the analytical solution for T'y,,(1,2) and
to obtain an useful, approximate representation for the total MCF [9, 10].



The approach employed uses the well-known properties of the quasi-
classical elements V,.,,, Eq. (4), according to which the corresponding
coupling matrix is a function mainly of difference indices of interacting

modes [33, 34]:

Anf2

fone(r,w, 1) = — /d:c nofzn (2')]u(r, 2n(z'),1) cos(—-—(n - n')z )

where A,(w) is the mode cycle distance, z,(z) is the modal ray trajectory
satisfying the equation

d2 - n\W
= n 2 ilente)l, an = 2

with
2

dz,,(:z) _ -
= 0

& o (z) — a2 = tg xn(z) ; nofzn(x)] cos xn(z) = an,

and xn(z) is the angle the modal ray makes with the horizontal at the
point zx.

As aresult, Eq. (8) can be regarded as a discrete convolution type equa-
tion. This circumstance together with the generating function technique
allow us to reduce Eq. (8) to the equation which coincides formally with
the equation governing the propagation of the MCF in free space. Then,
the solution for the generating function can be found analytically. This has
the advantage of offering the possibility of obtaining solution in a closed
form for the cross—-modal MCF by the Fourier inversion of the generating
function to give:

Tum(1,2) = T% (1,2) (80 = &m)2
(9)
ri o )ZZ/dae i(n —v) /dﬂe i(m =~ N ref(q,9).
Here, T2{(1,2) is defined according to
re?(1,2) =1%,(1,2) exp[—%D:f(l,Q)], (10)
where
ToA(1,2) = 871m Pv(20,w1) palzo, w2) exp [g;f 2?”" (R2 + 41,02)]

11



is the solution of the transport equation in the absence of random inhomo-
geneities for a point source situated at coordinates (0, zp), and the quantity

D ), describing the loss of wavefield coherence has the form:

D (1,2) /dx a5 (e 112, 1) + 28 (2, 202/, 2) — 2428 2,112/, 2)]

(11)

5 74 aeux(x’),ﬂ,z:f(x'))
d)5{(z, 1]z, 2) _27rk1k2/d9//daeydaez X
cos X (2') cos xa(z")

!

X cos (::leyp:flc ) cos (aezgw\ (=' )) cos(Q2r).

In writing Eq. (11) the following notation is used: ®,(2e, Q, z) is the local

spectrum of the sound-speed fluctuations taken at @ = 2 ﬂ( ), where the

wave number aauf( ) has components

)} (2) = ( 0.5(tg x7 (x )+tgxf(x))aez,aey,aez),

tg xS () = dzZ(z)/dz is the inclination of a modal ray with the
path z3(z) = z,(z — aA,/27), z2P(2) = 05(22(z) + 27 (c)), and
£3(2) = 25(2) - 25 (2).

The expression for D,‘:f(l,?), Eq. (11), is immediately recognized as the
phase-structure function (PSF) with the only difference that the integral
in Eq. (11) is taken along a modal ray instead of a usual geometric ray.
The combination d32 (z, 1|2, 1)+d’f\a§" (z,2]|2,2) ~ d“p(x 1|z, 2) can now be
regarded as a density of the PSF. Such a ray-modal analogy allows one to
use in the calculation of coherence the well-known results for PSF obtained
in the framework of the ray theory. !

Equations (6), (7), (9)-(11) present in a closed form an useful approx-
imate solution to the problem of interest. For a given sound speed profile
and spectrum of the volume medium fluctuations they give explicit rules
for calculating both the correlation function and the wavefield intensity in
a random oceanic waveguide. The restrictions on the theory are detailed

in Refs. [9, 10].

!The methods for evaluating the PSF from a general internal-wave miodel [35] were
presented by Esswein and Flatte [36]. 12



1.4. Rough surface scattering effects on the MCF

Equation (3) describes the coupling between the normal mode ampli-
tudes due to random volume irregularities of refractive index. In certain
circumstances, for example, when the propagation takes place in an upper
sound channel, surface interactions play a predominant role in acoustic sig-
nal fluctuations. The formalism developed in Refs. [9, 10] may be extended
to the analysis of acoustic coherence after long range multiple surface scat-
terings. This can be done as follows.

In the presence of a soft boundary z = 3)(r, t), where 1) represents random
displacements of the ocean surface, in addition to the wave equation the
following condition on the acoustic pressure field is imposed

P(r,n(r,1),t) = 0.

Concerning the statistics of #(r,t) we assume that g(r,t) is a Gaussian
homogeneous and stationary field with zero mean and is characterized by
the spatial-temporal correlation function By:

Bylp, m) =<n(r,t)nr+p,t+7)>.

For a small Rayleigh parameter, the explicit boundary condition can be
expanded at the mean ocean surface 2 = 0 in powers of 1) to give

OP(r, 2,t
Ui ——g(;)—;——) .
“ z2=0

In the case considered, it is straightforward to derive that the normal mode
amplitudes p, (r,t) in the representation (1) formally obey the set of stochas-
tic equations (3) in which the coupling coefficients V,,,, are now defined
according to Ref. [17]

90;(0)""1)90;7»(03
Kn (wl)":m (W2)

Vamlr, 1) = Ve 1),

where the prime denotes differentiation with respect to depth z.

Hence, rough surface and volume scattering effects can be formally de-
scribed in the framework of united approach and the particular scattering
mechanism specifies the concrete form of the coupling elements V;,,,,. There-
fore, the equations governing the propagation of the MCF in a waveguide
with a rough surface are thus the same as before except that the coupling

matrix A7 (1,2) must be replaced by

2 it (w) o (@2 o (92 s (w02)]

13




oy

/dQe—'QT / da, ¢i®yP F, w(kh, — kE @y, ),

- 00
where F; (22, Q) is the Fourier transform of the surface autocorrelation func-
tion B¢ (p, ™) with respect to p and 7.

A counsiderable simplification occurs for waveguides having a nonequidis-
tant spectrum of wavenumbers &,,. In this case the diagonal elements of the
matrix I'nm(1,2) decouple from the off-diagonal elements in Eq. (8). As a
consequence, for I'y,, at n # m we have approximately [37]

Fam(1,2) =< pa(l) > < pi(2) > Tum(L,2), n#m, (12)
where

_i‘pn (20)“‘))

. 1 T
< pn(r,w,t) >= o exp (mn(w)lrl = 3% (w) — zz>

is the coherent field of the n-th mode, o, (w) = Ann(1,1) is the scattering
coefficient, and

xr
Tom(1,2) = exp {/dm’A:m (p?,r,whwz)
0

For most oceanic applications the characteristic correlation length I, of
surface irregularities is much less than the typical mode cycle distance, i.e.
l, < A,. In this case, elementary acts of scattering occur at statistically
independent ensembles of the surface, and the formula (12) reduces to a
simpler form [18]:

Tam(1,2) =< pa(l) ><pr(2) >, n#m. (13)
For the diagonal elements I'Y, (1,2), a formal procedure similar to that given
in obtaining Eq. (9) leads to the expression [37]:

2w
(12) = }:r (1,2)/dae“"("‘"l)“‘%D%(m, (14)
4}

where T (1,2) are the self-modal functions in the absence of random
scattering, and

M
D2(1,2) = Z;_ P (0, 1)@, (0, w2) @ (0,w1)4(0, wa) .

Km(“’l)"ﬁn(“’?) g=1 v'{q(wl)'cq("‘J?)

14



[e o]

X /d:c'/dﬂ/daeyF,,(fcm—nq, 2y, ) [l—cos(aeyp%) cos(fT)e i(g — m)a
0

-0 - 00

Equations (13) and (14) together with Eq. (7) allow for estimation of
the key correlation characteristics of the acoustic signal in an upper—sound
channel where the rough surface scattering effects are important.

2. SIGNAL COHERENCE EFFECTS
ON LARGE-ARRAY BEAMFORMING

In this section, we give a short introduction to array processing of
coherence-reduced signals, which is then supported (see Sec. 3) by the
numerical results on array beamforming in realistic deep-water environ-
ments from the North—-West Pacific. Our analysis is aimed at the array
gain and its coherence—induced loss for several types of beamformers, linear
and quadratic ones included.

2.1. Background

Gienerally, the problem of array signal processing is to detect a signal
source and/or to estimate unknown source or transmission parameters. In
both cases, one possible strategy is to optimally process the outputs of array
elelnents (sensors) according to a predetermined statistical criterion. In this
respect, the ML processor is well known to be of fundamental importance
because it is optimal for a variety of detection and estimation criteria [7, 8].

Conventional array beamformers such as those used for plane-wave
source detection or bearing estimation in radar [39, 40] are derived under the
key assumptions of time-invariant and spatially homogeneous transmission
channel between the source and sensors. In long-range sonar applications,
however, such model assumptions are generally unrealistic. Therefore, two
principal issues arise, which are (i) the effects of signal propagation in a
deterministically inhomogeneous channel and (ii) the effects of random in-
homogeneities which perturb a regular wavefield and cause its coherence
loss.

The survey of literature reveals that several important developments
have been made in these directions. First, a technique of matched-field
processing (MFP) was proposed [41] and studied as an effective generaliza-
tion of plane-wave beamforming (PWBF) with applications to the source
localization in underwater channels and ocean acoustic tomography (for re-
cent reviews, see Refs. [42-44]). Se%osnd, a general theory of array signal



processing in regular multimode/multipath channels was developed with
applications to underwater acoustics [45]. Third, the coherence effects on
the array beampattern [46, 47] and the detection performance [3-6] were
examined by the use of some models of the plane-wave signal coherence.
Finally, more relevant models of the multimode signal coherence were used
to predict the array beampattern degradation [48] and to compare SNR loss
for several linear and quadratic beam{ormers, optimal ones included {49, 50,
12-14].

Thus, the theoretical background of our study concerned with large—
array hbeamforming is recent developments of array signal processing in
random-inhomogeneous multimode channels with emphasis on the signal
coherence effects.

2.2. Preliminary formulations

The problem of array signal processing under the conditions of reduced
signal coherence was clearly formulated and studied by Cox [3], and then
was elaborated by other authors [4-6, 51, 52] on the base of a general theory
of random signal detection (7, 8]. Following these works, we outline here an
effective approach to large—array processing of partially coherent signals.

The signal of interest and noise background are both assumed to be
zero—mean, mutually uncorrelated and (saussian random processes. The
detection problem is formulated as a two—hypothesis alternative:

X=s4+mn, or x=n,

where s and n are, respectively, the N-dimensional signal and noise vec-
tors of the Fourier-transformed data vector x received by the N-eleinent
array. In the numerical simulations following in Sec. 3, the components
of the signal vector are exactly the acoustic pressures from Eq. (1), i. e.
S :P(i’j,Zj,t), j: 1,2,...,N.

In general, the data vector x can be processed in quadratic form to
obtain the detection statistic d by

d=x%Ax, (15)

where A is an arbitrary (N x N) matrix, and the superscript * denotes
conjugate transpose. For the ML criterion, the optimal matrix A, is
expressed by

Agpr = M7 — (M, + M,)7".

Here, M, and M, are the spatial covariance matrices of the signal and
noise, respectively, which are defined as M, =< x*x7 > (the supercript 7
denotes transpose). 16



Under the small-signal condition which is a reasonable assumption for
long-range underwater acoustics and will be used in further analysis, the
detection performance can be characterized by the deflection ¢ of the de-
tection statistic d. The deflection, also known as the detection index or
generalized SNR, is given by

.= <d(s+mn)>-<dn)>
(< d(n)? >~ < d(n) >2)'/*

(16)

The components of this equation vary with the signal and noise power (since
q itself depends quadratically on the components s; and n;, j = 1,2,..., N).
Therefore, the deflection ¢ (16) can be used directly to compare the SNR
gain G and the gain loss § for different beamformers. The gain is defined
as the deflection normalized to the input SNR ¢q, and the gain loss, as the
gain normalized to the number of array elements, by

oo g Tr(M,) G

¥ b = y 5 = — 17
40 s do ’I‘I'(Mn) N ( )

(the symbol Tr(-) denotes the matrix trace). Concerning the array gain
definition, we point out that the input SNR ¢q is defined here to be the
ratio of the signal and noise intensities which are spatially averaged over
the array length.
The optimal small-signal matrix A,p; and deflection q.p; are given, re-
spectively, by
A = MM, ML, (18)

Qopt = ['n (M;lM,)Z]m. (19)

An important point is the fact that Eqs. (18), (19) can be alternatively
derived by directly maximizing the deflection ¢ (16) for an arbitrary sig-
nal statistics. Therefore, the choice of the maximum deflection criterion
is quite reasonable in the situation of weak unknown (non-Gaussian) sig-
nals in Gaussian noise background, when the ML criterion is generally not
applicable to give the optimal processor.

2.3. Array beamformers

A general structure of quadratic beamformer (QBF), the structure of the
optimal QBF from Egs. (18), (19) included, can be clearly described using
the matrix A (15) in factorized form, A = W*WT, where W is an (N x r)
weight matrix consisting of vector-rows w, (p = 1,2,...,r, 1 < r < N).

17



This structure consists, therefore, of the matrix filter W followed by r-
channel quadratic processor. Its weight-square-sum output ygsr is ob-
tained directly as a quadratic function of the input vector x by

,
Yoor =d = [WTx|> =" jwl'x|. (20)
p=1
The output SNR ¢4z, is given from Eq. (16) by the following ratio:

Tr(WW*M,)
[Tr(WW+M,)?]"/?

dosrFr =

(21)

Each partial channel of the quadratic scheme (characterized by the cor-
responding weight vector w,) is seen to be a linear beamformer (LBF).
According to this well-known scheme, LBF weights the output of each ar-
ray element and then sums the weighted outputs. As distinct from QBF, its
weight-sum output y, 5, is obtained as a linear function of the input vector
x, and the detection statistic d, as a squared y.gp by

Yisr = W1 X, d= Iwalz, (22)

where w is an arbitrary (N x 1) weight vector. The output SNR ¢, 55 is
given by the following ratio:

wiM,w

dLer = —_W+an . (23)

Thus, the LBF structure gives a vector filter w followed by a single-channel
quadratic detector.

General structures of LBF and QBF, as they follow directly from re-
spective Eqgs. (22), (20), are shown in Fig. 1. Comparing these structures,
we conclude that the QBF scheme is an incoherent (squared) combination
of r partial LBFs and reduces to the linear scheme in the particular case of
r=1.

A choice of the weight vector w and matrix W in the LBF and QBF
schemes, respectively, determines directly the output processor perfor-
mances for given signal and noise covariance matrices.

18
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Fig. 1. A general structure of linear (a) and quadratic (b) beamformer
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We turn now to the optimal solutions which are then used in Sec. 3 to
examine numerically the array beamformers in deep~water environments.

For the optimal QBF derived from Egs. (18)-(20), the partial weight
vectors wp and SNR qop; are given by

, 1/2
Wp = ’\;ale;;lmp: Qopt = {Z QZ} . (24)
r=1

Here, the values A, and vectors m, are the eigenvalues and eigenvectors of
the signal matrix M,, respectively, and the values ¢, are determined below.
The eigenvalues A, are assumed to be ordered and normalized by

N
M2A > A >0, r=rank(M,), Y A =1L (25)
p=1

As follows from Eq. (24), the number r of partial LBFs in the optimal
QBF is exactly the signal rank. Therefore, the linear structure can be
optimal if and only if the signal matrix M, is the rank-one matrix, or
the signal is perfectly coherent. This conclusion is extremely important for
our study because the signal coherence and the signal rank are intrinsically
interrelated: the rank r increases with the array length N as compared to
the signal coherence length N,, i. e. with the increase of the N/N. ratio.

Of particular interest is also the optimal linear processor which exhibits
the ultimate coherence—induced limitation for all possible LBFs (in other
words, for all possible vectors w in Egs. (22), (23)). Its weight vector and
SNR are given by the following eigenvalue-eigenvector problem:

gpvp = M7 'M,v,, p=1,2,...,r = rank(M;). (26)

The largest eigenvalue ¢; is the maximum SNR ¢,5- (23), and the corre-
sponding eigenvector v, is the optimal weight vector. Moreover, the eigen-
values g, from Eq. (26) give the optimal SNR g,,: (19), (24).

It follows straightforward from Eqs. (24}, (26) that in the case of rank-
one signal matrix emphasized above, both the optimal QBF and optimal
LBF reduce to the steady-state adaptive beamformer which is, therefore,
the optimal scheme to process the perfectly coherent signal against the noise
interference [39, 40]. Its weight vector is given by

w=M;s". (27)

This well-known equation derives the noise prewhitening beamformer fol-
lowed by the matched-signal filter. 20



Completing our short introduction to optimal array processing, we point
out, for the purpose of emphasizing the signal coherence effect, a particular
case of spatially white noise. In this case, the optimal QBF scheme is
the incoherent Ap,-weighted combination of the partial filters matched to
the signal eigencomponents (A,, m,) from Eq. (24), while the optimal LBF
matches the first (most powerful) eigencomponent (A;,m;). Therefore, an
additional gain @ of the optimal QBF over the optimal LBF is determined
only by the signal eigenvalues:

] 1/2
£ )
Q B GQBF _ (p:l r

(;LBF )\1 ’

1<Q<rl/2 (28)

In practice, only the largest eigenvalues and an “cffective” rank r;; (defined
as their number) are of real importance for estimation of the quadratic
processor performance, while contribution of the high-order eigenvalues A,
(with the numbers p > r.ss) can be ignored.

Thus, the following characteristics of the received signal are of the great-
est importance with application to the optimal large-array processors: the
first (largest) eigenvalue Ay, the effective rank resy, and the quadratic gain
@ from Eqgs. (24)-(28). All of them are determined by the signal eigenvalues
and, therefore, are intrinsically interrelated. A physical parameter related
to the signal eigenspace is the ratio N./N which can be estimated by direct
measurements using the array. For the case of coherence-degraded signal,
N./N « 1, the following cstimates are of interest:

N, N 2 [ N\'Y? ‘
Al N’ Teff N, Q Tefs ("N—c) . (29)

The general formulations outlined above have been effectively exploited
by several authors to simulate the optimal processors and to consider subop-
timal (quadratic and linear) techniques by the use of exponential-type mod-
els for the signal coherence [3-6, 51]. In our more recent papers [52, 49, 50],
the theory has been developed by incorporating a model of multimode signal
coherence and simulations of the modal covariance effects on array beam-
forming. Two intrinsic factors, the modal covariances and the mode or-
thogonality, were shown to affect mutually optimal array beamforming and
the detection performance. For example, the signal rank r is considerable,
r ~ M, if the signal-carrying modes (M is their number) are weakly cor-
related and the array length is sufficient for their spatial orthogonality, or
resolution. 21



Simulated beamformers

In this paper, the effects of ocean acoustic coherence on the array gain
are compared for the following four beamforming techniques.

The first (simplest) beamformer is a conventional PWBF of the steered
array. The entries of its weight vector w,,, are given by

wpw(j) = exp[—ikd(j — )sing], j=1,2,...,N, (30)

where f is the steering angle (arbitrary).

The second one is PWBF with noise interference prewhitening, or adap-
tive PWBF [39, 40]. Its weight vector w,pu (see also Eq. (27)) is given
by

Wapw = M,—.lwpw- (31)

The third one is the optimal LBF given above:

Wegr =V, Qrer = 1, (32)

where ¢ and v are, respectively, the largest eigenvalue and the correspond-
ing eigenvector from Eq. (26).
Finally, the fourth one is the full-optimal QBF from Eqs. (18}, (19),
(24):
WEBFW'(I;BF = Aopt: qQBF = qopt° (33)

Obviously, the first three techniques follow from the linear structure in
Fig. la, and the last technique, from the quadratic structure in Fig. Lb.

3. PREDICTIONS OF THE ACOUSTIC MCF
WITH APPLICATION TO LARGE-ARRAY

PERFORMANCE DEGRADATION

In this section, we give some illustrative examples to exhibit numerical
predictions of (i) the acoustic MCF for a given sound-speed profile and
spectum of oceanic inhomogeneities, and (ii} the coherence—induced effects
on the array beampattern and SNR gain for both horizontal and vertical
array configurations.

The two sound-speed profiles chosen for our calculations are shown in
Fig. 2. They represent summer and winter seasonal averages and buoyancy
frequency in the North—-West Pacific at latitude 45°N. The sound scattering
in the summer channel is caused mainly by volume fluctuations in the index
of refraction, and in the winter chainznel, by contrast, by a stochastically



rough surface. To illustrate the corresponding effects of random volume and
surface scattering on acoustic transmission we exploit the Garrett-Munk
spectrum [35] for internal waves and the Pierson-Moskowitz spectrum [38]
for surface wind waves.

0.0

0.0

1.5 - L.5F .
2.0 2.0 A 1
1.45 1.47 1.49 1.51 0 5 10 )

Sound Speed (km/s) Buoyancy Frequency (s')x10°

Fig. 2. Upper parts of sound speed profiles (a) and buoyancy distribution (b)
from the North—-West Pacific. The profiles are: summer (1) and winter (2)

3.1. Evaluations of the acoustic MCF

We begin with observing the effect of medium fluctuations on the sound
wavefield coherence.

The coherence degree of the received signal is characterized by the cor-
relation coefficient:

C"(rlyZlywl)tler)ZQwa:tQ) = (34)

[(r1, 21,wy, hh|rz, 22, wa, t2)
VI{ra, 21,01, 6, 21, wh, 80)T (2, 22, w2, tors, 22, wa, ts)

This function is fully determined by solutions of the cigenvalue problem,
Eq. (2), and the RTE, Eq. (8).

23



Volume scattering by random internal waves

In Fig. 3 we plot the magnitude of the correlation coeflicient from
Eq. (34) in the case of transverse horizontal and vertical separations. Fig-
ure 4 shows the behavior of the normalized MCF as a function of time and
acoustic frequency.

Calculations were carried out for the summer profile from the North-
West Pacific (curve 1 in Fig. 2), for the source frequency of 250 Hz and
the source depth of 50 m. The theoretical curves in Figs. 3 and 4 were
plotted using the results of the work of Esswein and Flatte [36] for the
phase-structure density from internal waves. It is evident from thesc figures
that the characteristic coherence time and coherence lengths decrease as the
range increases.

Rough surface scattering by fully developed seas

As mentioned previously, when the propagation takes place in an up-
per sound channel, surface interactions play a predominant role in acoustic
signal fluctuations. For example, in the North Pacific such situations exist
perhaps 50% of the time in the winter.

For the case considered the corresponding graphs for correlation func-
tions are presented in Figs. 5 and 6. There is an additional parameter of the
ocean environments simulation, the wind speed v, which varies here from
10 m/s to 15 m/s. Obviously, the increase of the wind speed leads to the
increase of the rough surface scattering and coherence loss.

For moderate v (v < 13 m/s) the MCF behaves in an oscillatory fashion
which indicates that the scattering is weak, so that there can be a high de-
gree of signal coherence even at relatively large separation of the observation
points. It should be emphasized that the normalized MCF tends asymp-
totically to the coherence parameter I, = |[< P(r,z,t)>|> / <|P(r, 2, t)|*>.
The characteristic coherence length, time and coherent bandwidth which
are determined by the half-power decay of the correlation coeflicient in the
case studied depend on wind speed and are approximately 10 m, 2 s and
0.3 Hz, respectively, for v = 10 m/s.
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Fig. 3. The normalized MCF of horizontal (a) and vertical separation (b)
for summer environments at various ranges: 1 — 250 km, 2 - 500 km, 3 -
1000 km. Source frequency is 250 Hz, source depth is 50 m, depth of the
horizontal array (a) and the Ist element of vertical array (b) is 300 m

25



Correlation Coeflicient

0 100 200 300 400 500
Time Separation (s)
1.0 T T T T
(b)
= 0.8} -
[ ]
‘o
&
g 0.6 -
(&)
=
(o]
‘S 0.4 4
3]
o)
= 2
S 0.2 -
00 L 1 . L
0 5 10 15 20

Frequency Separation (Hz)

Fig. 4. The normalized MCF of time (a) and frequency separation (b) for
summer environments at various ranges: 1 — 250 km, 2 — 500 km, 3 —
1000 km. Source frequency is 250 Hz, source depth is 50 m, and receiver
depth is 300 m
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Concluding this subsection, we emphasize that the results on the MCF
is a base to exarnine the signal processing schemes (discussed in Sec. 2} in
the same ocean environments.

3.2. Horizontal array gain limitations

Now we turn to the numerical predictions of the coherence-induced loss
of the array processor performances including the beampattern and gain.
First, we give the results for the horizontal array configuration.

For the main purpose of evaluating the signal coherence effects, the
simulation is focused on the situation of spatially white noise background,
i. e. M, = I in the equations from Sec. 2 (I is the identity matrix). To
calculate the signal matrix M, we exploit the relative MCFs from Figs. 3a
and Ha.

Figure 7 shows the inean heampattern of the 256-element phased array
as a function of the stecering angle 3 for the source direction a = 30° in the
summer (a) and winter (b) channels, respectively (curves 1 in both cases
correspond to a regular channdi, or perfectly correlated modes). Signal
coherernice Joss ig seen to lead 1o considerable degradation of the beampat-
tern. This fact is generally weil known [46, 47] but the pronounced feature
i« shown to be the main lobe angular displacement caused by multimode
broadening of the signal angular spectrum. Therefore, an adaptive correc-
tion of the main lcbe direction is required to adjust the PWBF steering
angle to the angular response maximum.

Figure 8 shows the gain loss §, Eq. (17), as a function of the number N of
the array elements in the summer channel for the source direction o = 30°.
A considerable degradation of the PWBF gain (for # = a, see curve 4) is
caused primarily by the main lobe displacement emphasized above. It is
worthy of notice that the steep increase of the gain loss §(N) for N 2 50
corresponds to the decreasing gain (G(N). The latter function achieves the
maximum value G >~ 15 dB for N ~ 50 and shows a gradual decrease of
the gain for larger arrays. The angular correction required for such array
lengths is seen to lead to the significant gain increase up to ~ 5 — 10 dB
and to achieve near-optimal LBF performance (see curves 2 and 3). On the
other hand, this angular correction of PWBF does not entail any increase in
computational complexity and has the essential advantage of environmental
robustness.
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Fig. 7. Beampattern of the horizontal 256—element array for the summer (a)
and the winter (b) environments in the absence (1) and in the presence (2)
of random inhomogeneities: 2a — v = 10 m/s, 2b — v = 13 m/s, 2¢ —
v =15 m/s. Arrow indicates the angle of arrival
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Fig. 8. Horizontal array gain loss in the summer environments as a function
of the number of array elements: 1 — optimal QBF, 2 — optimal LBF, 3 —
PWBF with angular correction, 4 — conventional PWBF

Figure 9 shows the same function §(N) in the winter channel for the
same angle @ = 30° and two values of the wind speed v = 10 m/s (a) and
v = 15 m/s (b). The curves in Fig. 9a are generally similar to those in
Fig. 8 and illustrate, in particular, the angular dependence of the PWBF
efficiency that amounts up to ~ 10 dB. From Fig. 9b, however, two essential
conclusions concerned with fully developed wind waves follow. First, all the
linear beamformers, the optimal LBF included, degrade in comparison with
the optimal QBF with the increase of the speed v: the additional quadratic
gain Q, Eq. (28), is about 3 dB for the array length N ~ 100 and increases
gradually with N. Second, the angular correction of PWBF does not entail
a significant effect on the array gain. A physical reason is rather clear,
namely, the coherence length N, is small as compared to the array length
N, N./N « 1 (see Fig. 5a). This leads to (i) an increase of the signal rank
r and, therefore, to an increase of the “gap” between the optimal LBF and
QBF performances according to Eqs. (28), (29) and to (ii) full degradation
of the large-array beampattern (see Fig. 7b) and to consequent vanishing
of the angular dependence of the PWBF performance.
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To clarify the difference between the summer and winter conditions in
more detail, we show in Fig. 10 the largest eigenvalues (25) of the covariance
matrix M, for N = 256 and o = 30°.

Eigenvalue, A,

|
| 2 3 4 5 6 7 8 9 10
Eigenvalue Number, p

Fig. 10. Eigenvalues of simulated signal correlation matrix M; for the
256—element horizontal array in the summer (1) and the winter (2) (at
v = 15 m/s) environments

In the summer channel, the signal eigenvalues are seen to decrease rapidly
with the number p, and ress ~ 3. In the winter channel, on the contrary, the
eigenvalue spectrum for v = 15 m/s is nearly uniform for the first numbers,
and Teft ~ 15.

It is also of interest to compare the amplitude-and-phase array weights
w(j) for the PWBF with the angular correction and for the optimal LBF.
These beamforming techniques, as is seen from Figs. 8 and 9, achieve almost
the same gain performance. The reason is that the phase distribution of the
first signal eigenvector m; (which gives the weight vector for optimal LBF,
Eq. (26)), is very close to the phase distribution of the corrected PWBF
array:

arg(ml(j)) = "kd(] - l)SiI] Bmaz »

where Bmq is the direction of maximum angular response from Fig. 7.
These weight coefficients differ only by their magnitudes, or by the shapes
33



of the spatial windows. For example, Fig. 11 shows the weight magnitudes
for the 256-element array in the winter channel for three values of the
speed v. These non-uniform windowing shapes entail some broadening of
the optimal beampattern main lobe in comparison with the PWBF main
lobe, which is caused by fluctuations of the modal angles of arrival.

Magnitude |m;(7)]

0.0 1 e 1 1 ' 1 3

32 64 96 128 160 192 224 256
Element Number,

Fig. 11. Weight magnitudes for the 256—element horizontal array in the
winter environments: 1 —v=10m/s,2 —v=13m/s,3 —v=15m/s

Thus, the coherence-induced effects on the horizontal array beampattern
and gain are shown to be significant, especially in the winter environments
of fully developed wind seas, and to depend essentially on the beamforming
technique used.

3.3. Vertical array gain limitations

To take into account the well-known vertical directionality of the ocean
ambinient noise, the examination of vertical array processors includes also
modeling the noise covariance matrix M,,. We assume the noise to be the
sum of spatially white noise and partially coherent ambient noise of the

ocean:
Mn =ol+ Man ’ (35)
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where I is the identity matrix, Mg, is the covariance matrix of ambient
noise, and o is the white noise level. We calculate the “vertical” matrix
Mg, by exploiting a widely used model of the ocean surface-generated
noise [45, 53], according to which the noise is generated by uncorrelated
sources with homogeneous spatial distribution on the ocean surface. The
treatment is also based on the normal mode approach, so we interprete the
ambient noise in Eq. (35} as the modal noise. As was previously estimated in
Ref. [54], the modal noise effect on the vertical array gain depends inherently
on “overlapping” of the signal and noise modal spectra.

To calculate the signal matrix M, we exploit the relative MCFs from
Figs. 3b and 5b.

We examine here the array gain G (17) instead of the gain loss §. The
reason is that modal noise prewhitening by the use of special techniques of
matrix inversion, Eqs. (24), (26), (31), leads to some additional gain. This
additional “noise” gain may be essential only if the modal noise is much
more intensive in comparison with the white noise background. That is the
case of our particular interest, so we suppose ¢ = —20 dB in Eq. (35).

Figure 12 shows the 64-element array beampatterns in the summer (a)
and winter (b) channels. For both figures, the beampatterns are plotted
to be compared for regular and random-inhomogeneous channels (curves 1
correspond to a regular channel). The signal coherence loss is seen to lead
to a considerable degradation of the array beampattern, similarly to the
case of a large horizontal array (see Fig. 7). In both channels, however, the
maximum angular response corresponds to transverse propagation because
the signal modal spectrum has a maximum in the low-order modes (see also
curves 1 in the following Fig. 13).

Figure 13 shows the modal spectra of the receivedl signal and the ocean
noise in the summer (a) and winter (b) channels. Comparison of these two
cases shows that they differ essentially. In the summer channel, the noise
power spectrum has a smooth maximum in the high-order (m 2 100}
modes, so the signal and noise are localized mainly in different groups of
modes. This fact leads to a general possibility of highly efficient modal noise
suppression, which obviously corresponds to the particular case of transverse
signal reception and modal interference reception in the sidelobe domain.
An opposite situation is seen to be realized in the winter channel owing to
the noise power localization in the lower-order modes. This difference leads
to a dramatic effect on the array gain [54], which is illustrated below.

Figure 14 shows the array gain function G(N) in the summer channel
for the white noise (a) and modal noise (b) background. Since the main
lobe is not displaced from the transverse direction (Bmar = 0°), we plot
only three gain functions in Fig. 14a.
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Fig. 12. Beampattern of the vertical 64—element array for the summer {a)
and the winter (b) environments in the absence (1) and in the presence (2)
of random inhomogeneities: 2a — v = 10 m/s, 2b — v = 13 m/s, 2c —
v=15m/s
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Fig. 13. Modal spectra of the signal (1) and ambient noise (2) for the
summer (a) and winter (b} (at v = 15 m/s) environments. Modal spectra
have been normalized to the area under their respective curves
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Fig. 14. Vertical array gain in the summer environments as a function of
the number of array elements for white noise (a) and modal noise (b): 1 —
optimal QBF, 2 — optimal LBF, 3 — adaptive PWBF, 4 — PWBF
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Fig. 15. Vertical array gain in the winter (at v = 15 m/s) environments as
a function of the number of array elements for white noise (a) and modal
noise (b): 1 — optimal QBF, 2 — optimal LBF, 3 — adaptive PWBF, 4 —
PWBF
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The considerable increase of the gain in the case of modal noise as com-
pared to the case of white noise is shown to be about 10 — 20 dB for all the
beamformers. The most significant increase is seen to be achievable for the
beamforming techniques which prewhite the modal noise. The gain increase
for conventional PWBF is, however, also significant due to angular selec-
tion of the received fields by narrowing the beampattern main lobe with
increasing the number of array elements.

Figure 15 shows the array gain function (V) in the winter channel for
the wind speed v = 15 m/s and the same cases of the noise background. For
the modal noise, the gain is seen to decrease (down to about —5 dB) for all
the beamformers owing to similarity of the signal and noise modal spectra,
which was emphasized above (see Fig. 13b). Only the optimal large-array
QBF achieves in this case a significant value of gain G ~ 5—7 dB. Moreover,
PWBF does not achieve any practical gain for all array lengths, so the
PWBF array is concluded to be ineffective under these input conditions.

Thus, the estimates of vertical array gain vary essentially depending not
only on the signal coherence loss but on the ambient noise modal spectruin
as it is proved above. Moreover, the last dependence can be even more
essential and may lead to a dramatic effect, especially in the case of similar
modal (angular) spectra of the signal and ambient noise.

4. SUMMARY AND CONCLUSIONS

In this section, we conclude our study on the coherence effects on large-
array signal processing in long-range deep-water environments and sum-
marize the key results obtained.

The MCF is of great importance for understanding statistical behavior
of ocean acoustic transmission. It was shown how to efficiently derive an
asymptotic expression for the MCF in terms of modal structure of the acous-
tic pressure field using the RTE. The method for solving the corresponding
matrix equation is based on combined use of the WKB approximation and
generating function technique. The procedure elaborated allows one to re-
duce the problem of the wavefield coherence calculation in a refractive sound
channel with random volume inhomogeneities to the analogous problem in
free space. The method employed was also extended to include rough surface
scattering effects. The application is illustrated by numerical computation
of the expected acoustic coherence for deep water ocean environments un-
der the assumption that the random field of either internal waves or fully
developed seas is the dominant source of transmission fluctuations.

Rough surface scattering was established to cause the most significant
effects on ocean acoustic coherence. In particular, as observed in the results



of Sec. 3, for a source of 250 Hz, at a range of 500 km and wind speed of
15 m/s, the characteristic horizontal coherence length and coherence time
have an order of magnitude of 50 m and of 2 s, respectively. For comparison,
the corresponding scales computed from the Garrett—-Munk spectrum and
summer profile in Fig. 2 are of order 400 m and 200 s.

We emphasize that the underlying assumption of the dominance of
internal-waves or fully developed wind seas has been previously tested in
ample detail against data for time behavior of the MCF. In particular, the
experiments performed by researchers of the Institute of Applied Physics
RAS in the North-West Pacific at the sound frequency of 250 Hz and at
ranges up to 1000 km demonstrate that the signal fluctuations have the
correlation time of a few hundred seconds in the summer environment, and
of a few seconds in the winter one [55]. Our respective calculations are in a
good agreement with these experimental results.

Measurements of horizontal and vertical coherence have also been carried
out in many experiments. The available data have been collected in the book
by Stefanick [56]. The majority of the data indicate that typical measures
of coherence lengths are 10 to 100 wavelengths for horizontal separations
and less than 10 wavelengths for vertical separations. Again, the order-of-
magnitude is consistent with our numerical predictions.

Thus, we can conclude from this study that the RTE technique is a pow-
erful tool for calculating acoustic propagation in a medium where random
scattering effects are important. It is clear, however, that more accurate
oceanographic measurements taken simultaneously with acoustic measure-
ments will be required to compare with our theoretical expressions.

The effect of oceanic fluctuations on the received signal coherence was
shown to be of the most importance with application to large—array beam-
forming. The following three factors were shown distinctly to be the key
points, namely, (i} multimode spreading of the received signal angular spec-
trum; (ii) multimode signal coherence degradation; and (iii) ambient noise
directionality. The particular effects of these factors depend intrinsically on
the array configuration in a channel and the array length. Moreover, the
beamforming techniques were shown to be very different from the point of
view of environmental robustness.

The PWBF technique was shown to be the most “sensitive” to the fac-
tors (i)-(iii). This means that the PWBF gain can dramatically vary as a
function of environmental parameters. Of the greatest importance is the
fact that adaptive correction of the steering angle can lead to an essential
improvement of the performance, for example, up to ~ 10 dB for the hor-
izontal array lengths L ~ 100X. However, the possibility to maintain the
PWBEF efficiency is firmly restricted by the cases of “residual” signal coher-
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ence over the full array length, and partial separation of the modal spectra
of the received signal and noise background. These two cases are generally
independent of each other but affect mutually the large—array PWBF gain.

An obvious advantage of the PWBF techniques is their comparative
simplicity. They do not require a preprocessing procedure to estimate the
signal eigenspace, and their performance can easily be controlled by re-
forming the beampattern, including adaptive angular correction of the main
lobe.

As distinct from PWBF, the optimal processing techniques require the
eigenvalue—eigenvector analysis of the desired signal. To synthesize the op-
timal LBF and QBF schemes, one needs, therefore, to estimate the signal
eigenspace in the noise background. The full-optimal QBF reduces signifi-
cantly the coherence-induced array gain loss, however, at a cost of increased
processor complexity: the number of partial weight-sum channels 1s equal
to the number of the largest signal eigenvalues, as compared to the linear
beamformers which require to synthesize only one weight-sum channel. The
reason to follow such a complicated scheme is only the long—range signal co-
herence degradation, namely, the small values of the ratio N./N « 1, or, in
other words, the case of refy 3> 1. Under these conditions, the additional

quadratic gain @ (28) is considerable, @ ~ réﬁ, and its value was shown to
be ~ 3 — 6 dB. The most essential and pronounced feature of the optimal
QBF is the increase of the gain function G(N) for all array lengths without
a “saturation” plateau. The latter, in turn, is an intrinsic feature of the
optimal LBF.

We point out that the eigenvalue-eigenvector approach to the optimal
processing techniques can be also developed in the temporal and frequency
domains by the use of the results on respective MCF's of time and frequency
from deep-water environments (see Figs. 4 and 6).

In conclusion, we summarize that (i) the large-array gain performance in
long-range ocean environments is inherently limited by the spatial coherence
of multimode acoustic signal, and (ii) the full potential of large arrays will
not be realized unless the coherence characteristics are known in detail and
incorporated into signal processing.
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DIFFRACTION OF ACOUSTIC WAVES
BY AN OBJECT
IN A RANDOM OCEANIC WAVEGUIDE

A. I. Khilko, A. G. Sazontov, and N. K. Vdovicheva

Introduction

A problem of interest in underwater acoustics is the multimode diffraction
of acoustic waves in oceanic waveguides. Most of the previous works exam-
ining this problem have been carried out under the basic assumption that
the multimode signal is the coherent superposition of normal modes [1-5].
In real channels, however, in addition to deterministic background environ-
ments there are random inhomogeneities that can change significantly the
transmission of acoustic fields in waveguides. Thus, a combination of the
effects of regular refraction and multiple scattering is the basic factor de-
termining the potentialities of underwater acoustic systems whose purpose
is the diagnostic of scatterers in the ocean. !

The aim of this paper is to develop wave-theoretical expressions for ener-
gy and correlation characteristics of an acoustic field scattered by an object
in a random oceanic waveguide, that allow for simple physical interpreta-
tions. A derivation of the quantities of interest is given for the case of both
source and receiver far from the target. The method presented is based
on the combined use of the Kirchhoff diffraction model and the radiation
transport equation governing the evolution of the mutual coherence func-
tion (MCF) for multimode propagation. The major approximation made is
the neglect of multiple scattering from an object.

The body of this article is organized as follows. The Kirchhoff formu-
lation of the diffraction problem is briefly discussed in Sec. 1. Section 2
derives the mutual coherence function (MCF) of a c¢w signal scattered by
an object. Next, Sec. 3 addresses the effects of stochastic waveguide propa-
gation on the target strength. In Sec. 4 some numerical examples are given.
Finally, Sec. 5 summarizes the key results of this work.

1. Problem formulation

Consider an underwater sound channel of depth H, in which the re-
fractive index is the sum of the deterministic background profile ng(z) de-
pending on vertical coordinate z and the stochastic field u(r, z,t) modeling

'In the absence of regular refraction, the influence of large scale medium fluctuations
on the diffraction process has been analyzed in Ref. {6].



the acoustic medium fluctuations, where r = (z,y) is the horizontal two-
dimensional position vector and t is the time. (The coordinate system is
chosen with the z-axis downwards.) The perturbation x is assumed to be
Gaussian random variable with zero mean, and can be described by its
autocorrelation function

<p(ry, 21, t1) p(re, 22, t2) >= By(jry —r2|, 21, 22, 8y — t3).

The angular brackets < --. > indicate ensemble averaging. In the subse-
quent analysis we shall assume that the scale of oceanic inhomogeneities is
much greater than acoustic wavelength and the characteristic frequencies of
B, are small compared with a carrier frequency of sound field.

Let a nondirectional source with acoustic power W be located at coordi-
nates (rg, zo) and emit a CW signal of the carrer frequency wo. This signal
passed trough a random oceanic channel is scattered by an object. The
coordinates of the body center are (0, z,). The geometry of the problem is
shown in Fig. 1.

AIR

T
- Zs SEA
SOURCE WATER
, Soume —oOb

TARGET  FIELD POINT
(r,2)

VAN AV AN AN AN Y Y AV
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Fig. 1. The geometry of the problem showing deep—~water channel of depth
H containing source, target, and the coordinate system

As a result of scattering for the total acoustic pressure field P(r, z) we get
P(r,z) = Pi(r,2) + Py(r, z),

where P;(r,z) is the incident field and Py(r,z) is the diffracted field pro-
duced by the object. 49



It is well known that an exact investigation of diffraction processes is
faced with essential mathematical difficulties. A considerable simplification
in theoretical study of acoustic scattering from a target in oceanic waveguide
occurs when multiple scattering effects between the target and boundaries
may be neglected in order to avoid problems with evaluating the medium
Green’s function in the near field. This assumption is valid as long as the
scatterer is sufficiently far from the water surface (see, e.g. {7, 8]). I, in
addition to neglecting multiple scattering, the characteristic target sizes are
large compared to the wavelength, then the diffracted wavefield may be
derived from the Kirchhoff integral:

Py(R) = / / [P“(R")ai, G(R.R,) - G(R.R,) 3‘1 PyR.)]dA,, ()

where R = (r,z), dA, is the area element, S, is the surface of the scat-
terer, n, is the outward normal to S,, and G(R,R’) is the medium Green’s
function which satisfies the Helmholtz equation together with appropriate
boundary conditions at the ocean surface and bottom (but does not satisfy
the boundary condition on the object’s surface).

For concrete analysis we assume that the scattering object is acoustically
rigid, and hence

aP,(R,) _ “an(Rs)

on, an, °’

We will be interested in the behavior of the field scattered in the forward
direction. In this case the integration in (1) can be extended only over
the plane restricted by the shadow—forming line. Then, in the Kirchhoff
approximation letting

-Pi(R,), R, €S,;
Pd(R,,,) — { ( J) 8
0) RS ¢ SJ!
and using (2), for P4(R) we obtain

PA(R) = / [lorRry 2B ) 2 gy, g

R, € S,. (2)

where the integral is taken over the shadow-forming plane S.
In the farfield, the quantities dP;(R,)/9n, and dG(R,R,)/3n, appea-
ring in (3) can be approximated by
J0P;(R,)
an,

0G(R.R.) _

~ ik cos a; Pi(R,), an
8

—ikcos o, G(R,R,),
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where a; and a, are the angle of incidence and the scattering angle, respec-
tively, measured from the normal to the scattering plane, and k = 2x/X
is some reference wavenumber. In the present treatment we shall be con-
cerned only with the case &; = a,, a, < 1. Making this simplification and
introducing the function

1, Ri.€eS5;
E(Rys) = { +
01 RJ.a e 51
from (3) we find
Py(R) = 2ik //E(R.'J_s)P.-(R;)G(R,R")dR'L,. (4)

Equaticn (4) is the starting equation for the subsequent statistical analysis.

2. MCF of diffracted signal

The two-dimensional integral (4) contains the product of two random
fields P;(R.) and G(R,, R) describing the stochastic waveguide propaga-
tion between source and target, and target and receiver, respectively. Since
we have already used the fact of forward scattering, the corresponding
fields are statistically independent. This circumstance simplifies signifi-
cantly the problem of finding a result for the coherence function of the
diffracted field reducing it to the evaluation of the direct wavefield correla-
tion characteristics over source—target and target-receiver distances. Tak-
ing it into account, for the spatial MCF of the diffracted signal defined as
TFa(R1, R2) = < Pg(Ry) Py"(Rz) > from Eq. (4) we get:

T4(R4,R3) = 4k? //dR’l,E(R'L,)x

x / /dR’i,E( 7 TR RY) T, (Ry,R[R,,RY), (5)

where
I'i(R;,R}) =< P(R}) A" (R})> (6)
is the MCF of the incident field, the asterisk denotes complex conjugate,
and
FA(RI)RZIR:vR{g’) =< G(RlsR:) G’ (RZaR;,) > (7)
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has the sense of the MCF generated by secondary sources placed on the
surface of the scatterer and registered at two different position points in the
plane of observation. Note, that the incident field P;(R,) canr be expressed
in terms of Green's function as follows

PiR.) = /B uc()W G(R.,Ro), ®)

where o,, is the density of water, c(z) is the speed of sound taken at the
source depth. Hence, in order to calculate (5), it suffices to evaluate the
second moment of the random Green’s function (7).

2.1. Second-order statistics of the medium Green’s
function

The medium Green’s function G(R,R’) in an irregular oceanic waveguide
can be formally represented by

G(R,R’) Z ! — gam(r,r') Pn(2)om(2'), (9)

Ko Komne
n,m n om

where, wn(z) is the n-th vertical eigenfunction of a regular channel associ-
ated with the eigenvalue 2, M is the number of propagating modes, and
gam(r,r’) are the random expansxon coefficients. In writing (9) we ignored
the farfield contribution from the modes of continuous spectrum. The nor-
mal mode functions @, (z) satisfy the eigenvalue problem

d? 2,2

dqun(z)+[k (z)—/c}son(z)—() n=12,....M (10)

together with appropriate boundary conditions and an orthonormality re-
H

lation, i. e., fdz ©n(2)Pm(2) = bn.,. Here, H is the ocean depth, ng(z) is
0

the regular part of the refractive index, and k = w/¢g, where ¢y is some
reference sound speed.

In the case of large-scale (compared to the wavelength) medium inhomo-
geneities, when multiple scattering angles are small, the equation governing
the change of g,m(r,r') as a result of the scattering can be derived from the
original Helmholtz equation, and in the parabolic approximation has the
form:

(2= 5n = 5 2z ) s ) =13 Vo) gam(ea)s (1)
35 " W~ o7 Gnm(r,x’) =1 ' ant (T, 1) gnun (.1
52 "



where z-axis is taken in the main direction of wave propagation, Vo (r,t)
is the matrix coupling coefficient (depending on t as a parameter) defined
according to [9)

H

/ (2) u(r, 2, t)pn(2)pn (2) dz. (12)

0

V,.m:(r, t) =

Kn K'n

With the use of Eq. (9), for the second moment (7) one finds:

(13)

n,vm A

<gmM(1,211,2')> = < gan(1,1) 97ma (2:2') >,

where the labels l, 2 and 1/, 2' refer to two different horizontal position
points ry, ¥ and r', r'", respectively.
In Refs. {10, 11] the ba51c transport equation for the matrix gj ’\(1 2|1'2")

taken at two couples of the horizontal position points r, (z,v1),
r2 = (z,y2), and ¥ = (2',¢'), v’ = (',¥”) in the planes ¢ = const
and ¢’ = const has been derived from (11) under the forward-scattering
approximation:

a . S i, (8 1 9 s
[55’“‘ "fnm——apan‘afm<w+zﬁ I =

[}: Anar(1,1) g% +Z Amra(2,2) g,w'*] + A1) e

’ ’
n',m

(14)

1
g:lv,\(lgul’zl)]z:z .= Z 6nu 6mx 6(P - PI) 6(R - R’)

In writing (14) the following notation is used:

p=y1~y2, R=05(y1+y2), ¢ =y ~¢', R = 0.5(y +¢"), « Ky = Ko~ Ko,
Gim = 05 (w4 60l), fam = A% = s Awns(L1) = 3 ALY = (1,1), and
the coupling matrix A, ., (l 2) is given by

nn'

R OV S
Amm (1 2) — /d,qu"l (77, p)e"'('c-nm Kn‘m’)n’

nn'

1
mm

1 1 1 1

’ = Vnn’ =-n - mm’ - =1, — - s
e (10) = <Vanr(@+ 50, R+ 5 p)Voums (2 = 50, R— 50)>
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where V,,(r, ) is determined from Eq. (12) and k},, = 0.5 (kn + &£m).

A detailed analysis of coupled integrodifferential equations (14) is pre-
sented in Refs. {10, 11]. In what follows we employ the results obtained for
the problem of interest. Under weak restrictions on the theory (specified
in [10, 11]) the corresponding Green’s matrix can be found analytically and
has the form:

L gmM1,201,2) = g0 (1,2152) A (1,2]1, 2')e Urin = Km )T — iy — Kx)’

(15)
where

1.1 (2.2 _ 2
2, (12j1727) = L) (22) (31 = 32) ]

, Uy(ri,ry) =exp ik, —0——
8¢t (z — ') v(rra) P [ “2zy — z2)
has the nature of a Green’s function of the radiation transport equation

in the absence of flucteations and the matrix h""\(l 2{1',2'} describing the
influence of random oceanic inhomogeneities is given by

nyv

hm"(] 2!1 2 //dozdﬁe (n l/)a+1,(m A)ﬁ %D (1’2“1’21)
with

Dji(1,21,2) = / de [dze(1,111,05€) + dfR(2,212,25€) - 2458(1,211'24 )

zf

daeydee, ¢ aeu,\(f),zaﬁ (5))
o X B y v
dl“\(l 211 2 E) 2k // cosx,,({)COSX,\(f) 8

(16)

z—zx zr—z

X €08 [aey (p (- 40 = =¢ )] cos(a,cff({)).

In (16) the following notation is used: ®,(a, z) is the local spatial spectrum
of the sound-speed fluctuations taken at : = ‘E:f(z), where the wavenum-
ber 2% (z) has components

Dh@) = (—05(ts (=) + tex] (e)) e, 2y, )

and x2(z) is the angle the modal ray makes with the horizontal at the
point z; tg x5(z) = dzZ(z)/dz is the inclination of a modal ray with the
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p}z:th 2 (z) = 2,(z — aA, /27) and the cycle distance A, where 2, (z) obeys
the equation

d?z,(z) 1 d Kn

a2 3e, @) A= T

2B(z) = 0.5(z8(z) + 25 (2)); <2¥(z) = 22(z) — 25(z). The expression
for D:f(l,Q), Eq. (16), is immediately recognized as the phase-structure
function [13] with the only difference that the integral in (16) is taken along
modal ray instead of usual geometric ray. Note also, that the combination
d22(z, 1|z, 1) + d3 (2, 2|z', 2) — 2d2 (=, 1|z', 2) can be regarded as a density
of the phase— structure function.

The knowledge of the matrix Green’s function g™} (1,2|1’,2') allows one
to evaluate both the energy and correlation chatactenstlcs of the acoustic
field produced by the sources of different types. In particular, for the MCF
of the incident field, Eq. (6), from Egs. (8), (15) it is easy to find

(R, RY) = 870y c(20)W Y T (24,50) T (26)0n (20 )0 (2]),  (17)

n,n’
t e 7"
(c )= Y () ro)ul (7 ro)RaY (x) ¥ [ro,ro)@u (20) 0w (20),
v,y
where 1
-Inm(m) = m exp [i(K.n - nm)z] .

With the aid of the expressions (13), (15)-(17) the MCF of the diffracted
signal, Eq. (5), can be written in the form {12}:

Fd(R'ltRZ) = 87w C(ZO)W E P:inm’ (1‘1,1‘2) Jm‘m'(z)wm(zl)(pm' (Zz)' (18)

Here
nrm.’ 1,1‘2) - Z nn’l l]_,l'z nn' (30)@"(20)30«,,, (ZO) (19)

n,n’

with

S;nn 1,!‘2 —4k222 /dy, v:\(ys)uu(r_ulO)u/\(rlv )X

v A A

+
/dys V’A’(ya) (ra ,l'())‘U.y(lg,I‘” hun( ;,r:'|r0,ro)h$;\'(rl,rzlr;,r','),
o
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where

ta(y) = / 4z, B(y, 7,) ou(2)or()

Equations (18)~(20) constitute our central results. They give explicit rules
for calculating both the correlation function and the wavefield intensity of
the acoustic field scattered by an object in a random oceanic waveguide.
As it seen from Eqgs. (18)—(20), the scatterer can be regarded as a re-
distributer of the modal content of an incident acoustic signal: each pair of
modes n and n’ of the primary field transforms their energy into diffracted
modes m and m’, and the strength of the interaction is determined by the
matrix function S™™ . It should be emphasized that the quantity S™™
contains a complete information about the refractive and reflective proper-
ties of a random oceanic waveguide and an object within the channel. Thus,
the problem of finding an useful result for the MCF of the dlffracted signal

now reduces to evaluating the two-point correlation matrix S;v (rl,rz)

2.2.  Analysis of limiting cases

For an unspecified object, the integrals over ¥, and y!' in (20) may be es-
timated in two limiting cases: for small and large sizes of the scatterer in
comparison with the corresponding spatial correlation lengths of the inci-
dent and diffracted fields.

Consider first the case when the characteristic horizontal size of the
scatterer, lp, 1s much smaller than the characteristic scales of the variation
of the functions hZ™ (-|-) and R gt ) versus ¢’ = ¢, — y!. In the system
of interest, we can regard the corresponding structure functions describing
the coherence loss of incident and scattered signals to be almost constant
inside the shadow—forming plane in the region that is critical for integration
over y, and y!'. Consequently, we have

un' (r11r3) 4k? Z E fu—\(rl '1'0) f :,\:(l‘z,l‘o)x

v, A v X!
X h"" (0,0lrq,ro) h ﬁ:{‘l(l‘l,!‘zloﬁ), (21)
where
foa(ryra) = / dy, dz, E(y., 2 )uy (1,0 )ua(r’, r2) o (2 ) a(2;).
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Physically, the quantity f,. is a matrix amplitude of scattering that de-
scribes the regular diffraction field of the A-th mode behind the object at
normal incidence of the v-th mode. In the case considered the effects of de-
terministic multimodal diffraction have been isolated in the first two factors,
and the effects of the medium fluctuations in the last two.

As follows from (21), the correlation function of the diffracted field in
the horizontal plane does not depend on the degree of spatial coherence
of incident radiation. Instead, it is determined completely by the scatter-
ing properties of the propagation medium from the body to the plane of
observation. This means that a random wave diffracted at a small body
produces on it a spatially coherent field of secondary sources. The latter
circumstance is well known from the general statistical theory of diffraction
(see, e.g., [14]).

Consider now the second limiting case, when the horizontal size of the
scatterer is much larger than the corresponding correlation length of incident
and diffracted fields. For approximate calculation of the integral (20) we
make a transformation to new variables ¢’ = ¥, — vy and R’ = (v, + ¢}'}/2
and designate the half-sum (y; + y2)/2 through R and the difference y; — 2
through p. It is not difficult to show that the main contribution to the double
integral in (20) comes from the region when |y, — y!| < I,,. Therefore, the
integration over p’ may be extended to infinity without negligible error, and
the function E(R' 4 p'/2,z) may be replaced by E(R', z). These give

; i("':,\'RP) o¢
Syt (r1,r) = 4kzz Z e

rc;\,R’p)
z X
v, AV, A

/dR’tu,\(R')tuo\' (R')e—z( *

-0

F " TRkt
x f dp' hE™ (0,6'|20,0)hm3 (, £10,6') exp [-ip' (—*—*— + ’°——~"~)] .

o]

(22)
The correlation matrix (22) as a function of transverse coordinate p has two
characteristic scales. The first of them is associated with the finite length
of spatial field coherence at the target-receiver distance and depends on the
specific features of the function A (z, p|0, p'). The second one is deter-
mined by the characteristic width of the diffraction pattern of a multimode
signal described by the integral over R’ in (22). It is noteworthy that the
field correlation length in a randomly inhomogeneous medium is a dimin-
ishing function of the distance passed by the wave, while the width of the
diffraction lobe increases with increasing distance from the object. There-

fore, the role of the effects of multiple scattering by medium fluctuations is
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dominating in formation of the coherence function of a diffracted signal at
long acoustic distances.

We have analyzed above the asymptotic behavior of the two—-point ma-
trix S™™'(ry,1;) determining the correlation properties of the registered
field along the horizontal plane. As follows from (18), the behavior of the
coherence function in the vertical plane depends on both the regular mode
structure of the acoustic signal and the statistical propagation effects that
lead to the decay of cross~modal correlation functions me' for m # m’
and to equipartition of energy among all mode intensities I'd,., similarly to
the direct signals in multimode randomly inhomogeneous waveguides (see,
e.g., [15, 16)).

3. Target strength of an object in a random
oceanic waveguide

The total mean intensity of the diffracted field at the observatlon point is
given by
ILi(R) =< |Py(R)]® >= I'4(R,R).

Setting R, = Ry = R in Eq. (18), for I3(R) we get:

Id(R) 87(/),‘, ZO)W Z I‘mm,(r,r) Jvum'(z)(pm(z)(pm’(z); (23)

m, m'

T (nr) = Y ol (£)Jan (20)9a(20)0ni(20),

n,n’

where 0™ (r) = §

o ' (r,r) tepresents the partial scattering cross-section,

which characterizes the efficiency of the energy exchange from modes n and
n’ of the incident field into modes m and m' of the diffracted field.

In what follows we will be interested in the behavior of the averaged
(over interference pattern) energy characteristics of the diffracted signal.
Then, the expression for smoothed intensity I; contains only a double sum
equal to

LRy = 22CIW s~ L mm) o2 oeh(s). (24)

87zo|x Kn Km
n,m

The reflection properties of an object are fully described by the scat-
tering cross—section. Following Ref. [1] we define the quantity of interest
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o as a coeflicient of proportionality between the intensities of incident and
scattered waves taking into account the waveguiding type of propagation:

. I4(R) 0
=2 = |r—r sy Ty
wp ([ o). e

where I;(Rg) is the smoothed intensity of the incident field taken at the
point of scatterer location:

L(R,) =2 lzol Z\/kﬂ_.,‘o" 2,)P3(20)hny (raiTo);  (26)

hnu(rs;rO) = hﬁ';(r,,r,irg,ro),

and r'(r,, z,,1r,z) has the sense of the transition range (smoothed with
respect to the interference pattern) from the omnidirectional point source
at {r,, z,) to the observation plane:

R S o2 (shoR (s
rofrs, 2551, 2) Z \/—’* hnv(r; 1) 05 (2)05(24).

Taking into account Egs. (24) and (26), from Eq. (25) it is easy to obtain:

1".’"!

1 E 01m (pn(ZO)‘pm(z)

=@ S gl (Vo) 3 Ao (Va5 0)

n.v m, A

(27)

In writing (27) we have used the fact that the grazing angles of the modes
are small in most oceanic situations, so we have put x, = K, = k in the
amplitude factors.

In order to evaluate o it is necessary to find a result for the matrix
mm(r) whose elements appear in the definition of o according to (27).

The asymptotic forms of this matrix can be found in the limiting cases
of small and large sizes of the object (in comparison with the corresponding
correlation lengths of the incident and diffracted fields). According to (21),

for coherent “illumination” (small-size scatterer) for oy" (r) we have

om(r) = Sp(r,r) = 4k ) [ fua(r.To)|? hun(0;T0)hma(r; 0).  (28)

v, A

g

Let us estimate the matrix scattering amplitude f, entering into (28)
for the case of both source and receiver far from the target (in the Fraun-
hofer zone relative to the horizontal size of the scatterer), supposing that
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the WKB approximation is valid for the eigenfunctions @, (z). In this ap-
proximation, simple calculations give the following result for f,i:

fua(r,ro) = S Tua(r,ro) o (2,)pa(2s)s

y Yo
.’ = y 30 - o(z) — anlza)]. 29
Aua(r,ro) ﬂ{n,\ -t lmol'q"(z ) —aaz )] (29)
Here, S is the area of the shadow~forming plane, g,(z) = /k?nd(z) — 2 is

the local vertical wavenumber of the v-th mode, and
1 o<
Aow) = 3 [ faedc B+ e+ W
-0

is the scattering function for the same scatterer in an unbounded homoge-
neous medium. The inequalities

1]dg(z)  daa(a)
2 dz dz

I; <1, L <1, (30)

‘ dv, (Z,)
| dz

were supposed to be fulfilled in derivation of (29). Here, [, is the charac-
teristic vertical size of the scatterer, v,(2,) = ¢,(z,)/k, and the fact that
the depth of immersion of the body, z,, is much larger than its size [,, i.e.
z, > |, is taken into account. Thus, the total scattering cross—section {27)
in the situation under consideration takes the form

o = oo F(r, z|vo, 20; 2,)- (31)

Here, 09 = {S/))? is the vacuum forward-scattering cross—section and the
formfactor F(-) equal to

Z E ‘ﬂuk(r;rO)‘zhvﬂ(O; rO)hmA(r; 0)¢3‘(20)(P,2,(Z,)‘P?\(25)(p,2“ (Z)

n.m v, A

2 ¢ (20)97 (26 ) hun(0; xo) EA ©3(20) P70 (2)hma (r; 0)

n,v

F =

describes mutual influence of the effects of regular diffraction and multiple
scattering on the reflectivity of the body.

Note that, at relatively short acoustic distances when the exchange pro-
cesses do not change substantially the energy structure of the field, so that
hun(*) = 6ny and hpma(:) = bma, the formula (31) transforms to the well-
known expression for the scattering cross—section in a smoothly inhomo-
geneous medium [1]. It should be emphasized that the inequalities (30)
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impose definite restrictions on the vertical size of the body, under which the
matrix scattering amplitude f,,, may be expressed in terms of plane~wave
scattering function of the object corresponding to an infinite homogeneous
space. Under these suppositions, the diffraction part of the problem is sim-
ilar to that in free space, while account of the effects of multiple sound
scattering by medium fluctuations reduces to investigation of cross—modal
transformation of normal modes.
If the quantity [, satisfies a more rigorous condition

max |qn(23) - qm(za)“v <1, (32)

and the source and observation point are located at the axis y = yo = 0,
then i[,m = 1, provided that F = 1 and the formulas obtained immediately
for a homogeneous medium are valid. By virtue of

max lgn(2e) = qm(2,)| = ky/nd(2) - cos? bor,

where 8., is the critical angle of the waveguide, the inequality (32) can be
put into a more physically illustrative form

L < zc(zs ))

where

A

2:(2) n3(z) — cos? 6,
has the sense of a vertical correlation length of the sound field excited by
a spatially incoherent source [17]. The corresponding value has a local
character, i.e., it depends on the location of the scatterer.

For an incoherent “llumination” (large-size scatterer), the quantity of
interest o™ (r) may be expressed with the aid of Eq. (22) taken at r; = r3,
which for convenience is rewritten as

oM (r) = 4k? / dR'/ /dz dz)E(R,z,)E(R, z)')x

[o ]

x/dp'Rﬂ(r01p,1 :) ‘)Rm(!‘ p’zm 3) (33)

-0

where

—if FelY
Rﬂ(rap;21132)=Z¢u(zl)‘pu(zz)hnv(myo;oxp)e t( e )
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The simplest expression for oj." is obtained for large vertical sizes of

scatterer: [, 3> 2,(z,). For approximate evaluation of the integrals over z|
and z/ in (33) we pass to new variables ¢’ =z, — 2}/ and 7' = (2] + z!)/2.
Under these approximations,

E(R,,T}' + f'/Z)E(R’,T]’ _ {//2) ~ EZ(R’,n') - E(R,,'n’)

and then we have

o) = 4k? / /dR'dn’E(R’, ) / / dp'dE’ Ru(ro, o'y € Rom(ts 111 €)

~ 4k°S f / 40 €' R (X0, 0, 201 € ) Ron (1 0 201 £). (34)

Here, we again employed the fact that the vertical size of the body is much
smaller than the depth of its immersion. The substitution of (34) into (27)

yields
$S,
ol

where S, designates the effective area of diffraction field coherence:

(35)

P dep’dﬁ’Rn(l‘o,p',za,E’)Rm(r,p’,za,ﬁ’)wi(zo)Wi(z)

n, m—oo

Y. #3(20)@h (20) hmu (05 x0) X)k 3(24)97 (2)hma (15 0)

n, v

S =

It is significant that S, is a diminishing function of the sound frequency
carrier and of the corresponding distances passed by the wave. Comparison
of (35) and (31) shows that for large-size objects, the influence of multiple
scattering processes on the reflectivity of the body is much weaker, which
results in a S/S.—fold decrease of the scattering cross—section as compared
to the case of the coherent “illumination”.

4. THustrative examples

To illustrate the effects of random volume scattering on diffraction of
acoustic signal by rigid object we consider the deep ocean environment
from the North-West Pacific and assuming that fluctuation phenomena in
this case are due to the presence of internal waves. The sound-speed and
buoyancy profiles chosen for our calculations are shown in Fig. 2.

62



0.0 3 Y 0.0
a

0.5 o - 0'5 -
2 g
£ 10f {1 =10}
a a

1.5¢F b 1.5F

2.0 1 L 2.0 1 L

1.45 1.47 1.49 1.51 0 5 10 15
Sound Speed (km/s) Buoyancy Frequency (s~1)x103

Fig. 2. Upper parts of sound speed profile (a) and buoyancy distribution (b)
from the North—~West Pacific at latitude 45° V.

The analysis is carried out under the supposition that the shadow-
forming plane is shaped as a rectangle with the sides I}, and l,. We restrict
consideration to the case of practical interest, when the horizontal size of
the scatterer I 1s much smaller than the corresponding correlation lengths
of incident and diffracted fields. For simplicity, we take the source on the
z-axis. In all cases, the source level is 200 dB.

We begin with observing the effect of internal wave scattering on the
mean intensity of diffracted field assuming the Garrett-Munk spectrum for
®,(z. z). The function of interest is given by Eq. (23). According to (23), to
obtain a result for I; it is necessary to calculate the modal content I'd (1)
of the registered signal. For the case considered, the partial scattering
cross-section 0™ (r) appearing in the definition of T4, (r) with the use of
Eq. (21) can be expressed as

o (x) = 4k2 D" 3" fua(riro) fon (rir0)hLR (0,0]r0,10) An2 (r,x[0,0),
YEY
where
sin [(kpy/ T+ KaYo/ To) In/2
(rvy/z+ kayo/ zo) ln/2
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As was mentioned above, the diagonal elements I';,(r) (having the sense of
modal intensities) play a dominant role in modeling the asymptotic behavior
of the MCF for long ranges. Figure 3 shows how the initial modal intensities
(curve 1) decay to equilibrium. For long ranges, the random scattering
effects lead to equipartition of energy among all diffracted modes.

d L) LI L L2
I¢ s

10}

[\n
0 - AV \//\\./
0 10 20 30 40 50
Mode, m

Fig. 3. Behavior of modal intensities versus m in the absence (1) and in
the presence (2) of random inhomogeneities. Source frequency of 200 Hz,
source depth of 50 m, target depth of 100 m, and receiver depth of 300 m.
The distance between source and target is 500 km and the target-receiver
distance is 1000 km. Modal intensities have been normalized to the area
under the corresponding curve

An intrinsic consequence of this evolution is the redistribution of the
total intensity of diffracted signal. Figure 4 shows the behavior of wavefield
intensity, Eq. (23), as a function of depth z and horizontal position y of the
receiver.
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Fig. 4. Total diffracted field intensity as a function of depth (a) and hori-
zontal position (b) in the absence (1) and in the presence (2) of random
inhomogeneities. Source frequency of 200 Hz, source depth of 50 m, target
depth of 100 m, and receiver depth of 300 m. The distance between source
and target is 500 km and the target-receiver distance is 1000 km
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In Fig. 4a we plot the function I4(R) (in decibel notation) for fixed y
(v = 0) and variable z. The calculations were carried out for the sound speed
profile in Fig. 2 at fo = 200 Hz, 2o = 100 m, £y = 500 km, =z = 1000 km,
I, = 50m, l, = 10 m, in the absence (curve 1) and in the presence (curve 2)
of random surface scattering. It is seen from this figure that volume scatter-
ing effects are responsible for redistribution the initial intensity distribution.

The results of numerical calculations of the diffracted field intensity ver-
sus horizontal position of the receiver y are presented in Fig. 4b (curve 1
corresponds to the regular channel). In this example, yo = 0 and the recel-
ver is located at the depth z = 300 m. The most striking feature in Fig. 4b
is the fact that the random scattering leads to considerable degradation of
the diffraction pattern.

However, of the most importance is the effect of oceanic fluctuations on
the diffracted signal coherence loss which increase with the carrier frequency
and propagation distance. In Fig. 5 we plot the mutual coherence function
of vertical separation for two carrier frequencies of 100 Hz and 200 Hz.

For the case considered the characteristic vertical coherence length has
an order of magnitude of several tens of meters.

The theoretical curves in Fig. 5 were plotted using the results of the work
of Esswein and Flatte {18! for the phase-structure density from internal
waves. It is clear that as the frequency increases, the rate of coherence loss
increases too. This fact, of course, indicates that high frequency scattering
occurs at a more rapid rate.

5. Summary and conclusions

The objective of this article has been to develop wave-theoretical ex-
pressions for the energy and correlation characteristics of the acoustic signal
diffracted by an object in a refractive oceanic waveguide containing random
inhomogeneities. The method presented is based on the combined use of the
Kirchhoft approximation and the small angle radiation transport equation
for the second moment of the medium Green’s function. In the framework
of the approach proposed the problem of finding a result for the diffracted
field reduces to the evaluation of the Kirchhoff integral containing the prod-
uct of two random Green’s functions describing the stochastic waveguide
propagation between source and target, and target and receiver, respective-
ly. In the case of forward scattering the corresponding Green’s functions are
statistically independent and, hence, the correlation properties of diffracted
wave can be entirely expressed in terms of the mutual coherence functions
(MCF) for the incident and scattered field.
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Fig. 5. Normalized mutual coherence function of vertical separation for
frequencies 100 Hz (1) and 200 Hz (2). Source depth of 50 m, target depth
of 100 m, and receiver depth of 300 m. The distance between source and
target is 500 km and the target-receiver distance is 1000 km

For the MCF of interest we formulated the matrix radiation transport
equation and presented its approximate analytical solution. The results
for the acoustic MCF have been then employed to the statistical analy-
sis of diffraction phenomena. The general formulae for the mean iniensity
and spatial coherence function of a diffracted field produced by a rigid ob-
Ject have been derived and analyzed in two limiting cases, when the body
sizes are significantly large or small compared with corresponding coherence
lengths of incident radiation. The scattering cross—section of the body has
been evaluated as well. The major limitation made is the neglect of multi-
ple scattering from an object. The application is illustrated by computation
of effects considered for realistic deep~water environments from the North-
West Pacific under the assumption that the random field of internal waves
1s the dominant source of transmission fluctuations.

Several conclusions may be drawn from the above analysis. The presence
of random volume scattering results in modal coupling with continual energy

67



exchange between the modes. This “mixing” of energy leads to essential
transformation of the modal spectrum of the registered signal.

An intrinsic consequence of this transformation is the evolution of acous-
tic field intensity that leads to redistribution the initial intensity as a func-
tion of depth. After sufficiently long range, the initial intensity peaks at
the depth corresponding to the target depth and are difficult to distinguish
relative to other intensity levels.

However, of the most importance is the effect of oceanic fluctuations on
the received signal coherence loss which increases with the carrier frequency
and distance from a source. In particular, as observed in the results of
Sec. 4, for a source of 200 Hz, at a range of 1000 km the characteristic
vertical coherence length has an order of magnitude of few tens of meters.

It has been established that the target strength at the diffraction from a
sufficiently small object is independent of the incident signal coherence de-
gree and depends mainly on the geometric characteristics of a scatterer and
regular refractive properties of an oceanic waveguide. In the other limiting
case of incoherent “illumination”, the medium fluctuations produce a sig-
nificant effect on the target strength leading to reduction of the scattering
cross-section by (S/S.)? times.
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MULTISCALE COHERENCE OF THE ACOUSTIC
FIELD OF A NOISE SOURCE IN RANDOMLY
INHOMOGENEOUS OCEAN

LP. Smirnov, J. W. Caruthers, and A.I. Khil’ko

INTRODUCTION

The field intensity of an acoustic source in refractive oceanic
waveguides has a complex space-time structure, characterized by
shadow zones, zones of convergence, bundles etc. All these features
are due to propagation of acoustic fields in non-uniform environment
such as layered refractive waveguides. Similar features exist in space-
time distributions of other field characteristics, in particular, those
which are used to describe signals of noise and non-stationary sources,
such as the coherence, pulse duration and others. The purpose of this
paper is study of space-time distributions of the fields of noise sources
in refractive oceanic waveguides.

Multipath modes, as well as the randomly distributed inhomo-
geneities in oceanic environment, result in significant interference
noise in the excitation of waveguide waves by a coherence point source
of sound [1, 2, 3]. Physically, this phenomenon is close to speckle noise
in optics and radiophysics when an electromagnetic field propagates
in randomly inhomogeneous environment or is scattered by rough
objects [4, 5).

Unlike in free space, in the ocean the acoustic field at each point
is formed by a set of partial waves, for example, modes. Partially
coherent field of noise source propagats along an acoustical paths
assoiciated with partial waves. The resultant field at the point of
observation is the sum of partially coherent fields. Hence, the result
coherence decreases. The field fluctuations arising therein impede the
solution of various, in particular, inverse problems associated with
the remote diagnostics of inhomogeneities. One of the methods for
elimination of this factor consists in decreasing the coherence of the
illuminating field, which results in a partial suppression of interfero-
metric noise [6, 7). Similar ideas are developed in the acoustics of the
ocean, where the noise of ships and noisy port zones or explosions
are considered as sources of partially coherent illuminating field for
acoustic monitoring [8, 9, 10, 11]. The analysis of noise structure,
radiated by partially coherent acoustic sources is also important for
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the solution of the space-time structure of a bubble clouds using the
radiated noise measured at a distance [12|. The restoration of the
source characteristics by measuring the radiation is a classical in-
verse problem in the optics and radiophysics [4, 5]. It is known that
the solution of such a problem is reduced to the solution of the Fred-
holm integral equation of the first type. The difficulties of solution
of such equations are accosiated with the impossibility of restoration
of non propagating fields in the far zone due to their weakness and
the influence of additive noise [13]. Oceanic medium, being inho-
mogeneous, introduces additional features in this solution, which are
stipulated by the multiwave propagation and geometrical dispersion,
the occurrence of shadow zones and focusing. To solve the reconstruc-
tion problem of the source characteristics in this case, it is necessary
to regularize the measured data by use of prior information about
oceanic environment. More effective method of regularization of this
problem is the use of a model of a source of the partially coherent
field in oceanic waveguide, i.e. the use of the solution of a direct
problem. :

The mentioned lines of research define the interest in the analy
sis of partially coherent acoustic source field distribution in layered
oceanic waveguides.

In this connection, it is necessary to mention the study of the
statistical and interferometrical structures of noise fields, associated
with distant shipping [14]. There is known examination of acoustic
systems for inhomogeneities visualization using as the illumination
the surface noise [9, 10}, and also the systems of diagnostics of bottom
structure, based on the mesurements of the correlation characteristics
of the acoustic noise of the ship [15]. The transformation of the space-
time coherence of the acoustic field from an extended noise source
in refractive oceanic waveguides is investigated in [11]. Finally, the
features of partially coherent acoustic field difraction by bodies in
layered oceanic waveguides are considered in the series of works for
the case, where the illuminating field became partially coherent due
to the noise nature of radiated acoustic source, as well as due to
the influence of the randomly distributed perturbations of oceanic
waveguide [16, 17].

At the same time, the space-time transformation of the destri-
bution of coherence structure in refractive oceanic waveguides as for
stationary, and, in greater degree, for non-stationary noise sources
have not been investigated in sufficient detail. The examples are
the multiscale space-time distributions of acoustic field coherence in
ocean, associated with existing of the bundles of rays [16]. In the
present paper these phenomena are investigated in detail. In par-
ticular, the parameters of bundles are studied for an extended noise
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acoustic source in the presence of volume-distributed random inho-
mogeneities.

1 PARTIALLY COHERENT ACOUSTIC WAVES

FROM A NOISE SOURCE IN OCEANIC
WAVEGUIDES

1.1 Basic Expressions

The physical problem formulated in the introduction can be pre-
sented as a stochastic problem for the excitation of partially coherent
(PC) space-time waves by spatially localized noise sources &(R;,w),
where R; = [z, ¥, 2;) = [ri, %] is a point in the distribution of a noise
source in a layered refractive waveguide with a sound speed profile
¢(r) = ¢(z) and w is the angular frequency. (The geometry of the
problem is shown in Fig.1.) To solve this problem, physical models
of spatially localized noise sources, as well as models of the layered
waveguide, will be introduced.

The particle velocity potential, n(R,t), where R = [z,y, 2] = [r, ]
is a field point in the waveguide, can be expressed as a sum of par-
tial waves from each point element of the noise source with complex
amplitude £(R;,w). Then,

(R, t) = / / E(R;,w)e ' G(R4, R, w)dR;dw, (1)
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where G(R;,R,w) = GR-RI 2(w) = Gj2(w) is Green’s function for an
1 ,

inhomogeneous medium.

Correlation theory will be used for the description of random
waves under the assumption that parameters of our problem allow
the use of the ergodic theorem for the necessary scales. The noise
sources will allow the hypothesis of statistical uniformness and spec-
tral purity (i.e., the spatial and temporal parts of the source function
are separable). We also assume that source coherence can be sepa-
rated from medium coherence by virtue of scale differences.

Using the definition of the coherence function:

ky(Ri, Ra,ty,t2) = k1a(ty,12) = ka1 (¥, 12) =< (R, )" (Ra, 12) >,

and Eq. (1), we have

<400
Falty, t2) = /./// < E(Rip,w1)€" (Rig, wa) > e~ H(wrti-wata)x

x < G(Riy, Ry, w1)G"(Riz, Rg,wz) > dRi) dRi2dw)dws, (2)

where < ... > represents ensemble averaging for either the source or
the medium and R;,; are the different points of source. When we
actually use Eq. (2), we further assume stationarity with 7 = t, - ¢,.

1.2 Noise Source Models

For a more detailed analysis of PC waves in the ocean, specific
source function models, < §(R;;,w)é* (Riz,w2) >, must be introduced.
Appropriately simplified source models can help simplify the coher-
ence function in Eq.(2). It is important that these models represent
real ship noise sources, since such sources may prove useful for the
acoustic probing of oceanic inhomogeneities. In some cases narrow-
band spectral components that are present in the ship noise can be
singled out as quastharmonic signals by a receiver [14].

Model A - Broadband Point Source.
For model A, we use a noise signal given by £(R;,w) = Ao(Rio)1/Se(w),
where S¢(w) is the energy spectrum and R, = R.; is a single point.
The source coherence function for this model becomes

< €(Rio, w)€" (Riz,w2) >= Af(Rio)8(Rio — Riz)Se(w)S(w —w2)  (3)
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where é denotes the Dirac delta function. Using Eq.(3), the coherence

function at the receivers (Eq.(2)) can be represented by the following
expression:

kya(r) = A%(Rm)/ss(w) < G(Rio, R1,w)G"(Rio, Ry, w) > €“7dw. (4)

Model B - Narrowband Extended Source.
The source coherence function for model B can be expressed as

(E(Rip,w1)€" (Riz,w2)) = A*(Riy)sinc(Rip — Riz)Seo(wo)x 5)
(w~wg)?

x e  Tae? ${w) — wy),

where A?(R;) determines the spatial form of the noise source, S¢o(wo)
- specifies a narrowband spectrum centered at wp, and sincr = sinz/z.
Substituting Eq. (5) into Eq.(2), and assuming that the coherence
scale in space is small, we obtain the coherence function

1(:12(1") = Sfo(wo)ei“”f /AZ(R,) < G(R,‘,Rl,wo)G*(Rﬂ', Rg,u)o) > dR;.

(6)
Model C - Horizontally Moving, Narrowband Point Source.
Let model C be a noncoherent,narrowband point source which moves
along the y; axis a distance L at a depth z,, and the receiver is a
vertical array on the line R = [q,0, 2] with hydrophones at depths z;
and z, (see Fig.1). If the averaging time of the receiver is more than
the characteristic time of movement, then the source function is

(E(Rir,w1 )€ (Riz,w2)) = A%(y:)d(xi — 0)6(zi — zio)S¢o(wo)x

w—wp)? (7)
bd 6—( 6««3) 6(&11 -—WQ),
where A%(y:) = (1,4 < L; 0,5 > L). The coherence function is
kl?(T) = Sfﬂ(wo)eiworfAz(yi)<G(yivziO:G)zl)wO) X (8)

x G*(yi, zio, a, z2,wo)) dy;.

Note that we have chosen such noise source models that in one
case (model A) the source is localized in space (point source) and
in another case (model B) it is localized in frequency (narrowband).
The final case (model C) is a combination of A and B, where the nar-
rowband source point is moving. The resulting coherence functions
(Egs. (4), (6), and (8)) have similar forms. They show smoothing of
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the space-time interference structure of &;3(r) due to the influence of
the source size, A%(R;), and bandwidth, S(w).

1.3  Propagation in the Waveguide

A propagation signal in an inhomogeneous waveguide can take
various paths (see Fig.1). Such propagation can be represented as
a sum of terms j = 1,2,... N associated with the partial waves in an
unperturbed oceanic waveguide:

N
G(R:;,R,w) =Y Gj(Ri,R,w). 9)

ji=1

Such partial waves can be described using the mode approximation
[11]):

G;(Rs, R,w) = 9;(2)p; (2) explilr; — r|h; — 7/4)(Jr; — r|h;) ™2,

where ¢; and h; denote the eigenfunctions and eigennumbers of the
unperturbed waveguide, respectively, or by using the ray approxima-
tion (1]:

Gj(w) = AjetSs,

S; E(f n(r)dl, n(r)= 1y

Here, A; is the amplitude of the wave intensity by the ray of
number j along arc C; connecting the corresponding points £ and R,
S; are the optical length of the ray, k¥ = w/co, co is the typical value of
the speed in the waveguide, c(r) is the sound speed profile, and = (r)
is the refractive index. (It should be noted that both representations
describe the real wave field and can be transformed one into another

(1].)

1.4  Analysis of the structures of partially coherent
acoustic waves in a waveguide
Using Eq.(9) in either of its two forms in Eq.(2) (or in the sub-
sequent forms, Eq. (4), (6), or (8)) would lead to the possibility of
splitting the coherence function into two terms:
k12(7) = ki(r) + kiy(7).
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The first term is the energy sum for similar paths or modes (i e.,
E : m = n) of all partial waves in the expansion of < G(.)G"(.)
and the second term is the interference between paths or modes (1 e.,
I:m#n

Inspeztion of these equations shows that, for the scales which are
associated with the interaction of partial waves with large differences
between term indices, increasing the size or frequency bandwidth
of the noise source smooths the space-time variations of the acoustic
field. In the limiting case, where all variations are eliminated, the size
of the source and noise frequency bandwidth must be larger than all
variation scales of < G(.)G™(.) > in the space and frequency domains.
Such fields can be seen as noncoherent acoustical fields. But to intro-
duce more exact definitions for coherent and noncoherent acoustical
fields in the ocean, the properties of oceanic waveguides as a space
and frequency filter have to be taken into account.

To illustrate these concepts by specific exampl and to provide a
basis for further development, we examine two cases:

Case 1 — Application of the ray representation to model A: The
straightforward substitution of ray representation into Eq.(9), then
into Eq. (4) gives

kya(T) = AZ(R,) Z/SE(w)a al et (Sm=Sn)—iwr g,

mn

Case 2 ~ Application of the mode representation to model C:
Assuming the small-angle approach, we obtain the coherence function
by the substitution of mode representation to Eq.(8):

k12(r) = Sea(wo)e™®7 Y pm(21)ip5(22)x

mn

x 1/1 exp[ —¢/a? +zl [ +zz

hn],(
<[ fan] m}

The integral in the last equation determines interference noise elimi-
nation for different space scales. If L <« a, then this equation can be
reduced further.
For the specific examples cited later, we will use a bilinear sound
speed profile in the (z, z) - plane defined by [{z;(m), c;(m/s)] = [0, 1500);
200, 1470]; [3000, 1550], and a typical undersurface channel, which can
e seen in North Pacific (Fig. 2).
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Fig. 2. The bilinear (@), and typical under surface (#) oceanic channels.

According to preceeding sections’ analytical results, acoustic
waves In oceanic waveguides can have significant partlally coherent
interference noise due to the interaction among partial waves in the
waveguide (additional source of interference flactuations is interaction
of partial waves with inhomogeneities in the waveguide). This is in
contrast to optical and ultrasonic imaging, where waveguide interfer-
ence is no problem. For short scales, the interference structure in the
space-time domain can be imaged as random patterns and described
statistically,

1.5 Coherence transfer properties

In this section we analyse the interference structures suggested
by the partitions in equation for kj2(7). To simplify discussion, we
introduce the term Coherence Transfer Property (CTP), which we
use to suggest a property of the space-time coherence function of the
source transferred to the field points in the waveguide {18, 19]. That
is, the properties associated with Eq. (2).

Coefficient of Vision for Interference Structures

The high-frequency space-time interference structure, which is
produced by many partial waves characterized by very different pa-
rameters among the various indices, can be defined as interference
noise. Coherence cannot be maintained for long distances due to the
high dispersion of parameters among those indices. To describe the
space-time interference structure, we introduce the quantity g(R) =

k1, /k¥, which is the single-receiver, time-averaged interference part
of the coherence function divided by the energy part. This quan-
tity is a special ratio of CTPs which we call the Vision Coefficient
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Fig. 3. Spatial distributions of VC for bilinear oceanic channel and different

values of the bandwidths (7 = 0.1 sec (a), 1 (b), 100 (c), 1000 sec (d), o =
0.001,¢0 = 0.01).

(VC) of the interference structure. Figure 3 shows VC maps in the
(z,z) ~ plane for noise signals with different bandwidths.

Close analysis of the energy and interference terms, leading to
the spatial distributions of VC seen in Fig. 3, suggests that a diver-
sity in paths, coupled with strong random phase dispersions among
those paths, lead to strong interference and rapid decorrelation with
distance. On the other hand, in regions where the energy terms dom-
inate, coherence lasts for greater distances.

These results suggest a method for the analysis of such wave struc-
tures involving isolating terms in k,o(r) corresponding to the inter-
ference of rays (i.e., I : (m # n)). The energy part of k() (i.e.,
E :(m = n)) has a broadband spatial spectrum, including large-scale
interference, which can be smoothed by using large-size noise sources.
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Time Delays Transferal Function Maps

Inhomogeneous structures lead to complex interactions of the
space-time variations for acoustic noise signals in oceanic waveguides.
Other CTPs defined in terms of time delays can provide convenient
analysis tools for the interpretation of space-time variations of noise
signals. Such aids to analysis could be, for example, the mean value
of differences of travel times (MDTT) for different rays at different
receivers Atn, as well as their dispersion differences (DDTT). The
minimal difference for travel times (MinDTT) is also useful for anal-
ysis of the coherence structure of noise in waveguides.

Fugure 4 shows examples of MDTT, DDTT, and MinDTT maps
calculated for bilinear oceanic waveguide.

1.6 Multi-scaleness and a Window of Coherence

Interference noise can be approximately isolated relatively simply
in optical and ultrasonic imaging as short scale space-time variations
(4, 5]. But a comparable operation for acoustic noise signals in oceanic
waveguides will be more effective if another method is used. This
method uses the space-time filtering properties of oceanic waveguides,
[whljch image the signal structures localized in the space-time domain

16).

Other characteristics can also be imaged in the analysis of PC
structures in the waveguides. For example, Fig.5 shows the depen-
dences of ray cycle lengths at the initial path angles D(a;) for the
bilinear and undersurface oceanic waveguides. As the analysis shows,
these dependencies have relatively smooth local extrema, which de-
termine the formation of ray bundles (or, more generally, partial wave
bundles) {20, 21].

Because, within a bundle or beam partial wave, parameters differ
only slightly, coherence in the bundle is maintained for propagation
to long distances. Another situation is for rays or waves outside the
bundle. They lose coherence with the bundle very rapidly due to
large differences in their parameters from those in the bundle. Thus,
the effective method for isolation of interference noise for oceanic
waveguides is the representation of the coherence function as coherent
sums of partial waves within the bundles and as diffuse sums between
them:

A
kia(r) =) ETE(rY 4+ Y kE(r).
mn mnfA

Here, Ai(k = 1...5) denotes the localized bundles, and each bun-
dle is formed by a set of coherent partial waves. On this basis, we
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introduce the double scales of coherence and interference variations
for oceanic waveguides. The first scale is associated with a relatively
smooth interference structure within partial wave bundles while the
second scale is associated with the diffuse interference of partial wave
components outside the bundles. Fig. 6 shows the effects multi-scale
coherence structures for a bilinear waveguide. A more detailed anal-
ysis shows the existence of a set of coherence scales which are formed
by bundles of rays with close parameters. Such bundles of rays are
defined by the structure of the dependences of the ray cycles lengths
from the initial path angles of rays. The internal interaction of rays in
bundele is determined by the decreasing of time delays between rays
as a function of distance. These paculiarities lead to significant differ-
ences in coherent scales for define parameters of the noise source and
random inhomogeneities (Fig. 6). As can be seen from these maps,
different coherence scales have different space-time localizations. This
phenomenon is important for understanding the details of influence
of the different bundles of rays with random oceanic inhomogeneities
which can have complex nonuniform distribution in space.

For a simple physical picture, we can view this multi-scaleness as
the existence of space-time coherence windows” in oceanic waveg-
uides. As the computer modeling showed, the space-time proper-
ties of these windows are determined by the characteristics of the
waveguides and depend on the depth of the source. Because the ran-
dom oceanic inhomogeneities distort an image differently for different
scales, this phenomenon can be used for estimation of coherence win-
dows.

2 THE SPACE COHERENCE FUNCTION OF
A STATIONARY SOURCE IN A STATIONARY
FLUCTUATING OCEAN

2.1 Ray-optical approach for the space coherence
function

Let k¢(r) be an autocorrelation function of a noise stationary
source of the sound pressure, put at a point ¢ of the oceanic waveguide
(model A, according to the previous section’s classification),

+00

ke(r) = (EQ)E* (4 7)) = / exp (iwr) dS¢ (),

- 00
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where S; is the spectral function of the signal £ (t) , dS¢(w) = S¢(w)dw.

Let ng1.2)(t) = n(t, Ru,2)) be signals received at the given points
Ri1, B3 of the waveguide. In a nonrandom medium the mutual coher-
ence function of the signals according to (4) is

+ o0
b (Rus Bair) = (o (O3 @+ 1) = [ exp (i97) Ga () B3 (0) 85 ().
Using the ray-optical approach for the Green functions [1]

2 g g2
Galiw) = Y Agl'z)e‘ksl : ’51(1,2) = [ n(r)dl, where J ,y are
J€Ja, ch2
7

the corresponding sets of index of rays, we find, for the determined
ocean,

/i:,, (Rl, RQ;T) =

+o00
= AP AD [ exp (iwr + ik (S = 52))) dS¢ (w) =
j§1j’§z 1% _L p( (, j )) ¢W=" ()
. +00
= EJ Zj Ag.l)/lg.?’ exp (1¥;;:) [ exp(iw (7 + 75;+)) dS¢ (w),
J€Jy j'ed ~o00

where the eikonals kS;l‘z) are replaced by w7_j(1,2)+\1,§1,2), 7; is the time
of propagation of the wave along the ray, ¥; is the supplementary
determinate phase lag ¥,, appearing after the reflection of the wave
from the bounds of the media and from the caustics, ¥;; = \11;1)_\115.?),
and Tijt = 7'](1) - T(IZ)

In a random ocean the Green functions G, ) are also random,
and independent from the £(¢). The mutual coherence function
ky (R, Rg;7) in this case can be obtained by additional averaging
of eq. (10) with respect to the statistics of the Green functions.
Rigorous analysis of the problem requires taking into account the
fluctuations of number of rays and the parameters of rays A4;, ;, ¥;
[2, 22]. We can assume that the fluctuations of the Green functions
are caused by independent fluctuations of their parameters A; and
kS; = (kS;) + v;, where 1; is the random phase lag, caused by the
stochastic fluctuations of the refractive index. We consider the num-
ber of rays and their trajectories corresponding to the average profile
of the waveguide.
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For such an approach after complementary averaging, we obtain
for the coherence function of the stationary noise source in the sta-
tionary fluctuating waveguide the following expression

by (RuRair)= 0 % (AVAD ) exp (i955) x

jeJ1j'edz
+00 . . (11)
x [ exp (iw (r + 75;1)) {exp (ivj;-)) dS¢ () ,
where ¢;; = zl;ﬁl) - wﬁ?).
The statistical parts of the phases are
W = k / e (r)dl, (12)

(1.2)
C;

where ¢ (r) is the random fluctuations of the refractive index : n(r) =
(n(r)) + e(r). If the distribution of ¢(r) is of Gaussian form with
the correlation function & (ry,r2) = (e(r1)e (r2)), then according to

the central limit theorem the statistics of vectors (¢(lf’2)..., 2"2)) 1s

Gaussian too, with mean values ( ¢§1'2)> = 0 and with the correlation
matrix

,}—z(¢§")¢§‘;2)>=< [ e@d | 5(r)d1>:
c i) cla)
1CY) i(12) ’

o KO S QCRIT HCA) EE

I ,(';2)
27

= { ds; 'of ® (rgi‘) (s1) ,rg-';’) (sz)) dss = mgij‘,"),

where iy,i; = 1,2, rgx,z) (s) are the radius-vectors, l§1’2) are the lengths
of the corresponding rays.

Using the properties of Gaussian distribution, we can find the
mean values
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(exp (i9;51)) = exp (= (¥§;:) /2) =

= e (o) - ({0 )+ {(9)")) 2) =

2
T w
=ew (- (%) ),
n) (22)
T2 = 4 +'"“ m1?)
ji' = 2 T

Putting this expressions into (11), we obtain the space coherence
function in the form

ky (R, Raim) =) Y <A§'1)A§‘?)> exp (1%;;) kjje (7 + 1550),  (14)

jedjeld;
+oo T 2
kij (r) = /exp (iwr— ( ];Iw) )dSE (w).

For example, for autocorrelation function of noise source

ke (7) = ke (0) exp (_ (710)2 - iwof) , (15)

where 19 is the time of coherence of the source noise, and wq is the
basic frequency, we have

kjji (7) = ke (0) 0= f exp (zwr _ I i ﬁ“’*"ﬁ) Tq) -

= ke (0) /a7 exp (*qff'((%)sz(‘"Lﬁ“‘) ““’“’)) D

2 .
= kjj (0)exp ——;——,——TOITHI exp (—iwoqj;'T),
1

2

— 7 1
i E iy = ———,
45 'IJ,ZJ,--I-T0 l+(TJj,/TO)

By analysis of formulas (14, 16) we can see the important role of
the values T7;, in the formation of functions &;; (r) and, therefore, of

the space coherence function ‘k, (R, Rz; 7). The terms with compar-
atively small values of T3, (7 ]"’], ~ 1¢) give the main contribution to
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the sum in eq. (14). The value Tj;» has the measure of time. For
given statistics of ¢ (r) this value depends only on the mutual geom-
etry of rays j and j/ and tends to zero when the trajectories of rays
tends to each other. In contrast to the geometric difference of times
7;;+ it may be called the statistical difference of times between the rays
[22]. As it follows from expressions (14) and (16), the decrease of
statistical differencies of times between the rays lead to the distor-
tion of the coherence. If the dispersion of Tj; is determined, then the
structure, formed by rays with large differencies of parameters, will
lose coherence first. The beams due to the locally smooth extrema in
angle distributions of rays, are formed by rays with slightly different
parameters. Such beams will save the coherence.

Using the formulas outlined in the previous sections, we now study
the influence of random inhomogeneities in the oceanic environment
on coherence of radiated noise in detail. Let us define the physical
model of random oceanic inhomogeneities and investigate the coher-
ence of acoustical signals as the function of the characteristics of
a noise acoustic source and parameters of random oceanic inhomo-
geneities.

In the next section we consider only the case of stratified ocean ¢ =
¢(z) with a spatially homogeneous distribution of random fluctuations
of index n(r) (when the autocorrelation function & (r,,r;) depends
only on difference r; — ry: @ (ry,r2) = o (r; —r2)). To be exact, let us
consider the following approach for the correlative function [1, 10, 23]:

2 2
® (r1,13) = €2 exp (_% [(:m - z3) n (21 —222) ]) ) (17)

2
o g

Here ¢} is the dispersion of fluctuations, o, o, are the horizontal and
vertical scales of correlation, respectively.

In different practical situations, the physical model of oceanic in-
homogeneities can give good results describing, for example, the ther-
mohaline fine structure of perturbations of the sound velocity the in
ocean [1]. Taking into account the aim of our investigation, we fo-
cus on the analysis of the influence of random inhomogeneities on
the coherence of bundles and diffusion part of the acoustic field us-
ing this simple type of inhomogeneities in the analysis. As for other
types of oceanic inhomogeneities, such as internal waves, turbulence
pulsations, and so on, it will be the next spatial stage of research.

1,1

2.2 Dispersion of fluctuations mj;

Let us estimate the dispersion of fluctuations of the phase in
eq. (12) for the rays which are described by the equationr =r(s), s =
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| 0.!. Generally, we find, from (13),

< ) ‘oibiQ (r(s1),r(s2))dsds; =

; (18)
= [ [e(r(s1) —r(s2)) ds1ds,.
00

It can be seen, that using model (17), the dispertion of fluctua-
tions m] J is defined by the differencies of the ray trajectories. To

continue analysis, let us discuss two limiting cases of fluctuations, in
particular, the cases associated with very long and very short scales

of inhomogeneities.
2.2.1 Fluctuations with large spatial scales

If the spatial scales of correlations of the refractive index 0z,0s
are large in comparison with the size of the waveguide, then, as is
evident from (18),

2
1,i 2\ ~ 12,272 weol
, / —_—
m;; _(u)_ke:ol _(

Co

2.2.2 Fluctuations with large horizontal scales

For a more typical case where the horizontal scale o, essentially
exceeds the lenth of acoustic path among the source and observation
point we can, formally setting in (17) o, = oo, consider ¢ (r1 —r3) =
(21 — 22). The expression (18) now can be transformed to the form

!
L ((911)?) = ({of'so(z(sl) — 2 (s2)) dsydsy =

2y 2>
= [ [ (21— 22) K (21) B{21) K (22) B (22) dz1d23 = (19)
<< 2> 2>
= ¢l f fexp( gz‘—_?L) dLydC,,
Ie e
where §(z) = 1/1+ (2/(2))?, K (2) is the number of intersections by

the ray of the horizon z, 2,2, are the lower and upper horizons, re-
spectively, of turning of the ray, dC (z) = K (z) 8(z) dz are the summa-
rize length of all segments of the ray entering the horizontal window

(z,z + dz). The value of the last integral depends on the ratio of the
vertical scales AZ = 2y, — 2. and o,.
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o Case 0,/AZ > 1.

In this case, the exponent under the integral (19) is approxi-
mately equal 1, as it was in the case with long fluctuations (see
section 2.2.1)

e Case 0,/AZ <« 1. A more interesting situation for description
of real conditions in oceanic environment takes place in the case
where the vertical sizes of inhomogeneities are smaller relative
to AZ. Changing the variables z = (21 + z2) /2, p= z; — 2, in the
double integral (19), we obtain the iterated integral

2> p1(2) 2 i
fdz [ exp (—-2%—?-) K (z+p/2)x
2¢ -pi(2)

x B(z+p/2)K (2 —p/2)B(2 —p/2)dp,

where

2(z —2¢), 2« <2< (2¢ + 25) /2
n(2)=
2(z5 —2), (2c +25)/2< 2 < z>.
Taking into account the high speed of variability of the expo-
nent, we replace the finite limits of integration in the internal
integral to the infinite limits. Replacing also the arguments of
other slow functions to 2, we find after integration with respect

to the variable p and utilization of the Cauchy - Bounyakovsky
integral inequality, the low estimation of the dispersion

%(( 3 > V2rela, f1\2 (2) 8% (2)dz >

> Voned L (f K (Z)ﬂ(z)dz) = Venel 25l

Although the connection with [2 are saved, the fluctuations de-
creased by a factor of 2%

2.2.3 Fluctuations of small spatial scales

Let the scales of fluctuations ¢, € AZ, o, < D, where D is the
horizontal cycle of the ray. Since for stratified medium any ray lies in
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a vertical plane, it can be parametrized by the longitudinal coordinate
z:r=r(z),0<z< X. So

X

X
k_l'z <(¢,1;1)2> = /dxl /go(xl —z2,2(z1) — 2 (x2)) o (z1) a (x2) dzy,

0

where X = |z¢ — zp| is the distance between points £ and R in the
horizontal plane and o (z) = 4/1 + (2’ (z))’.
Replacing the variables z,, z, in the last double integral by new

variables z = (z;+ z9) /2, p = z; — =2 and taking into account the
variability speeds of the corresponding functions , we find

X r(z)
S{w)=Jd [ alec+8ale-4)x
0

-p1(z)
xp(pz(z+8§) ~z(a—§))dp =

X +o0 ’ 2
~ed2 [a®(z) [ exp (—PZ—2 (;12_+£"_%2L))dz=
0 k3

£

X , X y
= VZre2 GO N P i iy I ETCIIE) Py
0

v+9-1(2'(x))

where A = V2nédo, 0 = /f050,, V=0,/0;,

2r, 0 <z < X/2
m(z)=9
2(X —2), X/2<z< X.

[1+u
9?2 +u’

which is used in the last integral, decreases monotonically in the
region u > 0 and lies in the interval (1,}). Thus, we can do the
following estimation of the integral

The function

L+ @), x(),
Pt (7 (2))

where 0 < x (9) < 1, x(1) = 1.
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Thus, the dispersion is given by

1, 9)1
o (V) & Vanelo X(ﬁ)

Let us note, that in contrast to the previous cases, the dispersion
increases proportionally to the length of a ray. It can be interpreted
as the coherent and noncoherent summation of fluctuations along the
acoustic paths of rays due to large or short scales of inhomogeneities,
respectively.

1,1

2.3 Mutual correlation moment m;

Let us estimate the mutual correlation moment of the phase fluc-
tuations on the rays r = ry(s), s = 0,/; and r = ra(s), s = 0,;. In the
general case, we have, from (13),

A
mi7 = gz ($j9]) = ff<l>(r1 (s1),ra(s2))dsydsy =
I 1y (20)
= {{90(1‘1 (s1) —ra(s2))dsids,.

2.3.1 Large space-scale fluctuations

If the space correlation scales of the refractive index o,,0, are
large in comparison with the size of the waveguide, then from (20)
we find

rn]], >~ 501112

Assume, as in section 2.2.2, that the horizontal scale of the fluc-
tuations o, exceeds essentially the horizontal size of the waveguide.

Then we set ¢ (r; — rp) = ¢ (21 — z2). The expression (20) transforms
to

-~
-

I3
m;l = OfofW(zl (1) — z2(s2))ds1dsy =
RONC
= [ [ ez —2) Ki(21) B (21) K2 (22) B2 (22) dzndzy =
(1) ,(2)
LR IERY

(1) e

—eof fexp( g-’-1—2—9)—) dC,dC,,

(l) (2)
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4

where the parameters z((< 3y K(1,2), and f(, 2y are the same, as in sec-

i_txon 2.2.2.

Let z. = max (z(<1),z(<2)) , Z» = min (z(;),z> ) and AZ = z> —z¢.
In the limiting cases, as in the previouse section, the value m}?, can
be estimated easily.

o Case 0, /AZ > 1.
Here we have, similar to the case of a large scale

m;?. = Eglllz.
e Caseo,/AZ K 1.

Taking into account the high speed of variability of the exponent
in the integral, we find, by analogy with section 2.2.2, the upper
estimate of the mutual statistical moment

(l) 2P

,-eof fexp( gi‘—i’,iL)dcldLZ_

(l) (2)
2z Z>

~el f fexp( g’—"—’r’)—) dL,dCy ~
~e(,fK () B (2) K2 () Ba () dz f exp (— &) dp=

= Vinedo, f K1(2)Pi(2) K2(2) B2 (2)dz £
2mel K”‘-i'i

Here T(l,g) are the summary lengths of arcs of rays, entering

the vertical layer z¢ < z < z5. In the particular case where

¢ = z( ), 2> = z(;), we have I; = l; if one of rays continues the

Other then 7(1_2) = 1(1‘2).

2.3.2 Small space-scale fluctuations

Parametrizing the rays by the longitudinal coordinate z: r = r) (z),
z=0,X;, r=rz(z), z =0, X;, we obtain, as in section 2.2.3,

X, X3

“:-—//30(1‘1(1:1 —-rz(32))011((61)(12(:62)(121(11:2
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Replacing the variables z; and z; in this double integral by new
variables z and p, we find the integral

X p2(r)
Jar T (o4 g arfe—) x
0 —py(2) (21)

xp (p,21 (2 + §) ~ 22 (z ~ §)) dp,
where X = (X, + X3) /2,

, 1=1,2

)= 2z, 0 <z < Xi/2 R
Tl 2(Xi 1), X2<z< X

In respect to the similar assumptions made in the previouse sec-
tion, let the values ¢,,0, be small in comparison with the variation
scales of the functions z; ;. In this case, we can change the corre-
sponding expressions in (21) by their asymptotic forms:

(= + 122) - % ('C - %) ~ Azyp(z) + pdiz (2),
arz(z£8) 2a1a(z),
4 !
Azl'l (:l,') =2 (l‘) — 27 (1,') s dlZ (J;) = z_l(a"_)_:ztj?_(i)
After such exchange and integrating with respect to p in infinite

bounds, we have

m“, ~ fdxcn (z) az(z)exp (9113—(—2) X

+o00
x [ exp (_ x (;? + _3.2_) _péM;Mﬂ) dp = Aya,
-~ 00

(4

x
- 1(x)az(z 3 Az2, (x)
'0/ s =rn el W e o ) O

where X = min {X,, Xa}.
To estimate the values 6,- let us select the next two cases.

e The case where the ray number 2 is the continuation of the ray
number 1 or, in other words, points R; ; belong to one ray and
>4,
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Here, we have

2
- ay(x
612 =

dr =
0 I40-1(z!(z) il
P 3
=V [ MrdL
Cy 02+(21(I))

In a manner similar to that used in section 2.2.3, we find

x1(9)
7

%x:

612 =

where 0 < 1 (9) <1, x;1 (1) =1.
In the particular case where o, = 0, (J = 1), we have

612 = [1.

The case, where the points R, » do not belong to one ray.

In this case, the values 6,5 tends to zero when ¢ — 0. The
neighborhoods of the points (z;,z(z;)) of intersection of rays
do the main contribution to integral (22). To estimate é;, let
us approximate the functions z;, z; in these neighborhoods by
linear terms of the Taylor series. After integration we arrive at

1+(25(z1)) ) 1+( 2(1”4)) )
612 = 0’2 \/ (z (@)-24(zn))° -

i sin 911—0121’

where v, = /7/2 for boundary points (source ¢ and receiver

R ) and y \/2—7r for other pomts of intersection, 0, is the
sliding angle of the ray with number j at the point of intersection

(z1, 2 (z1)).

+ The number of intersections of rays significantly decrease if the
points of observation R, , are close one to another. If the space du-
ration among points of observation increases, the number of intersec-
tions can be small.

Statistic time-difference between rays

As the final result of the above investigations, we have the follow-

ing formulas for the parameter T7,.
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e In the case of short-scale fluctuations of the refractive index
associated with the noncoherent summation of fluctuations (see
sections 2.2.3 and 2.3.2)

2 s+ xjelie v
T2, ~ 427 0 o | XL T X305 I
H c3 2v/9 Z; sin lo{ -9 l

if the rays j and j' do not continue each other, otherwise

[2med [ xili + xjls ‘
szjl ~4 Tc—gd (—i]—2~J—J-—ij'(I9)mln{[j,ljl} )

0

When o, = o, (¥ = 1) these formulas are given by

62 L+ L w
7;2,,:4\/27§a(1 N SR RO

2 i sin IG{ - afll
and 2
T;‘;, ~ 2\/577%%01@ ar (24)
respectively.

Let us discuss in detail the formula (23). If the initial sliding
angles of the rays differ essentially ( 8‘{ - 9” > a/)?) , then so
do the sliding angles at other points of intersection. For such
pairs of rays the sum o El: visin~! I0{ - 0{'| is small in comparison

with (; +1;:) /2 and
2 \/‘—53
7}]': ~2 27!'6—(2)'0'(1_, +l]‘) .

On the contrary, for pairs of rays with closed initial angles their
sliding angles at other points of intersection are closed too. Let
us estimate the corresponding terms in the sum (23). According
tc Snell’s law for a stratified medium

qicos ) = cos b,
where ¢; = n(z)) /ng, n¢ = n(z). Hence, for small values A#,

lq sin (6;) AG)| ~ |sin(61) Ay},
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~ | gisin(6: _
sin(6,)A8, | —

stn Aﬁ. le, l -

14/ 1 ~cos2(8
: sin(h)AB(l U = [A(i,[\/‘h2 + (¢f — 1) ctg® (6:).

As q; ~ 1, then for pairs of similar rays, which do not belong to
the neighborhood of the singular ray 6, = 0, we have

- A0 1) V2,
where k is the total number of points of intersection of rays

(including initial and final points £ and R). Therefore, for such
pairs of rays

2 l+11 [ 4
T2, ~av2r 8o (T4 —1)V2r ).
i wcga( 5 A ) 7r) (25)

o In the case of fluctuations of large horizontal scales (see section
2.2.2)

. 52 O, 12 + 121 ~ ~

Il > av 2”'6'2'—7' ( . 5 —ljlj’) (26)

when o, /AZ € 1, or
T o~ >2- 6 (1 L. (27)

when o,/AZ > 1.

o In the case of large-scale fluctuations (see sections 2.2.1 and

2.3.1)
2 €5 2

As mentioned above, the terms corresponding to pairs of rays with

minimal values of the parameter 77, do the main contribution to the

coherence function (14). The above formulas make it possible to
study typical features of such pairs of rays and, therefore, estimate
the possibility of their occurrence in different areas of the ocean.

In the case of large-scale fluctuations, small values of the parame-
ter T;,. are typical for pairs with close geometrical lengths (see {28)).
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The reason of it is as follows: fluctuations in different regions of the
waveguide are similar, so the total random phase lag is simply propor-
tional to the length of the ray. As Ig') ~ co7j, then |Tj;/| ~ v2¢ |7
and, therefore, for such pairs the parameter r;; is also small. The
existence of such pairs is probable for all far distances in an oceanic
waveguide,

Conversely, for small-scaled fluctuations, the random phase lag
depends not only on the length of the ray, but also on its location.
In this case, small values of the parameter 77;, can be realized only
for the pair of geometrically close rays, which transfer through the
same small-scale local inhomogeneities. In particular, the parameter
T?,. is small for rays that continue each other (see formula (24)), if
only their lengths are close to each other.

For rays with different output angles the formula (25) makes it
possible to do upper estimation for the difference of the output an-
gles Af;, for which the parameter 7}2], is less than the preset value,

for example, 72. In particular, for rays entering one point, such esti-

mation is
o(k—-1)/27
jAf] < —(—'*,_1—“:

I —
3x
where I = como, [ = (i +1;:) /2. Since [ ~ (k- 2) D, then for waves
with I ~ ¢ « [ for the difference of the output angles the following
rough estimation is valid

20(k-1) 20

] ~ D’
For example, for natural values of the parameters ¢ ~ 0.1, D ~ 20 (km)
we have |A6,| < 0.01. Since the corresponding rays must enter one
point, then it is possible only for rays, belonging to the so called
weakly diverging bundles (WDB) 21, 22], for which dD/df ~ 0. Hence,
we expect the localization of small values of the parameter 77, in
the neighborhoods of weakly diverging bundles. The differences of
times 7;; in these neighborhoods are also small, which follows from
the properties of WDB (see, for example, {21]). However, the last

parameter, in principle, also can be small for pair of rays, which do
not belong to WDB.

|A0,] <

2.5 Coherence function of the received signal

Detailed analysis of the problem consists in the investigation of
the space and time coherence structure, for example, scales of space
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and time coherence, for receiving signals, propagating along acous-
tic path in oceanic wavegmde as the function of noise parameters of
acoustical source and parameters of volume (and surface, in general)
inhomogeneities of oceanic environment, as well as the waveguide
characteristics. Taking into account our aim associated with the in-
vestigation of the phenomena of multiscale coherence due to local
extrema in dispersive connections of rays (partial waves, in general),
we decrease our problems to study the vision of interference struc-
ture coefficients 3. This value is defined by the coherence function
of received signals, as was discussed in the previous section. In the
case of random inhomogeneities they can give us the possibilities to
characterize the decrease in the acoustic field coherence in an oceanic
waveguide due to random inhomogeneities in the analysis of multi-
scale coherence phenomena.

Acording to this aim, putting R, = Ry = R to (14) we find the
coherence function of the signal received at point R:

ko (T)=ky (R Ry T) =

=) 2 (A A exp (¥ 50) ki (T + 750) =
j€ried

= ,GX:J(A?WC& (T} + ; (AjAjr)exp (i%;50) kjjr (T + 7550) =
J 1#5

= 2 (4]) (’Cf (T} + X pijrx (29)
jed >y’
x (exp (1) kjjr (7 + 750) + exp (—=i%¥;;0 ) kjjr (7 = 7550))) =

X0
= %:J(Af) J exp (iwr) (l+ Zp“/x
i —

i>y

X cos (¥ + wtjjr) exp (— (ﬁ%") )) dS¢ (w) ,

where p;;r = 2({4;A4;)) / 3; (A}) . The power spectrum density is then

sy () = s¢ (w) 1 (AF) (1 + 20 pjjrx
JjeJ i>3'

x cos (¥ + wrjjr) exp (— (ig“—) )) )

where s¢ (w) is the power spectral density of the signal £(¢).
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2.6 Intensity of the received wave. Interference
coeflicient

Assuming 7 = 0 in formula (29), we determine the signal intensity
at point R
Iy = (n* (1)) = £ (A7) ke (0) +
J

+]-%, (A; Ajr) exp (18;50) kjji (T550) = (30)

= Iy (1+Re . Pij'€xp (i‘I’jj')Rjj'(Tjj')) ;

i>j!
where Rjjr (1) = kjje (1) [ke (0) , Io = T (A?) k¢ (0) is the intensity of
J

the signal with incoherent summation of partial waves that arrive
along different trajectories.
The parameter

B=|Re ) pjj exp(i¥;r) Rjje (mjj0)

i>j

; (31)

the cocfficient of vision of interference, describes the influence of the
correlations between the partial waves on the intensity of the sum-
mary wave. In particular, for a coherence function of type (15), the
interference coefficient is given by

f= l.E_ Pjj' /T3 X
i>5
Tis 2 woT, 2
x exp | —g;j* (70) + (“‘J“z ) cos (wogjj 7yjt + ¥jj1)|

Analysis of (32) shows two factors which tend to decrease field
coherence in an oceanic waveguide, which manifests in the decreas-
ing of the interferometrical variances of the acoustic field along the
acoustic path. The first of them is the finiteness of the band width
of the source noise (the boundedness of the time of coherence): if for
a given pair of rays the geometrical time-difference 7j;: » 75, then
the waves arriving along these rays are not coherent at point R and
R;jjr (7551) >~ 0. The second factor is the stochastic fluctuations of the
refractive index: if the statistical time-difference Tj;: *> r, then the
stochastic phase lag between the waves is large and g¢;;» ~ 0. The
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reason of this decorrelation of waves is in their passage through the
regions with independent fluctuations of the refractive index. Excep-
tions to this are the pairs of rays with small value of the parameter
T;;+. As it was mentioned in section 2.4, for small scale of fluctuations
of the refractive index the probability of the existence of such pairs
is large only inside the weakly deverging bundles.

The numerical calculations of the distribution maps of the index
B verify the results of analytical investigations. They were performed
for a waveguide with the piecewise linear approximation of the n? (z)
for the bi-linear and under surface profile.

The first set of patterns (see Fig. 7) represents the distribution
of the parameter # in the given region —2km < z < 0, 0 < z <
100km for fixed parameters of the under surface oceanic waveguide
and inhomogeneities and different values of the time of coherence 7.
For large values of r, the form of the distribution of the parameter
B is identical all over the waveguide, since the wave coherence is
large everywhere. However, if the value r, decreases step-by-step,
the parameter 3 will also decrease everywhere in the waveguide. An
exception of it are some well visible spatial structures, where the
coeflicient @ remains big (as it was in a bilinear waveguide).

These periodical structures coincide with the localization regions
of WDB. This can be easily verified by observation of the figure 7, in
which weakly deverging bundles are represented by more bright color
than other rays.

The regions located near the singular WDB with zero output angle
are selected most distinctly. But the regions of localization of two
other WDB (of the 2nd kind - see section 3) are selected too. By
artificial damping of the WDB it’s possible to amplify the effect of
selection of the other scales coherence associated with diffuse part of
the field, which are constructed by rays with significant differencies
of D. As follows from these maps, the interference of these rays are
neglected for 7o < 1073, while the WDB can be seen very clearly for
the same parameters of the current noise (see Fig. 8).

Note that the expansion of high interference regions in the direc-
tion from the source is most distinct for singular WDB.

The set of patterns in Fig. 9 represents the distribution of the
coefficient 8 for given parameters of the source noise and different
parameters of the random inhomogeneities destributed in the waveg-
uide. It is well seen that the decrease of the spatial scale o also tends
%‘\)I localization of high-lovel coherence in the regions associated with

DB.

According to the results of the analytical and numerical modelling
of the acoustic noise signals propagating in randomly inhomogeneous
oceanic waveguide, we can extract different scales of coherence as-

101



o 20 40 B0 @an 140
Distance gum)

o 20 a0 B0 B0 100
Distance {keny
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sociated with the existence of local extrema of the function D(e;)
and, on contrary, with the regions which are characterized by large
derivatives D! . It is clear that it is possible to single out fine struc-
ture of coherence scales, especially, using information from the time
duration structure of the coherence function. However, based on our
research results, we can say for sure that at least WDB scales can
exist for different oceanic types of waveguides as well as the scales
of coherence associated with the diffuse part of partial waves which
lose their coherence relatively quickly. The WDB structures can be
very useful for solution of different practical problems, such as, for
example, the tomographycal monitoring of ocean [28]. It is very im-
portant to understand the conditions for the existence of WDB in
different regions of the world ocean. The next section is devoted to
the development of methods for classification of oceanic waveguides
from the point of view of conditions for the existence of WDB.

3 CONDITIONS FOR THE EXISTENCE OF WDB

For a piecewise linear approximation of the profile c(z) the ex-
istence of WDB was discussed in [21]. Here, we give some further
conditions of this type for a piecewise linear approximation of the
profile n?(z).

For length of the cycle of a ray in a stratified ocean we have the
formula {1

Z>
a dz

Vo »

where a = ngcosfs, ng is the refractive index on the horizon of the
source, fs is the output angle, 2, 25 are the turning horizons of the
ray.

Definition. The ray corresponding to lhe parameter a, 0 < a < ng, is
called WDB ray, if the function (33) has the local extremum at the point a
and the derivative D' (a) = 0.1

Let us divide the set of all possible rays into four kinds according
to their turning horizons z, 2,

D(a)=2

! Also we consider the singular ray 65 = 0 as WDB ray (compare with [21]).
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Kinds of theray | zc | 2
1st >H | <0
2nd >H | =0
3rd =H | <0
4th =H|[=0

Note (see also [21] that WDB ray cannot be of the 4th kind. Ac-
tually, for ray of 4th kind we have, from (33),

0 1
DI (a) — 2 (J a dz ) =
. :;n’(z)—-a2 o
_ n3(z) dz
=2 [ ey > 0

so it is impossible for it to be WDB ray.

But WDB rays of 4th (and 3rd also) kinds are not of great interest,
since the corresponding bundles would destroy on the irregularities
of bottom in real waveguides.

Let us find the conditions of the existence of WDB rays of the 1st
and 2nd kinds for the partial case in which the profile of the refractive
index squared is bi-linear 2

n'z(z)'— nd+a1(z—-2), H<z<z
ny+az(z —20), 2 < 2 <0.

Here 2, is the channel axe, ng =n(z), a1 >0, az < 0.
For such profile

20 2>
1 ~ adz eE =
3D (e) z{ Vnita(2—20)-a? * f Vnitas(z-2)-a?

2 - —a3 2 - —-_—ad
- e/l a? +a<x/no+oa<:: e it )

where & = 1/ay — 1/ay > 0. Note that WDB rays of the 2nd kind can
occur only if n(0) > n(H). On the contrary, WDB rays of the 3rd

20

(34)

2More full investigation of conditions for existing of WDB in different, really existing

natural oceanic waveguides was made in work [25].
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kind can occur only if n(0) < n(H). Taking into account the above
comment about the possibilities of realization of WDB rays of the
3rd kind we consider only the case n(0) > n (H).

3.1 WDB rays of the 1st kind

For the 1st kind ray n?(z2<) = n?(25) = a2, so max{n(0),n(H)) <
g < ns and we have, from (34),

1D (a) = aay/n§ - a2,
14D _  (mo-2e?
2 da T ng_aa :

The only solution of the equation dD/da = 0 is a = no/v2 . The
secessary and sufficient conditions of the existence of WDB ray with
this value of the parameter a are

% <ng &cs < \/ico
% > n(0) © c(0) > v2c
2 > n(H) < c(H) > V¢
The first of these conditions holds for most natural waveguides.
The next two conditions are, however, very strong and do not occur

for natural media. Thus, the 1st kind of WDB rays is not typical for
wuch kind of waveguides.®

3.2 WDB rays of the 2nd kind
The necessary condition for the existence of WDB ray of the 2nd

xind is n(H) < n(0). Suppose also that ny < v/2n (H), which always
Bakes place for natural waveguides. Then

))=a (\/no — — /AT - @),
1dD __ n2-2a? _.mn 2(0)~24°
2ds — \/n —a? 7‘/113(0)—0’ '

where y = o, /(a1 —a2), 0<y< 1.
S

iD(a

" 30f course, it doesn’t mean, that the 1st kind WDB ray is impossible for other kinds
of the waveguides.
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Let us prove that the derivative dD/da reverses sign in the interval
n(H) < a < n(0). As the derivative is continuous, it is sufficient for
the existence of one or more roots of the equation dD/da = 0.

If a Tn(0), then dD/da T +oo0. On the other hand, for a = n(H)

%Z—EZQ(A—'YB),

A n2-2n?(H) <0. B= n2(0)-2n?(H) <0
S < P E s <
and if v is sufficiently small?, then dD/da < 0.

Thus, we obtain the sufficient conditions of the existence of WDB
rays of the 2nd kind in the form

v < |Al/|BI,

or in the form

P=T 1) (35)
n(H) < n(0),

where f(z) = 725_21- As the simple estimations show in real waveg-

uides, p ~ 0.1 + 0.5, so WDB rays of the 2nd kind usually exist. For
example, for the analyzed in the previous section waveguide p ~ 0.17.
The corresponding diagram of D(a) see on Fig. 5. As follows from a
more full research of conditions for existence of WDB in real oceanic-
type waveguides {25}, the WDB of the second kind exist for broad
class of oceanic waveguides. Another result consits in the high prob-
ability of existence of WDB of the first kind in asymmetrical.

4 CONCLUSION

In this work the phenornenon of multiscale coherenece of the
acoustic field of a noise source in oceanic waveguides is investigated
with use of the ray approach. It is shown, that multiscale coherence
is connected with the existence of local extrema in the dependen-
cies of lengths of a ray cycles on output angles. The result field can
be descripted as the sum of three parts: the bundles of rays with
most stable coherence, the part of the field, formed by rays with
hardly distinguished cycles and quickly destroyed coherence, and the

4Note, that 4 depends on only the ratio of gradients of a; and az. Thus, ~ is small
while values A and B are given.
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part with intermediate coherence scales. These structures can be
singled out as sets of rays with close parameters which form certain
structures in space-time domains, which can be considered as non-
uniform waves with inherent scales of coherences. To illustrate this
multiscale coherence phenomenon, we investigated the dependencies
of the characteristics of acoustic waves coherence, as functions of the
coherence length of the source-radiated noise, and as of the char-
acteristics of spatially distributed random inhomogeneities localized
in oceanic waveguides. The scales of coherence of the propagating
acoustic signals are estimated for typical characteristics of random
inhomogeities. It is shown, that the results of the signal coherence
measurement can essentially depend on the displacement of observa-
tion region, and also on the characteristics of the spatial-temporal
filters used at the measurements. Increase of the frequency band of
the noise radiated by the source, as well as of fluctuations of the
oceanic environment, leads to destruction of coherence. The results
obtained in this paper permit the estimation of the degree of coher-
ence for different areas of oceanic waveguides.

1. TFrom the practical point of view, the existence of bundles
of rays can be interest for tomograplucal monitoring of of oceanic
inhomogeneities [17, 24]. Conditions of existence of various types of
Weakly Diverged Bundles are analysed in this work (see also {25]).
They can be used to classify of the ocean hydroacoustic channels from
the point of view of possibilities of formation of such structures.

2. Investigations of coherence phenomena can play an important
role for the development of physical models of the WDB formation
in oceanic waveguides. As an example, it may be noted the problem
associated with coherent and noncoherent ray summation. According
[26] the ray field can be calculated using the noncoherent summation
of rays in limits of some rectangular squares. The results of coherent
and noncoherent summation can strongly differ, as is illustrated, for
example, by Fig. 10. The coherent interference structure image as a
quasinoijse structure near the oceanic waveguide axis. As follows from
our research, the rule of ray summation may be different for different
points of observation. Appropriate areas structures are defined by
the waveguide characteristics, the spectrum parameters of the source
and random inhomogeneities.

3. Partial decreasing of coherence of an illuminating field per-
mits the reduction of the influence of speckle-noise, partially allow-
ing opportunities for space-time filtering in tomographical schemes
[16, 17]. The results obtained in this work, which concern the multi-
scale coherence of acoustic waves in oceanic waveguides, can be useful
in choosing the schemes and algorithms for effective tomographical
monitoring of the ocean. It should be mentioned, that multiscale phe-
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Fig.10. Maps of the intensity in bilinear waveguide for different types of sum-

mation of the partial waves: a) noncoherent, b) partial coherent, ¢) coherent.
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nomena arise due to the existence of smooth extrema in dispersive
dependancies for partial waveguide waves.

Similar interference effects, which can be interpreted as non-
uniform waves or bundles, are observed in shallow-water channels,
at mode description of hydroacoustical fields [27)].
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EXPERIMENTAL METHOD FOR DETERMINING
THE SCATTERING CHARACTERISTICS
OF ELONGATED OBJECTS

A.V. Lebedev, B.M. Salin

To solve problems concerned with the optimisation of sound scattering
characteristics one has both to make a forecast and measure these character-
istics. There has recently been considerable progress in solving the problems
of sound diffraction on elastic bodies. In order to calculate the scattering
properties one can use either the T-matrix method or the boundary element
and finite element methods (BEM&FEM) [1, 2]. Also we should mention
the approximate niethods of calculation, such as the heuristic method pro-
posed in [4] and developed in the subsequent papers by the same author
[5, 6].

In hydroacoustics, there are different ways to measure scattering char-
acteristics in the far region (7, 8]. However, two problems occur in any
case.

Firstly, in the far region, when the scattering signal represents a spheri-
cal wave, it is required to detect a weak useful signal against the background
of a powerful illumination signal. Using directional receiving-emitting sys-
tems, only finite attenuation of a direct signal (within the limits of 20-30
dB, as shown by the experience) can be achieved because of the presence
of noises. This greatly complicates the problem of determining scattering
characteristics in the region of low frequencies and in directions close to
that in which a direct wave comes. The use of a pulsed sonar imposes strin-
gent requirements on distances between the source, the scatterer and the
receiver, and creates an additional reverberation noise.

Secondly. which seems to be more significant, the aquatorium, in which
the measurernents are made, can distort considerably the scattering char-
acteristics owing to the waveguiding properties of sound propagation. This
difficulty can, i principle, be avoided by using provisional calibration of
the reservoir. The difficulties arising here are well known, and we shall not
discuss them. It is important to note that the measurements of scattering
characteristics in the far region place rigorous requirements on the aquato-
rium and measuring facilities, also requiring preliminary work and rather
complicated data processing in order to detect a useful signal.

Hence, a measurement technique used in the near region seems to be
preferable for determining bistatic scattering cross-sections in hydroacous-
tical problems. A similar procedure is used to measure the characteristics
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of the weak radiation from spatially distributed partly coherent sources [9].
When solving scattering problems, in which the sources of secondary radi-
ation are coherent, an effective algorithm can also be developed to find the
scattering characteristics using near-region measurements.

Measurements in the near region of a scatterer have obvious advantages.
One is the high signal-to-noise ratio, which increases the accuracy of mea-
surement. The second is the absence of distortions due to the waveguiding
property of sound propagation in the aquatorium.

Among the papers that deal with experimental methods using near-field
measurements, one should mention Refs. [10, 11, 12, 13, 15, 16]. There are
two methods to determine far-field characteristics using near-region mea-
surements. One of them, developed in [10, 11], is based on integral trans-
forms. This method is really used in this paper in application to the sound
scattering problem. The second one, developed in [12, 13] (1)) is connected
with solving a set of linear equations and permits one to determine not only
the far-field characteristics but also the primary (radiation) or secondary
(scattering) source distribution. The latter method is useful under the dif-
ferent. conditions of wave propagation. For using this method, however,
one must assume that the sources are either of a monopole or dipole type
[12]. Moreover, in papers [12, 13] only thcoretical investigatious aimed at
checking errcrs were made.

In this paper, the method of near-field measurements of scattering char-
acteristics applyiug to elongated objects is developed. This method is based
on illnination of a measured object by a sequence of tone signals of discrete
frequencies. Due to the high signal-to-noise ratio and the stability of a tone
signal of illuminating field, small perturbation caused by the scattering ob-
ject can be defined by coherent subtraction of two distributions of pressure
at the array hydrophones. One of them corresponds to a record without the
measurcd scattering object, and the other corresponds to a record with the
object present. The accuracy in measurement of scattering properties are
restricted by two factors. Firstly, there are systematic errors due to data
processing. These errors are discussed in the first two sections. Secondly,
there are random errors due to the noise in aquaterium and acoustic field
fluctuations at the measuring array. These errors are estimated on the base
of experimental data.

L Also paper [14] should be mentioned. This paper is concerned with source recon-
struction using far-region measurements.
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THEORY. INFINITE APERTURE OF THE RECEIVING SYSTEM

Consider the geometry of a measuring system (Fig. 1) that operates in
the near region of the scatterer.

® 50 meters : /

Source

2.5 reters Ariay

arcay
__-“__®

Figure 1: The geometry of the problem considered.

The field of radiation from external sources, located on an object, 1s
determined by the Kirchhoff integral [1], which can conveniently be re-
written as

p(x) = /S (~Q(y) + D)®m(y), V)) G(x, y) dS,, (1)

where Q(y) = dp(y)/0ny is the density of simple external sources (distri-
bution of the normal component of velocity), D(y)=p(y) is the density of
dipole sources (distribution of pressure), n(y) is a unit vector of the exter-
exp(tk|x — y|)
4r|x — y|
function of free space, x and y are vectors taken from the origin of coordi-
nates to the point of observation and the region of source distribution over
the surface S surrounding the scatterer.

Consider the cross-section of a target (Fig. 1), where L; is the maximum
height and L, is the maximum width of the object. Assume that a linear
array, composed of equidistant nondirected pressure receivers, is located at
a distance such that L, is less than the dimension of the first Fresnel zone,
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e, L3 &« 27 pmin/k, where piin is the distance from the array axis to the
object (Fig. 1), and k is the wavenumber. We also suppose that the array
is located in the wave zone kpmin 3> 1. Then, for the field estimation,
the distribution of sources over the surface S can be reduced, without loss
of generality, to a respective distribution of sources localised on one side
of the plane bounded by the object contour. Restrictions on thickness of
the object and on changes of p will be shown below, when deriving the
equations of scaling the array measurements for the far region. In addition,
we now asswiie that the object has a zero thickness (Lj) and is parallel
to the receiving system. In this case, the array field can be represented as
a linear integral with respect to a longitudinal (parallel to the array axis)
coordinate y, which is related to the scatterer by:

plpo.z) = L, /’j’/ (-G + Dly)(5. ))x

exp [ik\/p2 +(z - y)"’]
X

am\/p? + (2 — y)?

dy, (2)

where Q(y) and D(y) are the equivalent linear densities of a siimple and a
dipole source. The emergence of a term L) in explicit form is due to the
small (compared to the first Fresnel zone) vertical dimension of the object
and the choice of the source distributions Q(y), D(y)ﬁ(y), x and y are the
projections of the vectors x and y onto the axis, along which the array and
the scatterer arc located, and gg is the distance between the array and the
scatterer (Fig. 1).

When the pomt of observation is in the far region with respect to the
length B of the object, at the point with coordinates (R, #8) (Fig. 1), the
integral (2) can be re-written as:

i B/2
p(R,8) = —[,,35"1—(”‘—@/ /Q(y)+ik131(y)+ikb2(y))x
iarR  J_ps»
x exp (—ikysind) dy, (3)

where D, (y) = D(y)np is an equivalent linear density of the dipoles oriented
along the p coordinate, Dy = l.)(y)ny is an equivalent density of the dipoles
oriented along the y coordinate, and D?(y) + D3(y) = D?(y).

Thus, for determining the radiation field in the far region using the
near region measurements, it is required to find conditions under which the
resultant equations will differ from (3) only in the function dependent solely
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on the mutual arrangement of the object and the array, rather than on the
scatterer geometry.

Expressions (3) can be related to the array field measurements by using
the well-known representation of the free space Green’s function [17):

exp(ik\/(po — p)* + (z — y)?) _
Vipo — p)? + (2 - y)?

/ H (VR =700 — p)) exp (ir(z — 3)) d» ()

where Hél)(t) is a zero-order Hankel function of the Ist kind.
The field at the array hydrophones, in view of (2) and (4), can be rep-
resented as a sum of three integrals differing only in the kernels:

B/2 . .
plooa)=1s | (—Q(y>+Dl( )-5%+Dz( 2 ) )

—B/2
; — 2 — )2 B/2
, P (koo —p)7 + (@ —3) ) gy = b dy/ dr x
am+/(po — p)? + (x — y)? -B/2

x(~Q(v) Holrpo) + Dy Hy(po)n - iDz(y)Ho('fPo)'r) exp(iv(z = y),

where k? = k? — 42,
Let us use the Fourier operator F = /exp(—ikx sin §) dz, acting on the

left-hand side and the righi-hand side of Eq. (5). In the case of an iufinite
array, expression (5) transforms to:

F(p(po,2)) = plpo,8) = —

i1 Holkpo cos ) /3/2 exp (—ikysin 0)x

4 -B/2

= - . - Hy(kpgcos0

X (Q(y) + ik D2(y)sin 6 — kD, (y) cos Gﬁﬁ(ﬁ) dy. (6)
We assumed above that the array is in the wave region with respect to the
scatterer. If an additional condition kpcos 8 >> 1 is satisfied, then the ratio
of the zero-order and first-order Hankel functions is equal to an imaginary
unity, and the relative error is equal to i/2kpcosf. Therefore, the equation
of scaling these measurements in the near region (relative to the length of
the object) for those in the far region is written as:

P(po.b) exp(ikR)
imRHo(kpo cos 6)
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Note that expression (7) is "accurate” in the case kpgcosd > 1. Assum-
ing R=1m and taking the module of this expression it is easy to find the
scattering strength, a quantity which is often used in hydroacoustics:

Scattering strength = 201log [p(1, 8)/p0l,

where py is the field amplitude of an incident plane wave of illumination.

Let us find the error due to the finite dimension of the object in the p
direction {the thickness of the object) in determining the radiation (scatter-
ing) field in the far region using expression (7). For Ly > 0, expression (3)
will contain an integral with respect to the thickness of the object, (p), from
-Ap to +Ap. The term, which takes the additional phase delays into ac-
count, has the form exp(—ikpcos#). The right-hand side of (7) is governed
by a similar binary integral over the object surface with the same distri-
bution of sources. A unique difference is that the integrand will include
Ho(k(po — p)cos )/ Ho(kpocosf) instead of exp(—ikpcos8). It is exactly
the difference of the Hankel functions ratio from exp(ikpcos ), which will
define the accuracy in calculation of the far field by the near field measure-
ments using expression (7).

Assuming that the change Ap is small compared to the mean value of
po and using the asymptotic expressions for the Hankel function [18], we
obtain the relative error, which mainly i1s due to the amplitude dependence
of the Hankel function on p. This error amounts to Ap/2pg. For example,
in the experiment described below the value Ap = 0.3m, py = 2.5m and the
relative error due to the finite thickness of the object will be 6 percent.

Based on expression (7) we define the scattering function in the form

1]:
. exp(tkR)

ps(liyoag()aso) = POfs(a’ Hﬂaso)_—k—R—’

where pg(fp) is the complex amplitude of the field of an incident (in 8y
direction) plane wave of illumination at point (0, 0) (Fig. 1).

Using expression (7) we write down an expression for f,(6, g, ¢) through
the measured quantities:

‘Qkﬁ(pc»g)
s (0, 60) = . 8
J+(6,60) 7po(8o) Ho(kpo cos 6) ®)

Here, the dependence on angle ¢ is omitted (the receiving system represents

alinear array and we have a dependence f,{8) for constant ¢ = arctan(/po)
for each 6 (Fig. 1).
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The unknown po(@) can be specified using the same receiving system in
the absence of a scatterer:

po(60) = Po(Po’oo)CXPIL—lkPO cos fp) ) (9)

where po(po, o) corresponds to the maximum value of the spatial spectrum
Po(po, ) of the illumination field on the array in the absence of a scatterer,
and A is the length of the array.

The final expression for the scattering function f,(#,60) has the form:

—ik Ap(po, 0) exp(ikpo cos 8)

(0. 80) =
:(0,%0) mpo(po, 0o) Ho(kpo cos 6)

(10)

The scattering function can be determined as follows. In the first stage, the
object under study is shifted to a maximum large distance from the array or
is removed from the reservoir. This is to find the pressure distribution at the
array hydrophones, po(z) and, correspondingly, po(po,fs) in the principal
maximum direction without a scatterer. Then a scatterer is placed into a
point with coordinates (0, 0). The quantity p(p,8) is defined as a Fourier
integral of perturbations p(x) — po(z).

In case § = 0, 8 = 8, expression (10) allows the total scattering cross-
section to be found. By virtue of the optical theorem [, 2]:

4n
Ttot = E'-J_Im(‘fs(o = 60;001¢ = 0)) . (1])

Substituting (10) into (11) we obtain:

Tror = _4_{1_Ref7(»00,90) exp(ikpg cos by)
° k" polpo, o) Ho(kpo cosfp)

Simplifications are possible for large kpg cos(fp) > 1:

Otot = —4Av mpo 03 0o Re (ﬁ(po,eo) exp(iw/‘i)) . (121

k f’O(pOr 00)

Let us check the validity of expression (12). Suppose that the scatterer
represents an acoustically rigid strip. Consider a high frequency domain
where kL, kB > 1. We use the Kirchhoff hypothesis to determine the field
of the secondary sources [1]. The quantities Q(y) and D(y) , which enter
integral (2) are equal to each other:

Q(y) =0, D(y) = —2pg exp(tkysin by), Dy =D, Dy=0. (13)
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The negative sign is due to the fact that the external normal vector, n, is
oppostite to the p axis.
Inserting (13) into expression (6) we find (kpg cos 6y > 1):

p(po,600) = —pak BLy cos 6y Ho(kpo) /2,
Polpo, o) = poA exp(tkpo cos by) , (14)

Otot = 2BL1 cos . This coincides with the high-frequency asymptotic form

[1).

INFLUENCE OF THE FINITE APERTURE
OF THE RECEIVING SYSTEM

Above we assumed that the measuring system is infinitely long. The
finiteness of the array aperture and its arrangement impose additional re-
quirements on the measuring system.

The finiteness of the aperture of the receiving system can be represented
in the form of the weight functions S;(y) and the additional phase term
(exp(ikAysin @) in the integral (6) (the expressions specified below can be
obtained if we use a Fourier operator for finite segment {-A/2,4-A/2] acting
on the right-hand side of Eq.(5)):

) 1Ly Ho(k ] ikAysing) [B/?
PA(PO,B)'—‘—l 1 Ho(kpo cos 4)1exp(z ysin )/‘
-BJ2

exp(—ikysin §) (Q(y)So(y) + iksin 0Dy (y)S2(y) - (15)
= H1 k SB
~kcos 0D, (y)S1 (y)-ﬁo—g—k%z%-s—e%) dy ,
where

kA ,
So(y) - QKHO(’CPO cos g) cos 8 exp(—lk(y - Ay)C)x

(16a)
x / Ho(kpoB()) sinc(kAC/2) dv
5\0) = S e e Pk — A0 ”

x [ Hi (kpoB(C))B(C) sinc(kAC/2) dy
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_ kA
" 2mHo(kpo cos ) sin 6

X / HolkpoB(C))(C + sin 8) sinc(kAC/2) dy ,

3%(¢) = cos? 8 — 2¢ sin 6 — (2, sinc(t) = sin(1)/t, A is the length of the array,
Pa(po,®) is the Fourier transform of the field on the array aperture, Ay, po
1s the displacement of the array center with respect to the model center,
and y =0, p = 0 again correspond to the middle of the scatterer (Fig. 1).

From expression (15) it is seen that the quantity pa(p,#) differs from
p(p, 8}. Since individual contributions from each source are unknown, the
sinall differences between the weight functions and their proximity to a
constant on the longitudinal scale of the object are the only criteria of the
accuracy in measurement.

Let us check the validity of expressions (15) and (16). Assume that
kA — oo and make use of the definition of the d-function through a limit
[18]: d(x) = limgo oo asinclaz)/m. Tt is casily seen that in the first case
the weight functions are equal to unity and expression (15) coincides with
expression (6).

A limit transition from sinc(kA(/2) to the é-function is possible if the
remaining quantities entering integrals (16) are slowly varying functions as
to the scale of variation of the function sinc(kA¢/2), i.e., for |(| < 5. Sup-
pose that kA > 1, kpo > 1. We make use of the high-frequency asymptotic
form of the Hankel function [18}. In the estimation of integrals (16) we take
only "fast” phase changes into consideration. It is readily seen that within
the framework of these assumptions, the functions S;(y) are the closer to
unity and expression (15) is the closer to (6) the better the conditions

S2(y) exp(~ik(y ~ Ay)() x

(16¢)

lpotand — Ay +y|l € Aj2 or y€ ptanf — Ay+ A/2, (17a)
27['{)0
kA% cos @ «1 (176)

are satisfied.

Condition (17a) means that in the measurements the object should be in
the projector zone of the array (p, tanf = —Ay) and should have a length
not exceeding the aperture of the measuring system [10, 11]. Actually,
condition (17%) means that the geometrical acoustics approximation works

well (the quantity P=+/kA? cos 8/27py is a Fraunhofer parameter).
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Thus, when a recelving system with a finite aperture is used, conditions
(17) need to be satisfied. If these conditions are met, then for determining
the scattering characteristics one can use expressions (7) and (10)-(12),
where the quantities calculated from measurements on a finite-size array
are used as p(p, 6)(?) The term exp(ikAysin @) should necessarily be taken
into account. The final expression (7’) is written as:

p ,8) exp(—ikR ) )
p(R,0) = p?rf/;)Ho)(ka:(cos ) ) exp(—tkAysin 6). (™)

In the calculation of integrals that define the weight functions it is con-
venient to use the algorithm of a fast Fourier transform. The results of the
calculations are plotted in Fig. 2. In these calculations the quantity py was
assumed to be equal to 1/4 of the array length A. We chose two frequencies
differing by one order of magnitude. The upper frequency was equal to the
maximum operating frequency of a 64 element hydroacoustic array, which
was used in the experiment (mazx(kA) = 7(N — 1) = 637).

Figures 2a,b exhibit the results of calculations for § = 0. It is easily seen
that the weight function is the closer to unity the more is the magnitude
of the parameter P. That exactly P, rather than kA, is the parameter that
determines the accuracy is seen from the diagrams in Figs. 2c,d, which
correspond to kA=100 and 6 = 30, 60 degrees, respectively. For # = 60 the
parameter P is almost the same as that for Fig. 2a. These diagrams are also
similar in form.

Comparing the diagrams presented in Fig. 2 it should be voted that the
accuracy in measurement is influenced by two facts. One is the proportional
length of the scatterer and the antenna, B/A; the second is the mutual
arrangement, of the scaiterer and the measuring system.

Measurements are not allowed for B > A. If B/A <« 1, the weight
functions can be replaced by calculated values for coordinates corresponding
to the center of the object.

An optimal relative position depends on an angle 6, for which we re-
store the directivity pattern in the far region. When non-zero angles are
mecasured, the position of the scatterer should satisfy the requirement (17a).

2 Accurate estimation of the errors caused by the finite aperture of the measuring
system requires apriori ideas concerning the distribution of sources in a longitudinal
direction, the amplitude relation of the siinple and each of the dipole sources, etc. For
example, for a smooth distribution of sources, a small difference not directly between the
weight functions but between their integrals on the object dimensions is sufficient. If the
source amplitude relation is known, then the correction term in expression (15) can be
specified more accurately, etc.
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Thus, in case kA = 100, 8= 60 (Fig. 2d) the displacement Ay, in view
of pfA = 0.25, will be 0.43 A. From the diagrams presented in Fig. 2d it
is seen that this displacement will correspond to a minimum error both in
amplitude and in phase. For an object in a fixed position, the range of
angles where S; 5 1 is determined by a simple geometrical construction of
parallel straight lines through the edge of the array and one of the edges of
the object.

Defining the total scattering cross-section in terms of an optical theorem
imposes additional requirements on the length of the array and on the wave
dimensions of the object being investigated. As is seen from the diagram
shown in Fig. 2, the finite aperture of the receiving system causes an addi-
tional phase term to appear. The magnitude of the phase term depends on
the position of the object inside the projector zone of the array.

The presence of this phase term leads to the fact that the true value
of the scattering function will differ from the measured value by a complex
term. Hence, the relative error in determining the total scattering cross-
section by Eq. (12) is given by

o = Re{fs)sinx + Im(f,)(cosx — 1) , (18)
Im(f,)
where x is a phase term due to the limited length of the array (assuming
So=5, =8, =38, x=arctan(Im(S)/Re(S)) and f, means the true value
of the scattering function. In the limiting case P — oo the value x tends to
zero in inverse proportion to P.

As is seen from Eqs. (12) and (14), in the high frequency domain,
where the wave dimersions of the object are large, Re(f,) = 0 and the
error constitutes —2sin®(x/2). In the most unfavorable case, in which the
Fraunhofer parameter is small (Fig. 2a), the difference between S; can yield
x = arctan(0.1) = 6°. In this case, the relative error o will amount to -0.5
percent and cannot be taken into account in the analysis of experimental
data.

In the low-frequency domain, where the wave dimensions of the object
are small, Re(f,) can markedly exceed Im(f,). As an example, we consider
the problem of sound scattering on an air bubble. Based on expressions
given in [19], it is easy to make sure that:

Im(f,) = Re(f:)€3, w K wq (the bubble behaves as an acousti-
cally rigid body);

Im(f,) = Re(fs)¢, w > wp (the bubble behaves as an acousti-
cally soft body);

Im(f,) > Re(f,), w = wg (the resonance).
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Here, £ is the wave dimension of the bubble (assuming £ « 1) and wp is
the eigenfrequency of the bubble oscillations.

In the most unfavorable case, where w < wy, the relative error in deter-
mining the scattering cross-section is of order sin x /€2 The minimum wave
dimension, for which the relative error does not exceed 100%, is </sin x. Un-
der the assumption of kpgcosf >> 1 the field distribution in the projector
zone of the array (of the S; function) is governed by the Fresnel integrals.
Analysis of the bigh-frequency asymptotic form of these functions [18] indi-
cates that the value x is of order 1/P. Therefore, a lower limit is placed on
the size of the object:

min(Ly, Lz, B) _ 1
A T kAYP
At a frequency kA = 20 (Fig. 2a) we have: min(L;, Ly, B) = A/34.

(19)

APPLICATION OF THE METHOD

Consider as an example the use of the method described above for the
measurement of the scattering cross-section of an elastic body of complex
geometry (a cylindrical shell with rigidity ribs and a large number of internal
structure inhomogeneities). The length of the object was 5 m and the
transverse dimensions dld not exceed 0.6 m (slowly varied along the axis of
the object).

In the experiment on determining the scattering cross-section the fol-
lowing values of the parameters were a.dopted
- Distance = 2.5 m;

- Receiving array: a 64 element array of length A = 10 m;
— Depth of deployment of the array: 5 m (the total depth of the reservoir
at the measurement site was 10 m).

A monopole emitter was situated 50 m from the array (Fig. 1).

Coherent accumulation of the illumination field (without the model),
occurred during 20 to 40 s. The magnitude of the scattering field was
defined by way of coherent deduction of the value of pg(z) from the current
values of p(z) when the model was situated in the projector zone of the
array.

The measurements of the total scattering cross-section and the angular
dependence of scattering strength are presented in the form of crests on the
diagram in Fig. 3. The calculation of the total cross-section in terms of
the non-resonance model proposed in [20] and based on [21], is also shown.
This simple model describes the scattering of sound by an elastic cylindrical
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Fig. 3. Angle dependence of the scattering strength. Solid line corresponds
to [20].

shell of finite length when its resonance responses are overlapped. Such a
description is convenient in the analysis of general laws responsible for the
formation of the radiation and scattering fields of sophisticated mechanical
" systems with a large number of resonances.

This part of the paper pursues the goal only to demonstrate the appli-
cability of the method proposed. Because of that we did not try to compare
measured values with accurate calculations. Moreover, such calculations are
not possible because a number of internal parameters (mass and rigidity dis-
tribution) are not known. Nevertheless comparison with a simple theoretical
model that predicts general dependences (the similar approach was used in
Ref. 4-6) and gives clear results makes it possible to judge on the accuracy
and presence of systematic mistakes. When the frequency response of a real
object is observed, we must see that the measured values oscillate round
the theoretical curve [20]. If regular mistakes take place, then the measured
values will be strongly displaced with respect to the theoretical curve.

On the diagram in fig. 4 the frequency dependence of the total cross-
section in a wide band region is shown. The measurements were made
by the following way. During 6 minutes two records of a set of discrete
frequencies without the object were made. Then the same records were
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Fig. 4. Frequency dependence of the total cross-section (solid line and
crosses). Dotted line depicts errors caused by fluctuations. Fat line cor-
responds to [20]. Discrete frequencies measurements (crosses) were made
after at least 20 seconds of coherent accumulation of the illuminating field.

made when the object was placed in front of the array. Finally, the same
records were repeated without the object. Such a scheme of measurement
permits one to estimate the accuracy in determination of the total cross-
section determination. The illumination field can be defined, using the
first and the last series . Then we can find the perturbation at the array
hydrophones by the method explained above and calculate the total cross-
section. If any arbitrary combination of idle measurements is used, then
the random errors due to the noises in the aquatorium and the instability
of the illumination field can be determined. It is seen that the relative error
due to the noises and instability i1s about 10 percent and the experimental
data really oscillate about the theoretical curve.
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MEASUREMENTS OF SCATTERING CROSS-SECTION OF A RIGID
CYLINDER WITH HEMISPHERICAL END-CAPS BY THE METHOD
PROPOSED

To define the accuracy of our method we made additional measurements
in anechoic chamber. The object of investigation was a rigid cylinder with
hemispherical end-caps. The geometry of the measurements are shown in
fig. 5.

— The diameter of the cylinder L; = L, = 130mm,
~ The length of it B = 548mm,

- po = B50mm, pmin = po — 0.5L; = 495mm,

- A =65 x 1bmm = §75mm.

Frequency range was 0.2 = 4 kHz. An illumination was carried out by
wide-band random signal. The registration of fields was carried out by two
microphones: the first of them was unmovable (base channel) while the
second one was moved along the array axis with the 15 mm step. Complex

L
{\‘L;

C—C
3§ X
Ly
loudspeaker L
l
R
o
5801, 2800 gl o]

Fig. b. The geometry of measurements in anechoic chamber.
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amplitudes po(z) and p(z) were defined as transfer functions T(w, z) with
and without the cylinder:

(FT (w, 2) Fa(w))
Tw,z) = ———r—"
)= IR
Here Fy(w,z) - instant complex spectrum of wide-band illuminating field,

measured on axis X; Fi(w) - instant complex spectrum of base channel.
The values po(w, z) and p(w, z) were defined by the following way:

{PO(W,-'C) = To(w,z),
p(wz) = T(wz)-To(w,x).

(20)

”"Measured” value of total scattering cross-section is shown in fig. 6 as
symbols. In the same figure the results of calculations (according to [22])
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were presented as dashed line. One can see that the measured values are
in good comparison with theoretical ones. Small shift of experimmental data
compared to the theoretical ones at frequencies ka ~ 1 is caused by finiteness
of aperture. Using the results of calculations one can be evident that at fre-
quencies ka ~ 1: Re(f,) ~ Im(f,). Assuming in (18) that Re(f,) = Im(f),
and making calculations of weighting functions S;, one could obtain x & 0.2
and sin(0.2) &~ +20%. Such simple estimation is very close to observed shift
of experimental data. In frequency region ke > 1 uncertainties of g, are
about £10% and caused by noise character of illumination.

CONCLUSIONS

We now draw conclusions. The proposed algorithm for experimental
determination of the scattering cross-sections of elongated objects makes it
possible to measure the scattering characteristics with a sufficiently high
accuracy without using complex algorithms of data processing and without
imposing rigorous requirements on the aquatorium in which the measure-
ments are made. The proximity of the measuring system ensures a high
signal-to-noise ratio and, correspondingly, high trustworthiness of the re-
sults obtained.

Finally, we should mention that the following approximations have been
used:

1. L, (Fig. 1) is less than the dimension of the first Fresnel zone, so
the measured object must be elongated and the distance between the
linear array and the object must be large enough.

2. Ly K p (Fig. 1).
3. The distance p (Fig. 1) is large as compared with A: kpcosfy > 1.

4. The aperture of the measuring system is greater than the longitudinal
dimension of the measured object.

5. Conditions (17) are satisfied.
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NUMERICAL AND EXPERIMENTAL STUDY
OF SOUND FIELD FORMING
IN SHALLOW WATER ENVIRONMENTS

M. Yu. Galaktionov, V. V. Borodin, A. V. Mamayev

INTRODUCTION

Sound field forming in shallow waters is a problem being actually
of interest for applications. This work deals with numerical and ex-
perimental study of high frequency signal structure in shallow water
environments by using high time resolution signals and angle resolving
receiving systems.

Deterministic model of high frequency fields in the ocean waveguide
is well-known [1] and is based on the geometrical (ray) approximation of
the Helmholtz equation (under the supposition on linearity of the sound
propagation). However it’s also well-known that the deterministic model
of ocean waveguide is not satisfactory in most cases. There are always
hydrodynamical or temperature fluctuations in the sea water resulting as
fluctuations of effective sound velocity. Since usually nothing is known
about them from the deterministic point of view they need a statistical
description. Also, boundaries of the waveguide (free surface and bottom)
are usually rough and need a statistical description. Sound field forming
in such waveguides presenting stochastic factors is a process that needs a
careful theoretical and experimental studying. It shall be noticed that the
factor of random boundaries may be often neglected for the deep water
case, but in shallow water environments the sound field forming is
strongly effected by the boundaries whose effect shall be accurately ac-
counted.

The above mentioned random factors may be classified as “fast”
and “slow” with respect to the characteristic time interval of primary
signal processing (estimating of sound field parameters) in a sonar
system. Usually the rough surface may be considered as “fast” factor
since the characteristic correlation time interval of sea is about onc
second. The sound velocity fluctuations being effect of internal waves
or ocean turbulence may be usually considered as “slow” for a sonar
system.
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In this work a general model of high frequency sound field forming in
random shallow water environments is described and studied on simulated
and experimental data.

1. THEORETICAL BACKGROUND

Let’s consider an omnidirectional point source radiating narrow band
signals (Aw/® << 1) with normalized spectrum Sy(w®). Since we deal with
linear problems the general Green’s function method may be used to calcu-
late spectrum of the field created by the source:

ps(r,®) = G(r,";0)S,(0)yWpcy [4n . Q)
where G(.) is the waveguide’s frequency Green’s function, W, ¥, pwacC are
respectively the radiated acoustic power, concentration coefficient of the
source array (pattern factor) and wave resistance of the medium.

In the case where there are random volume fluctuations
p(r,f)=c(r,t)/co(r) of the effective sound velocity in the waveguide (co(r) is
reference sound velocity field), the Green's function is also random and shall
be described by statistical moments. Also, the boundaries of the waveguide
(surface and bottom) may be rough and can be described only statistically. In
this case the statistical description to the Green’s function shall also be ap-
plied. The most interesting for applications are the two first moments: the
mean (“coherent”) field G (r,r;0) = E[G(r,r';0)] (the averaging E[] of
Green’s functions of current waveguide realizations is done over the ensem-
ble of fluctuations) and the second moment (“coherence function”)
['(r,r,r';m;,m5) = E[G(r,r ml)G (ry,r';m,)] or the local angle spectrum
Me,o;R) related to the second moment of locally homogeneous fields:

I(r,r,,r;0,0)=G(r,r0)G (r,,r;0) + K(r,r,,r;0),
r, +r '0—)0 n-n (2)
K(rr.rie) = § Neeo;=—0e’ ™ dae).

Zile[=1

In the most cases fluctuations p are effect of hydrodynamic motions in
the water layer (internal waves, large-scale turbulence) and of thin vertical

fluctuations in the water stratification. Some spectral models of such fluc-
tuations are well-known [2].

Deterministic model of the Green’s function

The geometrical (ray tracing) approach to Green's function calculation
is an effective and often used method for solving sound propagation prob-
lems as in layered as well as in irregular 2D or 3D deterministic ocean
waveguides for frequency range from hundreds of Hz up to several kHz.

135



Under this approach the waveguide’s time and frequency Green’s functions
are represented as a sum of quasi-plane wave fields arriving along ray paths
[):

M(r,r")

G(r,r';w) = Z A, (r,r;0) e et 3

where M(r,r') is the total number of rays connecting the observation point r
and the point r' where the incident source is located, A, (r,r'o)=
= (fu(r, )V (r,r 03)) /Ix x| is amplitude of the u-th ray path, £,(r,r') is its

Surf ((D ) Bot (0*) )

is field weakening due to propagation along the p-th ray
path with n,g,+ and n,g, - numbers of reflections on ocean boundaries with
reflection indexes Vg, (®), Vo ®), Bwa is dB/km absorption of acoustical
energy in the sea water, t,(r,r') is the ray’s travel time.

n“_.;‘,f 2n,80t

focusing factor, the factor V(r,r;0)=

% 1 O—O,IﬁWmtlp (r.r")

Stochastic models of direct field fluctuations

Mostly general and frequency invariant mathematical model for the
two first moments of the Green's function for the random ocean
waveguide is described in [3]. The model is developed for a mean-regular
stratified (layered) waveguide and takes account of the effect of muitiple
scattering from rough boundaries and from large-scale volume fluctua-
tions of sound velocity. In the frame of this model, the single frequency
second order moment that determines the field's space correlation and in
particular its angular spectrum, satisfies to some integral equation de-
rived in the work. The kernel and the free term of the equation describe
the wave scattering from the fluctuations of sound velocity and bounda-
ries' roughness. However, the numerical implementation of this compre-
hensive mathematical model is rather difficult. Hereafter, a more simple
mathematical models for the two first moments of the Green's function is
presented with regard to the multiple scattering from large-scale sound
velocity fluctuations and to the first-order scattering from rough
boundaries. The models are based on the geometric (ray) approximation
applicable for high frequency sound fields. To build these more simple
models, “fast” and “slow” random factors shall be considered separately.

Model of “slow” fluctuations

Let’s consider first the “slow” fluctuations that are in general volume
perturbations [ of sound velocity on the background of a mean sound veloc-

ity field co(r). In this case current realization of the Green's function may be
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presented under the ray approximation as follows:
N(r,r)

G(r,r50) = . 4, (r,r;m)e” bemduen) @

v=l
where Zv ,fv are the mean ray amplitudes and travel times (equal to those

for the reference waveguide, where ¢ =c¢o(r)) and 8t, =t —1, are travel

time fluctuations. So, the sound velocity perturbations are effecting only ray
travel times and resume as phase perturbations defined by integrating u(r)

along reference ray paths 3 :

8t, = —L p(r)/c,(r)ds ®)

Ray amplitudes and the number of ray paths remain the same as for the
reference waveguide. The well-known equation for the coherent field derives
from averaging the exponent in (4):

N{rr") . N
— — Jo ,{rr)- oD (rr')
G(r,r;m)= ). A(rr;m)e 2 : ®)

vzl

where D, = E[(Stv)z] is the variance of the travel time defined through

the covariance function K (r,,r;) = E[p(ro)u(ry)] by integrating along the
reference ray path connecting the points r' and r:

K, (K(s)H(s™) Z,(x(s))
b (rr)= LLco(r(s'))co(r(s"»d“ds Lc(r(s))

where Z(r)= J; B, (r,se,(s))ds,e, (s)= a’r(s)/ds[ 5 B (rp)=

ds, (7)

= K,,(r+p/2,r—p/2). The meaning of Z, is integral correlation interval of the
field p(r) along the v-th ray path.

Thus, the effect of the scattering from large-scale fluctuations of
sound velocity is manifested as additional attenuation of the coherent
field in comparison with the propagation in the reference waveguide.
For example in the case of scattering from fluctuations due to Harret-
Munk's internal waves, RMS of ray travel times may reach units of
millisecond for ranges of tens kllometers So, in this case at frc_egucncy
1 kHz the coherent field is ~ exp{—(2n) 12} =~ exp{-20} <10 times
weaker than the reference field.

For the coherence function (the second order moment) the following
equation derives after averaging:
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K(r.ry) N(ry.r)

I(r, 1, 150,,0,) = Z Z"L("15"0;(91)‘4;("2"'0;(’)2)6}“"\(rhrn)_‘imz )
1 v=1

K

@] @}
X exps — 5 D, (r,r,)~ 5 D, (r,,r)+© 0 ,R, (1,151, (8)
where
K, (r(s"),r(s")
. _— 1 n 9
R, (r,r;r,) L '[&co(r(s'))co(r(s")) ds'ds (9)

is the covariance of travel times for the k-th and v-th ray paths. Thus, the
covariance function R, (r|,ry;rg) fully defines the two first moments under
the geometric (ray) approximation. :

If the distance between the points r; and r; is much more larger than the

correlation interval of sound velocity fluctuations, then the correlation of
travel time fluctuations is defined, firstly, by the vicinity of the source from
where the contribution may be approximated as

H.Kp(ek (r,)s',e,(x,)s")c; 2 (x,)ds'ds”
0

where e.(rg), e,(ry) are the unit vectors tangent to the k-th and v-th ray
paths at the source point. This fact is evident if the observation points r| and
r, are lying in some horizontal plane because the reference ray paths have a

constant divergence in the horizontal plane, so that if they pass through vol-
umes of medium with not correlated fluctuations after the first cycle, they do
the same further more. If the observation points are lying in some vertical
plane, the vicinities of intersection points r, of reference rays should contrib-
ute also into the travel times' correlation:

Y ﬁKu(eK (r,)s e, (r,)s")c;(x, )ds'ds" -

However, for the Harret-Munk's spectrum, as for any other one vanish-
ing to zero when the wave number tends to zero, this integral is equal to zero.

Let it be rj+r,=2r, p=r;-r; for small separations of observation
points. Let the point r is connected to the source point ry; by N ray paths in
the reference medium. Let also consider such separations of observation
points that are not larger than the characteristic width of reference ray
beams. That means that if a reference ray connecting the points ry and r is
described by a function r.(s), then the corresponding reference ray connect-

ing the points ry and r+p/2 is described by the function r,(s)x(p/2)A(s,L).
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where A,(s,L) is the matrix solution of the problem

F&)A(5,0)=0,A,0,0)=0,A(LL) =P, [P.T =87-ef,

v

10)
- gl 2 (» 2 (:_021"") +4(,4) ‘
F(s)—dlag{n w2 +{x P e U I

The operator P, projects onto the subspace that is orthogonal to the

tangent vector e, = {€%,} of the v-th ray path. Under the above conditions,

the covariance of travel time fluctuations along a single reference ray path is
computed as follows

1 B, (r,0)e,p)’

Rw(rap;ro)lev(rvro)_ET— (11)
o s,l
-1 f P AT (5, L)M NP (s. Lyp,ds,

23 co(r)
where . (5,/(5)) = _[(3 ip. B, (u,p, )l du. The covariance for any
—o vre pm=0

two different reference rays can be written as

K (e, ()8, e, (1, )s" K, (e, (r)s',e, (r)s")

R, (r,pi1,) = ” ) ” 20 ds'ds” -
_B,(r0)
prreg CLULCILDRCILE L )fe. (.p) + (e, (0P [+ (12)
* 2 )( [ [&, (e, ()", (0)s)as'ds" (p 5+ p (P +p“)]
It follows from the equation (11) that the matrix
A% (r,r,) = 2 (r) jA“V( L)%T(-%)Aﬁj‘(s,p)ds (13)

has the meaning of covariance matrix of ray arrival angle fluctuations. In
force of the space symmetry of the internal wave spectrum and thanks to the
layered model for the deterministic part of the sound velocity field, this ma-
trix is diagonal: arrival angle fluctuations in the horizontal plane are not
correlated with those in the vertical plane for one ray. Fluctuations of travel
time and of arrival angle are also not correlated for each ray.
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In the equation (12), the two first terms describe the correlation of travel
time along the k-th and v-th ray paths, and the last term does the same for

the correlation of ray arrival angles. Correlation of arrival angles of different
rays is determined only by the vicinity of the receiver, and the correlation of
trave! time fluctuations is determined by the vicinities of the source and the
receiver (the vicinities of the intersection points of any two different reference
rays do not contribute to the correlation). As the variances of ray travel time
and arrival angle fluctuations should grow with the distance from the source
but theirs correlation for different ray paths should not globally grow, hence
they may vary from one cycle to another, the correlation coefficient decreases
when the number of ray cycles grows, though the correlation coefficient for
one cycle can be considerable.

The equation for statistical characteristics of arrival time and angle fluc-
tuations can be rewritten to express them trough the spectrum of sound ve-
locity fluctuations. Then after using the Harret-Munk's spectral model of
internal waves an equation derives that allows to compute the statistical
characteristics of rays (variances of travel time fluctuations and correlation
functions of arrival angle fluctuations in the vertical and horizontal plane) by
doing a simple integrating along ray paths. It’s to note that as follows from
this equation the main contribution to the correlation functions in the deep
ocean case is given by ray turning points. Equations for time correlation
intervals of ray trave! times and of grazing arrival angles also derive.

The equaiion (7) for the variance of ray travel times can be simplified
under the supposition that the covariance function of sound velocity fluctua-
tions can be approximated by a gaussian function

K (rr)= Du(z)exp{—%(r—r’)R;'(r—r')} . (14)

where R = diag(p [(2),p iK2),p {,z(z)), Pu(z) and py(z) are horizontal

and vertica!l correlation intervals for the field . One integration in (7) can be
done by the Laplace method and the following equation derives:
. Vzn D“(Z)p V(z)
DIV {r, ro) =73 L 2 ) > 2
¢, “vcos X\/sm Y +€°(z)cos” y

ds . (15)

e(2)=p (2)/p u(2),¢c, =¢,/cosy, (¢ is sound velocity at the returning

point of the v-th ray path). By the same way similar equations derive for
variances of fluctuations of ray arrival angles:

J2r ,L D,(2)s(2)R*(r(s),x,)
) % p (2)cos’ )C\/sin2 v +€ ¥(2)cos’
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ds . (16)

D% (r, ro) =



D, (rr)=

Jan - L D, (2 ()& (r(s),1,) ST,

pw(2)eos’ yin’ y +e *(@)cos’ x J

where A = (6 R/o xo)sin % - Time correlation interval of fluctuations is

cos™ ¥k (z)p v(2) cos™ 3D, (2)p «(2)
sTg) = ds . (18)
w0t \ﬁ‘\[m Y +€ *(2)cos’ ) /L\/sm x +€ (z)cos”

In the case where sound velocity fluctuations are effect of free internal
waves they are related by a simple equation:

M(r0) = DN (2)5(r.0) (19)
with &(r,f) the function describing the field of internal waves, N(z) the fre-
quency profile of free gravitational waves: Nz(z) =d Inpw,(2)/dz, with
pwa(2) water density at depth z. The value D depends slightly on ocean re-
gions and on depth and is equal to ~10 sec’/m. For the case of ocean inter-
nal waves the parameter py ~ 7 km and the anisotropy factor €(z) depends
on depth and varies usually in the range from 1/70 to 1/100.

If the Harret & Munk’s spectral model is used, following expressions for
functions intervening in the above equations derive:

lpq N(2) 2¥g*(e?) N¥(2)
D ( ) ) K[(Z) = 2 0
Q. T Q 20)
Q

l
pu(2)= ‘27(3 » py2)=

4N ()’
where €2, is the Earth rotation frequency, and <e2>z40,é: <ez>,
g=10,/ [(N(2)- Q.

Errors due to the use of the geometrical (ray) approximation and fre-
quency and distance ranges of its validity can be estimated. The approach
does not valid in the vicinity of any focal point of the reference field (so, near
field’s caustics) since the denominator in the equation (17) vanishes. The
estimation for the deep water case shows that, excepting this special case, the
above geometrical approach is well-founded to model sound fields' fluctua-
tions being effect of the scattering from internal waves in the ocean for sound
frequencies 100 Hz and higher, and in some situations for more low frequen-
cies. For shallow waters the question about validity is much more subtle. As
to fluctuations of ray travel times, the approach should be valid above some
higher frequency (about 500 Hz). As to fluctuations of ray arrival angles, the
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approach ceases to be valid from ranges about one or two kilometers since
the probability to be in the vicinity of some field’s caustic becomes to high
for any point of reception in the waveguide. Another theoretical approach
shall be applied to consider fluctuations of ray arrival angles in the shallow
water case.

Model of “fast” fluctuations (sea reverberation)

Let’s consider now “fast” fluctuations of sound fields (reverberation)
that are generally due to the scattering from waveguide’s boundaries and
from small scatterers in water volume. As the reverberation is effect of scat-
tering from large number of independent roughness or scatterers it may be
considered as normally time-space distributed process with zero mean value
(taking into account some well-known limitations [4]). Thus, the reverbera-
tion interference on any two array’s elements at points r;, r, are fully statis-

tically described by its space-time covariance function
Kkev(rl’r2’tl’t2)= KRcv(r’T;RaT)> (21)
R=(r+n)/2,T=0+t)/2,r=r-x,,1=t—1,.
Under the ray approach the first statistical moment of some sound field
(“mean” field) after averaging over random scatteres is defined by the equa-
tion (3) where the coefficients of surface and bottom reflection (Vg {®),

Vaol(®)) and of volume absorption (By,,) are different from the deterministic
case to take into account the scattering of sound energy (coherent coeffi-
cients).

If it may be admitted that the reverberation is quasi-stationary on ob-
servation intervals (its time-space covariance functions depend slowly on the
argument 7) then the covariance function (21) can be expressed through a
space-frequency covariance function Kpe(r,®,R,T):

Ko (TR, T) = [Kp, (r,0;R, T)expt jot}do . (22)

ev

Usually it may be admitted also that the reverberation is locally space
homogeneous on the receiving array (its space-frequency covariance function
depend slightly on the argument R that may be considered as phase center ry
of the receiving array). In this case the space-frequency covariance function
can be expressed through the angle-frequency spectrum Ng.(e,0,R,7T):

(0]
j Aer)
Ko (101, = N, (,0;1, T)e’ < dxe) - (23)
Llef=1
Sea reverberation is the major source of interference for active sonar sys-

tems. As the reverberation is effect of the sound scattering from rough
boundaries of the ocean (from bottom and surface) and from biological or
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bubble scattering layers in the water volume, it’s reasonable to distinguish
surface, bottom and volume reverberation components regarding the gener-
ating mechanism.

In the general case, the reverberation noise is not a stationary process. Its
variability interval is the same or some larger then the incident signal’s duration
if it is not larger than several seconds. Nevertheless the reverberation may be
often considered as random process close to quasi-stationary processes (whose
correlation coefficient depends on the time difference and the variance depends
on the current time moment). In the case where the dependence of the variance
versus the current time is enough "slight" it becomes allowed to consider the
reverberation process as stationary. For forward scattering active sonar sys-
tems where large or even continuous signals are radiated this approach is still
more right. For active systems using deterministic high time resolution probing
signals the time correlation function of some reverberation process shall be
considered as known since it is equal to the correlation function of the probing
signal. Also, in the case where receiving arrays are smaller than sound field
variability interval in the waveguide, the reverberation can be considered as

"homogeneous random field and described by an angle-frequency spectrum in
accordance with (23).

Models for all types of reverberation — for the boundary reverberation
including the surface and the bottom reverberation types as well as for the
volume reverberation — are well known. As the boundary reverberation is
usually the main (dominant) interference for active sonar systems (and espe-
cially for the forward-scattering sonar or the sonar with quasi-continuous
radiation), we’ll consider only this type of reverberation in this work. Follow-
ing notations are used in the equation for the reverberation to support the
previously defined notations:

Sz(t) is the power shape of radiated signal,
rr = (Xg, Zr), I's = (Xs, 2g) are coordinate vectors of the receiving and source
arrays’ phase centers,

er, €g is the normalized vector defining some direction from the receiving
and source arrays’ phase centers,

Bs(es—es?) is directivity pattern of the source (on pressure), es? is its direction
of compensation,

€ is unit vector orthogonal to the scattering boundary,

e(e',r,r') is the normalized tangent vector of a ray path connecting points r'
and r when considered at the point r and equal €' at the point r',

t(e’,r,r") is propagation time for the ray path connecting the points r’and r if
its tangent vector at the point r'is €/,

143



fArx"), t(rr’), e rr’) are focusing factor, propagation time and arrival
tangent vector considered at the point r for the v-th ray path connecting
the points r' and r,

21, g
Vot @) (@)
y(e) is the grazing angle of the vector e,

2y -0,1Bwyct, (r,r')
. 10 Wat! s

V,(r,rim)=

M.(e,e’;0) is the energetic scattering index from the direction e’to the direc-
tion e for the boundary I (the subscript I may be equal to “Surf” or to
“Bot™), it depends on frequency and maybe on coordinates, but usually
all boundaries are considered as homogeneous,

r,(eg) = (x;(ex),z') =r/(e) +(n —1)CL(ey)e, are points (1 =1,2,..00),
where 4 ray having the direction €y at the reception arrives onto the
boundary I, with CL(eg) the length of ray cycle's horizontal projection
when the ray has the direction eg at the receiver, z- depth of the bound-

_ & —(eg.e e,

,eR _(eR’e_L)eJ_!
point of sound scattering from the boundary.

ary and ¢ ; so for each n the vector rln(eR) defines a

Using above introduced notations and supposing that

1) space correlation intervals of rough boundary surfaces are not larger then
the space interval of variability of sound field complex amplitude in the
ocean,

2) boundary is quasi-horizontal and its roughness is homogeneous
following equation for the instant angle spectrum N;ev (eg,w,T) of the first-
order scattered boundary (surface or bottom) reverberation was derived for

the narrow-band pulse radiation mode:
Wocy & Vs M (—e(e, ,r! (e,). 1, ) e, (! (€)1 ),
N,'m(ek,o),T)z pC'YZ i R r]( R R) n‘tr s) )
T

4 v=| (e(ekarr:(ek)’rR)’ei)

X V(rg, T, (€2);0)f, (1, (e ), T IV, (1, (€5 ), I3 @) R (1, (€2 ), T ) x
X Bé(ev (rs ’ry: (eR)) - eg)SZ(T_ t(eR ’r;(ek), l'R) - tv(l‘r: (eR), rs)) .

The equation (24) is written for a horizontally regular waveguide by
it’s easily generalized for some arbitrary slightly changing waveguide.
It’s to note that when doing calculation of boundary reverberation by
(24), the signal’s shape S°(...) acts as "window function” and determines
on the boundary a band area of pseudo-ellipse form from where the re-
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verberation is collected. The area encircles points of projections of the
receiver and source position on the boundary. In the case of continuous
radiation the factor SZ() isn’t zero for any argument and the area
spreads on the whole boundary.

The scattering index pattern entering in the equation (24) is the ma-
jor factor defining the sea reverberation. It may be calculated by using
different known approximations. For the free surface (sea wind waving)
the most practical is the DSM (Dual-Scale Model) [5] that uses simulta-
neously the approximation of the SPT (Small Perturbations Theory) and
of the Kirchhoff method (tangent plane approximation). Another ap-
proximation is the SSM (Small-Slope Method) proposed by Voronovich
[6] and already tested by one of the authors [7-9]. Finally, a model based
on both the SSM and DSM may be proposed and seems to be a good
compromise between accuracy of modeling results and requirements of
computer implementation. As to the scattering from a rough bottom
having random internal structure, a set of empirical and theoretical
models is also available.

2. NUMERICAL IMPLEMENTATION AND MODELING

Simulations were done by using the SSS! scoftware for numerical
simulation of underwater sonar systems. The software is developed by
the authors for computer simulations of coherent and interference
components of sound fields in ocean environments and of raw signal
data received by an underwater sonar based on a linear array. The
sound field modeling is done by a Fortran-77 program SHELF3 realiz-
ing the above presented theoretical models: the deterministic Green’s
function model, the stochastic ones and interference models. The main
future of the software is the ability of the ray tracing program SHELF3
to conduct simulations for irregular shallow water environments with
3D? bottom surfaces where bottom effects are very important and even
have major effect on sound propagation and signal forming.

The both above methods (DSM and SSM) of scattering index pat-
tern calculation for reverberation modeling are implemented in the soft-
ware (a combined spectrum of waving sea surface based on the Peirson-
Moskowitz spectral model is used). The shadowing effect is taken into
account that decreases scattering index when one of grazing angles (of
the incident or scattered wave) is lower than the RMS of roughness slope.
Scattering index pattern is normalized to conserve the total acoustical energy
in one act of scattering on a rough and partially absorbing surface.

I'SSS — Sonar Simulation System,

2 3D bottom surface is some one where depth valucs are depending on both two hori-
zontal coordinates. 145



The fluctuation modeling (the above described stochastic model of
the Green’s function) is done by another Fortran-77 program RASS. It’s
a 1D ray tracing program for 1D environments with a mean flat bottom
surface and only 1D mean sound velocity profile (not varying in the
horizontal plane). The program RASS calculates for some 3D grid of
points in the waveguide statistical parameters of rays (variances of ray
arrival angles and travel times and also time correlation interval of these
fluctuations) for the case where random fluctuations of sound velocity
are due to free internal waves of some spectral model (the
Harret & Munk’s model is actually implemented).

The software is developed for both the two computer platforms: IMB-
PC compatible or SUN computers having some windows-based operation
system (like Windows 3.1 or Windows-95/NT for PCs and OpenWindow for
SUNs).

3. VALIDATION AND NUMERICAL INVESTIGATION

Published experimental data from the SACLANT’s shallow water ex-
periment [10] (experiment # 1) and raw signal data from a sea experiment
conducted by AAI in the Barents sea in summer (experiment # 2) were used
to validate the signal and fluctuation models of the SSS software and as ex-
perimental background to the numerical investigation of sound fields form-
ing in shallow water conditions.

Experiment # 1 (Elba’s shelf in Mediterranean)

This experiment was conducted by the SACLANT Center on the
Elba’s shelf (Italian western coast) in 1978-79. Experimental conditions
described in [10] were used to do numerical modeling by the SHELF3
program. As in [10] there are no information on sea state during the ex-
periment, it was supposed for simulations that sea states corresponded to
developed wind seas for wind speeds 10 m/sec for winter propagation
conditions and 8 m/sec for summer conditions. Simulated and experimen-
tal data are compared for following items:

1. Propagation losses.

2. Fluctuations of ray travel times.

3. Frequency shifts (calculated as 1/t where T is the correlation time of
ray travel time fluctuations, a parameter calculated by RASS).
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Twenty five corresponding modeling tasks were formulated to validate
the signal and fluctuation models by the experimental data from [10]. In
general, results of propagation losses modeling (Fig. | - Fig. 2) show satis-
factory agreement with the measured data if one takes into account the fact
that the modeling results strongly depend on the bottom reflection index
pattern used for it, especially for the summer conditions (with sub-bottom
sound channel). Since in [10] there are no real measured data on bottom re-
flection index for that sea area to implement in the model, the simulation was
done with some empirical model of bottom reflection. Bottom reflection
index pattern corresponding to the bottom structure proposed in [10] for
numerical modeling purposes was calculated and it was shown that it doesn’t
give a good agreement of modeling and experimental data when using the
SHELF3 3D ray tracing program. Simulated data shown on the Fig. la
prove that the real effective bottom reflection coefficient in the SACLANT’s
experiment is some higher than the empirical model predicts, especially for
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slow grazing angles. It follows from the data on the Fig. Ib since simulated
and measured data differ some more for the source placed on the bottom.
For the winter conditions, propagation losses are generally determined by the
surface reflection index that depends on the sea surface state established by
the wind speed. Simulated data prove that the wind speed during the experi-
ment should be some lower than supposed for the numerical modeling
(10 m/sec). It seems to be a rather realistic conclusion. So, by adjusting the
parameter that the modeling results depend on it’s possible to match better
the experimental data on propagation losses.

RMS of ray delays calculated by the RASS numerical model (Fig. 3b,
Fig. 4) are generally smaller than measured in the SACLANTs experiment.
Simulated and experimental data agree bctter for summer conditions
(Fig. 4b). Also, the simulated data on RMS of ray delays or on frequency
shift don’t manifest any frequency dependence while among the experimental
data presented in [10] (Fig. 3a and Fig. 5) there are some experimental curves
showing high dependence of frequency shift versus central frequency of sig-
nals. It’s to note that corresponding values of frequency shift are rather high
(about several deciHz).
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o
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%1 2 3 a4 5 6
b) Frequency [WHz]
Fig. 3. Simulated and measured data on frequency shift and RMS versus frequency (winter,
sources on the bottom) averaged on receiver depths 40 m and 54 m.
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Fig. 4. Simulated and measured data on delay RMS versus frequency for a) winter, source
P5 at 15 m depth, various receiver depths, b) summer, sources P1, P2, P3 on the bottom)
averaged on receiver depths 40 m and 54 m.
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Fig. 5. Simulated and measured data on frequency shift versus frequency (summer,
source at P5 on 10 m and 45 m depth) averaged on receiver depths 40 m and 54 m.

As to the disagreement between the simulated and experimental data on
frequency shift, Sevaldsen himself wrote in [10] that the fast ray travel time
fluctuations (that correspond to high frequency shifts) should be due to the
surface scattering. Really, if it's the case, one shall observe some strong fre-
quency dependence of frequency shift because the Raleigh parameter changes
strongly with the signal’s central frequency and then more of surface rough-
ness become “of large-scale” (compared to sound wave's length) and produce
their part of fluctuations. It’s to note also that corresponding experimental
values of frequency shift match well common value of correlation time of
surface roughness (about one or several seconds) as it should be expected. So,
it's the effect that is referred to the surface reverberation in the SSS software.
The RASS model doesn't deal with this type of sound field fluctuations.

On the other hand, in the data from [10 ] (Fig. 3a, Fig. 5) there are some
curves where frequency dependence of frequency shift are rather slow. It’s to
note that corresponding values of frequency shift are low (about 10 mHz).
These frequency shifts should be corresponding to the scattering from slow
fluctuations of effective sound velocity in the water like internal waves and
large-scale turbulence produce. It follows from the scattering theory for such
sound velocity fluctuations that resulting perturbations of ray phase parame-
ters are well (even rigorously) described by the geometrical (ray) approach
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Fig. 6. Example of delay RMS and T data simulated by RASS (summer, source at 45 m
depth).

implemented in the RASS numerical model. Evidently such fluctuations shall
be frequency independent since ray path are not depending on frequency. Of
cause, when frequency increases, the wave length decreases and there are
some more of sound velocity fluctuations in the medium volume that adds to
the scattering, but these fluctuations are of very small power and one may
estimate their effect as being not significant. So the data from the
SACLANT’s experiment match well the theoretical conclusion about fre-
quency independence (the slow frequency dependence observed in the ex-
perimental low frequency shift data may be due to measurement errors). It’s
to note also that in most cases experimental delay RMS data are slow de-
pending on frequency as it should be if delay fluctuations were due to the
scattering from large-scale fluctuations of effective sound velocity in the wa-
ter (the slow dependence versus frequency in the experimental RMS data for
this case may be as well the effect of measurement errors). It also matches the
theory. Of cause, delay RMS being effect of the surface scattering should be
more strongly frequency depending, but they shall be less than 1 msec, so the
measurement of corresponding fast delay fluctuations is prevented by strong
delay fluctuations (about several msec) due to the scattering from large-scale
volume perturbations in the sea medium.

The main reason of the disagreement of simulated and modeled values
of RMS and correlation times of ray delays being effect of the scattering
from low perturbations in the sea medium shall be particularities of the time-
space spectrum of sound velocity fluctuations in shallow water areas. The
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numerical model RASS is based on the assumption that the sound scattering
is due to internal waves of the Harret & Munk’s spectrum. Nevertheless real
spectra of internal waves and other medium perturbations for a shallow wa-
ter area may be rather different from the Harret & Munk’s spectrum so that
small-scale fluctuations become more powerful. Other spectra of internal
waves for shallow waters exist (unpublished) and will be incorporated in the
numerical model on following stage of its development.

Experiment # 2 (Barents sea, shallow water)

Experiment # 2 whose raw signal data is used to test the SSS software and to
study field forming in shallow water environments was conducted by AAI in
summer 1990 in the Barents sea (shallow water area) with mean bottom depth
~ 245 m. Sound velocity profile was of the bottom channel type, bottom reflec-
tion index pattern was characteristic for this sea and was defined by a table for
simulations, sea state was about 2 points (low wind ~ 4 m/sec). One moving
source was emitting LFM (linear frequency modulated) pulses from ~ 7.3 m
depth, source’s speed was ~ 12 knots (~ 6 m/sec). Source trajectory relative to the
receiver, start and end moments are shown on the Fig. 7. The source has some
directivity pattern, nevertheless in the case of the experiment’s geometry it’s sure
that received signals were radiated by the main lobe of this pattern.

Source:
speed ~ 12 knots (6 m/sec
~60 m (T=10 sec) 62';", 72l ( )
¢
| 150 periods of emission
— ~ 0.3 miles
~ 85 miles (15.3 km) -_ -35mies 63km  fe———
Start of emission End of emission

Amay (depth ~150 m)

Fig. 7. Scheme of the experiment # 2 (Barents sea).

Signal parameters were following:

» LM pulse duration ~ 0.095 sec,
e Central frequency ~ 3243 Hz,

e Deviation ~ 600 Hz,

e Signal recurrence ~ 10 sec.

Reception was by a vertical linear array of uniformly spaced 21 hydro-
phones (spacing 26 cm), array’s phase center was at ~ 150 m depth and its
drift was ~ 0.5 knot (~ 0.25 m/sec). Signals were sampled at frequency
2600 Hz. Each raw signal record corresponds to a 0.3635 sec time window
and contains 1024 signal level measurements. Therefore, raw signal data for
each period consists of 21+1024 float point numbers (for each sampled time
moment the 21 channels were recorded quasi simultaneously). The recorded
time window was chosen so that the signal pulse arrive at the beginning. To

do it, time spacing between start moments of the records was calculated by
the formula 151



T= To[1 = Cmoan COSXmean) 1. (25)
where T} is the recurrence of the signal radiation, v is the source’s speed,

Cmean i the mean sound velocity of the channel and (., is the mean graz-

ing angle of ray paths for this situation.

Simulation of signals received by the array have been done by the simu-
lating part of the SSS with taking into account all parameters of the experi-
ment. Then following processing steps were done both on experimental and
simulated raw signal data:

1) For all 150 records, decision statistics of primary processing by time
correlation for only one hydrophone (11th) are built to observe time
evolution of correlation functions (the Doppler frequency shift
about 13 Hz due to the source motion was accounted).

2) For each correlation function all correlation maximums exceeding
some relative threshold are found and shown as a point. The result
is shown on the Fig. 8.
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de fluctuations are effect of the source motion since phase difference between
rays in each couple is changing because of the motion. Characteristic period

T oy of this time modulation of couple peaks may be estimated from the
equation

mvsoufoeTcouple (cosy~C0SY2) / Cmean ~ 21,
from where using the value of parameters in the experiment one can estimate
Tcoupl ~ 50 sec. Really, it is in the range 70 - 100 sec for different rays. In the

experiment data we observe also the same curves but they are like « blurred »
curved structures formed by groups of maximums.

Fig. 9 shows two correlation DSTE: Periods# 11 and #12
functions of two consecutive peri- | &
ods. In the simulated data we see

Experiment signal data 'set P
thhydrophone

; E
clearly well-distinguished ray arri- % ; Corslaioh b L7
i Poboo o
vals. For the e{(perl‘mental data we o D=0
have another situation where there WOl

are much more of correlation
maximums and they form groups
of maximums corresponding to the

well-segregated maximums we ob- | b Simulsted data st
serve in the simulation. i «+ Smoath Hat Botiom

It follows from theoretical es- § o s LFM
timations that this effect is due | vk . DFo=gpie
essentially to the fact that the real : ~
bottom is not flat but has some 4 J
large-scale roughness. So, when a . K
sufficiently high frequency sound Ak PR
field is reflected (scattered) on the ° %% 0 05 by oy

bottom, there are always roughness . , .
Fig. 9. Two correlation functions of two con-

(since the §pectrum of the bottgm secutive periods for the 11th hydrophone for
roughness '_s continuous) on which experiment # 2 (Barents sea). a) experiment
the scattering resumes as specula  gata, b) simulated data (smooth fiat bottom).
reflection. Quantity of such rough-

ness is determined by the ratio of the efficiently? sounded area to the projec-
tion of the area of the Fresnel zone of a ray path. Estimating shows that this
number can be rather high for the experimental situation (the bottom in the
experimental area is rather rough), so there are many ray arrivals in the re-
ception.

3 May be determined as area on the scattering interface from which specula reflected
ray paths can arrive to the receiver. The area is mainly depending on the RMS of
roughness slope and SVP. 153



Such a field should be statistically interpreted and considered as coher-
ent reverberation. Really, we should consider the waveguide as random one
since the bottom is not flat but rough, so when a sound source moves, bot-
tom realizations are different for consecutive periods of signal radiation. It
makes points of specula reflection moving on the bottom and makes corre-
sponding correlation maximums fluctuating in delay and amplitude. Estima-
tions and the experiment correlation functions (Fig. 9) show that delay fluc-
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Fig. 10. Time-angle structure of the direct field for experiment # 2 (Barents sea) when simu-
lated for a flat (a) and a rough (b) bottom (RMS of two-scale roughness height 50 m and
20 m, correlation length 2 km and 0.2 km).

tuations of the correlation maximums are small and relatively slow (they are
quasi stable), but their amplitudes are fluctuating much more quickly
and sharply than their delays. This effect is due essentially to the fact
that all these correlation maximums are due at least to couples of rays
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(as it is for the maximums of the direct signal in simulation). Some maxi-
mums may be corresponding not to couples but to couples of ray couples
since the time resolution of the signal may be not sufficient to segregate
maximums of these ray couples. In this case, those maximums should be
some more rapidly fluctuating in amplitude. Also, the amplitude fluctuation
of the maximums may be partially the effect of the motion of caustics created
by the reflection from the not-flat bottom interface, but this effect should not
be very significant.

To simulate this effect we should do a numerical modeling of the direct
field for the experimental situation with a rough bottom surface as model of
the real surface by using the 3D ray tracing program SHELF3. Roughness
correlation radius for this modeling should be equal or greater than the
Fresnel radius. So we have to simulate a random surface having about
N*RangelFresnel radius points versus the source-receiver axis, where N

is about 10 to well calculate the bottom surface for the spiine approximation.
This is done by the specially developed RANDBOT Matlab tool that adds
normally distributed perturbations having user specified correlation lengths
to some bottom surface stored in an ASCII file under the TOP or SURFER
formats used in the SSS software. Then, it writes the perturbed surface in a
file specified by user.

The direct signal modeling for a rough bottom has been done for vari-
ous RMS values of roughness height from 1 m to 50 m and various correla-
tion length to study how the signal’s time-angular structure depends on this
parameter. Fig. 10 shows time-angular structures of direct field simulated for
a flat bottom and for a rough bottom having RMS of roughness 50 m and
correlation length 2 km for the axis source-receiver and RMS 20 m and cor-
relation length 0,2 km for the perpendicular direction. We really observe the
same effect of «ray breeding » as in the experiment. So, the values of pa-
rameters having been used for this modeling example might be close to those
of the real shallow water waveguide in the experiment area. We note also that
the values are rather realistic.

The direct signal modeling for big number of random realizations of the
bottom surface and theoretical estimations allows to conclude that the « ray
breeding » is also effect of the horizontal refraction due to bottom roughness.
Let’s prove this sentence. As ray paths are extremal solutions of the eukonal
equation (the Fermat principle), only a movement of points of specula re-
flection versus the normal direction to the mean (large-scale) boundary is
able 1o give rise to a first-order change of ray travel times. In our case the flat
bottom is the mean boundary and we may estimate RMS of ray travel times
due to specula reflection on roughness when considering them only in the
source-receiver axis as

Gy~ 2(Ncycles)1,2°bo! simy 1 Crmean - (26)
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Taken values used for the modeling, we have o,~0.010 sec that
matches the delay width of groups of maximums we observe in the experi-
ment data. Now let’s consider the effect of the horizontal refraction. As the
RMS of roughness slope is about the ratio G, ~ Gy, / correlation_length
(~ 1 degree for the modeling) and this is also an estimate for the horizontal

refraction of one ray on bottom roughness, we can estimate RMS of ray
travel times due to this effect as

Ot ~ (Ncyoles)"zRange (o'u)z ! Crean » (27)
50 the ratio of two RMS is
G, | 6, ~ Range oy ! (2 siny correlation_length®) , (28)

and we have G, / 6,~ 1 for our set of values of parameters in the experi-
ment. It shall be noticed that if RMS of roughness slope increases, the rela-
tive effect of horizontal refraction will increase also and the horizontal re-
fraction should be taken into account more properly. To do it by making
computer modeling, the source azimuth sector of calculated ray paths shall
be wider than the RSM of the azimuth refraction (G,).

So, the direct ficld modeling for a flat or a rough bottom surface shows
that there should be solitaire ray arrivals (for the flat bottom case) or groups

Time evolution of powerest mepama of the decision statisic of ray arrivals (fOI’ the rough
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Fig. 11. Tracing of identified correlation maximums

for 11th hydrophone for the experiment # 2 (Barents
sea): a) experiment data, b) simulated data (smooth

flat bottom).
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Finally, the computer modeling provides an estimate of delays between
solitaire rays or groups that is for the experimental conditions at least about
50 points of resolution (~ 17 msec) of the correlation processing. Taking into
account this information, let’s do the following:

3) For each period find the highest maximum in the correlation func-
tion and suppress all other maximums in the delay window +50
resolution elements around the highest maximums. Further, find
another highest maximum (amongst kept ones), do the same thing
for it, and so on (peak selection with window peak suppression).

4) Do peak tracing. Result is shown on the Fig. 11.

After all this processing we find the same curves of ray arrivals as in the

modeling with flat bottom, but fluctuating in delay. The ray parameters 4 i

T;, may be processed to get their mean values <A>,~j, <t>; and RMS (the
averaging in time domain should be done for some time window) but this
results isn’t able to provide us a useful information about sound field stabil-
ity since the fluctuations are due to the source motion and bottom roughness,
as we have established above.

Also, validation of the reverberation model implemented in the SSS
software was done on SNR normalized data from time correlation processing
for each hydrophone channel (the normalization of correlation functions for
each hydrophone is done at the primary processing output by dividing them
by the noise level estimated as mean function value without account of corre-
lation peaks higher than 0.2 of the global maximum).

It was established that when the DSM was used, simulated and experi-
mental SNR data do not agree (compare Fig. 12 a and c). The simulated
reverberation level should be suppressed by the factor ~103 or more to match
the experiment. When the SSM is used, the comparison of modeled and ex-
perimental SNR data shows a much better agreement (see Fig. 12 b, c).

The reason of such disagreement of the DSM and experimental results is
that the DSM is not valid for low grazing angles. Simulations and theoretical
study show (Fig. 3) that the DSM’s pattern of scattering index has always a
Kirchhoff’s maximum for the specula direction. When the incident angle
tends to zero the slope’s RMS for the Kirchhoff’s lobe tends also to zero and
the lobe grows to infinity. The behavior of the SSM’s pattern of scattering
index is very different from the DSM for slow incident grazing angles. The
SSM’s pattern has no maximum for the specula direction, its maximum is
directed to some higher angle. The effect of such an angular pattern will be
scattering of sound energy to the bottom of the waveguide where it will be
absorbed. As result, the total reverberation intensity at reception shall be
lower than in the case of the DSM’s pattern. It shall be also noticed that the
SSM’s pattern for slow incident angles is rather similar to the SPT#s one at

—
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scattering angles some higher than the incident one. Nevertheless the SPT’s
pattern is quasi zero at the vicinity of the specula direction where the SSM’s
pattern has some realistic level.

For high incident angles N oo Sonay FOs57 BEOCa00, Tocb 085
(10° and more) the SSM’s and orelaton functionof diect i + nereronce N+5
DSM’s results become rather o g Revetbarefion madeling
similar. The SPT gives a very ‘ &
high level for the angle range Ar
where it is not valid (the Ral- Sl
eigh parameter is more then i | L
unity). O 505 0o 045 02 025 03 085

All the above described 200 e —_———
processing of the experimen- 150l b i
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number'xs about the ratio of data for the Ba;ents sea summer experiment when
the efficiently sounded area 10 ing the Dual Scale () and the Smail Siope (b)
the Fresnel zone area projected scattering models.
onto the rough interface.

II. Accordingly to propagation conditions, ray arrivals are grouped
around model ray arrivals predicted by a deterministic numerical model of
sound propagation in the «mean waveguide» where the large-scalc
roughness of the interface is not taken into account.

I11. Each group of ray arrivals is a rather stable (on delay and angle)
structure (fluctuations on delay and angle for each ray in some group are
small). Also, the corresponding group of correlation peaks is stable, but peak
levels are usually very fluctuating if the source or the receiver moves since
each peak contains in fact several ray arrivals.

IV. To predict well in modeling a signal structure (pulse response of a
real ocean waveguide) for propagation conditions where the bottom effect is
crucial, it is necessary to do modeling with some random realization of the
rough bottom interface with roughness correlation lengths of the interface
realization about characteristic lengths of projections of the Fresnel radius of
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a ray path connecting the receiver SCAT.INDEX FOR B kHz, INC ANGLES 11,5, 3. 1
and the emitter on the axis source-
receiver and the orthogonal one.
The effect of horizontal refraction
on signal structure forming needs
to be correctly taken into account.
In the most cases it makes the
numerical modeling unrealistic
because of a high computer power "
(high CPU and memory con- “i Solid  Small-Slope Method

Wind 10m/sec

suming) needed to do it. If it’s the o ¢ Dashed: Qual Scalo model
case, one might do a modeling for % s 0 5 = > o
interface realizations having larger Scattering angle [degree]
correlation intervals, with doing  Fig. 13. Comparisons between the SSM and
correctly reverberation modeling. DSM for 6 kHz sound and wind 10 m/sec.

Such one will be to add in the re-

ceived signal time-angle structure new ray arrivals providing signals being
coherent with the direct signal. The new ray arrivals shall be distributed
following some probability law that needs to be éstablished theoretically or
by numerical modeling.

V. The DSM (Dual-Scale Model) is not a good tool for reverberation
modeling for shallow water environments. The SSM (Small-Slope Method)
provides much better and realistic scattering index pattern. A comprehensive
model based on both the small-slope (for low grazing angles) and the dual-
scale (for abrupt and backscattering angles) methods may be proposed as a
compromise between accuracy of modeling results and requirements of
computer implementation.

CONCLUSION

A software system SSS for sonar signal and processing simulation ac-
tually in development by the BUWAL Group is described in this document.
Results of software testing on experimental data and raw signal data are
presented. It shows a satisfactory agreement between experimental and
modeling results. Important conclusions on time-angle structure of coherent
signals and interference for shallow water environments are presented. De-
velopment of this software system will be continued in accordance to those
conclusions to match better particularities of acoustic signals and interfer-
ence forming in shallow water propagation conditions.
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NEW MATHEMATICAL MODEL
OF SOUND FIELD
FLUCTUATIONS IN SHALLOW WATER
ENVIRONMENTS
WITH BOUNDARY AND VOLUME ROUGHNESS

V. V. Borodin, M. Yu. Galaktionov

INTRODUCTION

It's well-known that the oceanic waveguide is a complex medium
where some mean sound velocity profile and boundaries determining a
regular refraction are accompanied by fluctuations of sound velocity
and boundary surfaces. These fluctuations shall be described only sta-
tistically since a detailed information on them is not available. There-
fore acoustical fields in such a waveguide shall also be described sta-
tistically and the problem of calculating their statistical characteristics
arises. The same problem may be formulated for the atmosphere
acoustics and in the theory of electromagnetic wave propagation where
some waveguide propagation may be available with accompanying
scattering from the air turbulence and roughness of the Earth surface
(relief).

Knowledge on statistical characteristics of sound fields in the ocean and
the ability to do a prognostic on them are crucial for development of various
hydroacoustical systems: communication and data transmission, detection,
localization and classification, acoustical probing and solving inverse prob-
lems in the ocean (including the tomography), etc. The interest to statistical
problems of underwater acoustics is growing because of last studying the
long-range acoustical propagation for tomography mapping of the ocean
and for investigation of global climatic processes. Analysis of fluctuations of
parameters of received signals can bring a useful information about the ori-
gin of fluctuations, therefore inverse problems of stochastic tomography of
the ocean could be formulated and solved. Thus, the theoretical development
of an adequate mathematical model of sound fields for statistic waveguides is
still of high practical interest. 161



Development of such mathematical models has already a long his-
tory [1] —[7] however almost all known models take into account only
one of three major stochastic factors (surface waving, rough randomly
heterogeneous bottom and volume fluctuations of effective sound veloc-
ity in the water) determining the statistics of hydroacoustical signals (an
exclusion is the study [8], where both the scattering from the surface and
volume fluctuations are considered but under the low-frequency ap-
proximation using the normal mode approach). That approach is suffi-
cient for some applications, in particular for deep water propagation
conditions. Nevertheless it's not usually the case for shallow waters
where a simultaneous account of all above mentioned random factors
should be done. Also, approximations of sound fields used to build the
known models (for example the ray approximation [9], [10]) prove to be
not valid or quickly losing their validity with range in shallow water
propagation conditions. Another important shortcoming of the known
models is the lack of ability to describe statistically fluctuations of the
small-scale interference structure of sound fields. It may be a conse-
quence of the model origin and of the used approximation for sound
field description (for example, the case of the energy transport equation
(51, [11], [12]) or of simplifications of the model being done to obtain a
solution that could be practically used (for example the case of equations
for normal modes' correlation coefficients [13]). All this is the reason to
continue theoretical researches for development of mathematical models
of sound fields in the random ocean that would be free of the above
mentioned shortcomings.

In this work such a model is developed that is based on the rigorous
wave formulation of the problem with using a minimum of physically well-
founded approximations. It's done by generalizing the approach of [7] to de-
riving equations for statistical moments of fields in refractive waveguides for
the case of two scattering boundaries and volume fluctuations of sound ve-
locity. Particular merit of this new model is its validity for a wide range of
sound frequency and various propagation conditions including the shallow
water case. Another merit is the ability of the model to describe statistically
fluctuations of the small-scale interference structure of sound fields.

1. FORMULATION OF THE PROBLEM

Taking into account physical aspects in science in engineer problems for
which the results of this theoretical investigation should be of interest we as-
sume for this work that volume fluctuations of properties of the ocean me-
dium affecting the underwater sound propagation can be described as slight
and slow fluctuations of the effective sound velocity c(r,ef) or refraction in-

dex (here ¢ is small parameter), so the classic Helmholtz wave equation with
the operator A-c(r,e¢)0" is a %0602d model of sound propagation. Since



the correlation time of sound velocity fluctuations is usually much larger
than the period of sound waves, duration of emitted signals and characteris-
tic time of primary signal processing (¢ << 1) then the dependence of the ef-
fective sound velocity on ¢ will be neglected in this work.

The motion of the sea surface should be taken into account when con-
sidering the sound scattering from it. In this case the sound energy is diffused
not only in space but also in frequency. However the correlation time of sea
waving is usually much smaller than the period of sound waves so it becomes
allowed to neglect the frequency scattering effect for some applications. The
account of the frequency scattering in the mathematical model of statistical
characteristics of acoustical signals in the random ocean should be a topic for
following theoretical researches.

Thus the mathematical formulation of the problem is following. Sound
field (the Green's function) G(r,ry) of a monochromatic point source at the

point ry in the ocean where the sound velocity field ¢(r) (r=(x,z), x=(x,))
and boundaries - the free surface Xs (described by the function 0+Cg) and the
bottom Zjz (described by the function H+(g) - are random, is governed by
the boundary problem:

(A+<n 2c‘z(r))G(r,ro)=8(r—r0) . (1
1 _lim G(r,r,)=0 if Im{c} <0, 2)
G(l’, ro)]rezs =0, [G(r, rO)]rGZH: E)_la nG(r’ rO)]re):k= 0. ©)

We will assume that the sound velocity field is distributed accordingly to
the normal low with the mathematical expectation (mean value)

M[c(r)] = cy(z) depending only on depth z and with the space covariance
function M[E(r)E(r’)]z K.(x-x',z,2"), (r)=c(r) - c,(z) (so, the fluc-
tuation field is statistically homogeneous in the horizontal plane). Let's sup-
pose also that the mean values of boundary roughness {(x) and {g(x) are
constant and equal to zero: M[{(x)] =0 and that their space covariance
functions depend also only on difference of coordinate vectors:
MIEAX)CAX')] = KAx—X") (here and below the subscript I takes the meaning
"S" or "B"), so that they can be expressed through spatial spectra Sy(k),
where x is the horizontal wave vector.

Qur task consists of deriving equations for the two first moments of the
sound field in this stochastic waveguide with taking into account the scatter-
ing from boundaries and volume fluctuations of effective sound velocity, and
also of solving such equations.
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2. OPERATOR FORMALISM AND FIELD EQUATIONS

A system of differential operator equations of first order for two opera-
tors G, and G_ describing waves propagating “up” and “down” along the z -
axis in the waveguide can be derived from the equation (1). To do it let’s in-
troduce the operator K*(z) = A_ +® *c7>(r). Then the Helmholtz equation

(1) can be rewritten under the operator formalism:
d’G(z,2,) +K*(2)G(z,2,)) = Ed (z - z,) . 4)

where E is the unity operator in the functional space on the horizontal plane
(¥ 9(x), E[0)(x) = {58 (x-x)o(x')d"x’ = o(x)),

and the operator G is defined on the same plane by the following way:
Gz2l0lx) = [G (rrolxo)d’x,

Let's develop the solution of the equation (4) as a sum

G(z,2z,) =G, (z,2,)+G_(z,z,) . (5)
with the condition

d,G(z,2,) = iIK(z)(G, (2,2,) - G _(2,2,)) . 6)

to do uniform development. The condition (6) signifies that the operators G.
and G_ describe waves propagating “up” and “down” along the z-axis. Us-
ing (5), (6) in (4) and the notation K'(z) = d,K, we derive a system of linear

differential equations of first order for G+ and G_ for all z # z,:
d.G,(2,2) = [K(z)— K"(z)K'(z)/Z]G+(z,zo)+K"(z)K’(z)G_(z,zO )2 "
4.G_(2.20) = K™ (K ()G, (2,2)/ 2 [K(2)+ K (2K (2) 26 _(z:20)

Following equations for jumps of operators G, and G_ derive from the
continuity of the Green’s function and from the unity jump of its derivative
for z =z

[G,)oes = K7\ (2)/ 20, [6_],es = -K ' (20)/2i. )

By introducing vectors |G) = (G+ ,G-)T ,In) = (E,—E)T and the opera-

tor matrix L composed of operator coefficients of the system (7) we rewrite
the equations (7) and (8) as
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d|G)=LIG), z =z, . @)

[6)):-:, =K " zo)ln)/2i - @)

The system (7) and jump condition (8) shall be completed by boundary
conditions for z=0 and z = H to have a unique solution. They can be for-

mulated if we assume that such operators Ug and U exist that
G.(2.2,)-UsG_(2,2)],, =0,

©)
G_(2,2))- UG (2,2, =0.

So-defined operators Ug and Up describe the scattering from

waveguides boundaries (free surface and bottom) in the homogeneous me-
dium (where sound speed is constant and equal to its value near the corre-
sponding boundary).

Let U(z,z)) is an operator matrix U(z,z,) = {U”(Z’Z') U*'(Z’Z‘)}

U.(zz) U. (zz)
satisfying (7) and the initial condition U(z,,z,) = E. By using it, the boundary

conditions and the jump conditions at the source following equations for the
operators G.(z,,29) and G_(z,,z5) at any depth z; can be derived. Let’s con-

sider z; > z¢ for simplification (the opposite case is considered by the same
way). It’s to notice that the solution U(z,z,) has the following property:

U(z,zl):U(z,z')U(z’,z‘) . (10)

It follows from the meaning of elements of the matrix U(z,z,) and from

the boundary condition for z = H that the operators G.(z,,2¢) and G_(zy,2;)
are related by the equation

UI)'[U [vs (H’z] )G-v (zl ’ZO)+ U+—— (H’Zl )G—(z] ’ZO)]—

-[U_, (H,2))G,(2,,2,)+U__(H,2))G _(z,,2,)] = 0.
from where we derive

G _(z,,2,)=U_(z2,2))G, (z,,z,) . an
where U, (z,,2,) =[U__(H,2,)-U,U_(H,2)]"[U,U,,(H,2)-U_ (H,z)] -

To satisfy the boundary condition for z = 0 it’s necessary to use first the

jump condition (8). By using (8"), the matrix Uandits property (10) we get

|G(z, +0,2,)) = U(z,,2,)|G(z,,2,)) . (12)
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G(z,-0,2,)) = K™'(z,)In)/2i + U(z,,2)| G(2,.,2,)) . (13)

G(0,2,)) = U(0,2) K™ (z)n)/2i + U(0,2)|G(z,2,)) - (19)

From (14), from the definition of U and from the boundary condition
(9) on the surface we derive:

(U..(0,2)G,(2,2)+ U,_(0,2)G _(z,2,))-
~U(U_.(0,2)G,(2,2) +U_(0,2)G _(2,,2,)) = (15)
= [(U..0.2)+ U, _(0,2))- Ug(U_.(0,20) - U__(0,20))JK(z,)/2i..

By introducing operators

Un(2,,2)) =[U,.(0,2)-UsU_(0,2)] [UsU_(0,2)-U,_(0,2))] . (16)
Uu(21,20)=[U., (0,2)-UsU_, (0,2)] '[U.. (0,2) + UsU_, (0.z0)], (1D

Uy (z1,20) = [U,, (0,2, )—USU_+(0,z,)Il [UsU_(0,2,)-U,_(0,2))] - (18)
we derive the second equation connecting G.(z,,2p) and G_(z,,2p):
G, (2,20)=U.(2,,2,)G_(2,,2,) +[Ugs (21, 20) + Uy (1, 20) JK ™ (2,)/2i - (19)

By expressing the operators G.(z,2) and G_(z},zp) from (11) and (19)
we get resulting equation for them:

G, (21,20) = Un(z1,21)U (21,21)G. (21, 20) +[Uus(21,20) + U (21.70)] K™(z)/2i
G_(21,20) = Uy(21,2)Un(21,2)G_(21,20) + [U (21,20 + U (21, 20)] K7 (2)/ 2
where operators U, and U, are calculated by the same way as Uy and U,

U, (z,25)=[U_(0,2)-U,U,_(0,2)] [U._(0.2)+ U U,_(0,2,)] . (18)

(20)

Un(21,20) = [U_(0,2)- U, U, (0,2))] [UsU..(0,2))-U_,(0,z))] - (19

System (20) can be rewritten under the matrix form:

— _ Un(2,2)U(2),) 0 '
E-A)6G,z)=[F), A—{ 0 Uu(zl,zl)Un(zl’zl)}a (20)

|F)= ([Udd(zl 20)+ Uy (21,20) Kz )2i [V 1:20) + Upuz1,20) K (2 )/21'}‘—
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In the system (20):

the operator U(z),2;) describes the wave propagation from the depth z, to
the surface, scattering from it and following propagation to the depth z;

the operator U (z,,z;) describes the propagation from the depth z,; to
the bottom, scattering from it and following propagation to the depth z;;

the operator Uy(z,,2g) describes the propagation from the source depth
to the depth z;

the operator Ug(21,2¢) describes the propagation from the source to the
surface, scattering from it and following propagation to the depth z;;

the operator U,(z;,2o) describes the propagation from the source to the
bottom, scattering from it and following propagation to the depth z,;

operator U,,(z,2¢) describes the propagation from the source to the sur-

face, scattering from it, propagation from the surface to the bottom,

scattering from the bottom and finally the propagation from the bottom

to the depth z,.

(Note: the term "propagation" in this context means the propagation
under the refraction defined by the mean sound velocity profile and the scat-
tering from volume fluctuations in the medium).

Equations (20) for a 3D random ocean are operator homologue of
the classic functional equations for space spectra of a sound field in a
layered waveguide [9]. Operators U, and U, are homologues of the co-
efficients of reflection from waveguide’s parts lying “up” and “down” the
depth z,. Operators Ugg, with & and 3 equal to "d" or "u" are homo-
logues to the four quasi plane waves going from the receiver “up” (the
second subscript "u") and “down” (the second subscript "d") and coming
to the receiver from the “up” (the first subscript "u") and “down” (the
first subscript "d") directions.

Approximation of forward scattering

If the backscattering from volume fluctuations is not significant and can
be neglected then the non-diagonal terms in the system (7) shall be avoid and
the matrix U(z,z,) becomes diagonal. Therefore the equations for the opera-

tors Uyp, are simplified:
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U, (z,2)=U_(z,0)U,U_(0,z),
Uu(zl 921 ) = U—— (zl sH)UBU++ (H’Z] ),

Uy (2,2) = U, .(2,2,), @1
U, (2,,2,)=U,,(z,,0)UU_(0,z,),
U,(2,2,)=U_(z,H)U,U, (H,z,),
U,.(2,,7)=U_(z,,H)U,U, (H,0)UU__(0,z,).

Under this approximation the above described physical sense of the op-

erators U, becomes more clear and evident for the intuition.

We have to notice that if the approximated equations (21) are used then
not only the backscattering from volume fluctuations is neglected but also
the back refraction of waves at the turning points. Therefore the equations
(21) shall be used with precaution: if a wave does not reach a boundary and
is refracted in the opposite direction then the operators Ug and Uy, describing

the scattering from the surface and the bottom shall be substituted in (21) by
operators of wave reflection at the turning points. To formalize it the operators
Ug and Ujp shall have a block structure where some blocks are to describe the
scattering and others - to describe the reflection from the turning points.

3. EUQATIONS FOR THE TWO FIRST MOMENTS
In this section equations for the two first statistical moments of opera-
tors G, and G_ will be derived by algebraic methods of the stochastic theory

of perturbations [14]. Equation for the first moment X of the solution of
some stochastic operator equation (E—A)X = F, where A and F are random
operators, is

(E-D)X=C (22)
(the Dyson equation), where D=A and C=F under the first order ap-
proximation with respect to RMS of randomness. If K_——_O (as it is for the
case of scattering from volume fluctuations) then D = A?. For the second

moment X® X* (the sign "®" means the tensor product of operators, the
superscript "+" is used for the Hermitian conjugate) the equation is:

[(E-D)@(E—D)+—B]X®x+=F®F+ (23)

(the Bethe-Salpeter equation) where B=A® A", A = A— A under the first
order approximation with respect to RMS of randomness.

For our case of the operator stochastic equations (20) the Dyson and
Bethe-Salpeter equations for G, and G_ are
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{E+(z,zo) = Uh(z,z)UU(z,—z) . —(3+(z,zo) +[Udd(z,zo) + Udu(z,zo)]l(—' (z0)/2i 22)

G_(2,25) =U_(2,2)Un(2,2)-G_(2,7y) +[Uw,(z,zo) + UW(z,z(,)]K'I (z0)/ 2

and

(60 ) 600 0.0 Jo v, 00 -

xG, ®G: = (U + U)K /2 (U + U JK /zz)+ 23)
(E UU)®(EUU) -@Uuu- -UJU, )R (U UU) x

«G_ ®G" = ((Uw, +UL K [2)0((U. + U)K [21)

(equations for the cross-moments G, ® G' are not shown here but they can
be easily derived from the general matrix equation (23) for seconds moments
and from the matrix formulation (20") of our stochastic operator equations).

Now Dyson equations for horizontal spectra G , of kernels of operators
G, with 4 =“+",“="_will be derived from the equations (22) by using the
approximation (21) of forward scattering.

First, when equations for kernels or their spectra are derived from some
operator equations an operator product corresponds to a convolution of
kernels or of spectra. Second, because of the horizontal homogeneity of all
random factors in the waveguide all second moments of kernels of all opera-
tors entering in the equations (22) and (23') contain é-functions of differ-
ences of horizontal wave vectors, therefore the equations are simplified and
their solutions also contain the same d-functions. Let’s denote U, I=%S",
“B” kernels of the operators U; describing the scattering from boundaries,
Ugp» @, = “+7, “=” kernels of the operators U,g describing the propagation
and scattering from volume fluctuations and

Uy(2,2)=U,, (2,0 U__(0,2*U__(z, H)*U, ,(H,z) =
=U,,(z,0xU__(0,H»U, (H,z2)

kernel of the operator describing the propagation and scattering in the
waveguide without scattering from the boundaries (the convolution is
calculated through the variable on which the operators act). Notice that
the kernels U with different subscripts have the meaning of scattering
amplitudes for stochastic surfaces or for a water layer with volume fluc-
tuations.

(24)
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So, because of the horizontal statistical homogeneity of the waveguide
the coefficients and the right part of the equation (22') are proportional to
S(k—xKy):

{U (k—x,)=08(k-x,)U,(x,), [ =S,B 25)
Uy 2,25,k —K4) = 8(x - KO) ap (2:20,K,), @, B ="+","=".
If the development

Uy (2,2) = U, (2,00+U__(0, H)*U, , (H,z2) (26)
is valid then

G, (2,2,,K,K,) =8(x ~k,)G (2,2,,%,), A="+","=". (27

Notice that the equation (26) defines some approximation under which
the correlation of volume fluctuations for different parts of one ray cycle is
neglected. It's evident that in the case of fluctuations being enough large-
scale in the horizontal plane this approximation does not allow to take into
account the correlation of fields being scattered on different ascending or de-
scending parts of a ray cycle.

Thus, taking into account that all scattering factors (boundary and vol-
ume) are statistically independents from each other following scalar equa-
tions for the mean field derive from (22'):

(G (2,2,,%,) = U.(x,)G,(2,2,,K,) +
UH(Z Zy,%4) + Uy ()T, (2,2, )
2i\Jic, (2,6 ), (29, )
G (2,2y,K,) = U.(k)G _(2,24,K,) +
U (2,20, %) U5 (x )+ U__(2,2,,x)U, (x ) )U,(x,)
2i K, (2, Ko )K, (29,K,)
where U, (k) =Uy(z,z,x)Ug(x)Up(x) , x,(z,k) = JkZ (z) -k’ is verti-

cal wave number, ky(z) = w/cy(z). The equations are valid under the forward
scattering approximation and the approximation (26). Solving them we obtain:

(7++(z’zoaKo)+U—S(KO)U+—(ZaZO’K0)
2:'(1-(7 (KINK, (2K, K, (25,K,)
U, (2,2,%0)Up(x) +U_(2,2,%)U(ko)Us (o)
2i(1 - U, (k) N, (2,% )%, (25, K,)

b

2

(_;+(z’zos‘<o)=
(28)
G—_(z,zo,lco)—
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Now a system of equations for second moments of horizontal spectra of
operators that derives from the operator Bethe-Salpeter equations (23") will
be presented. The equations are valid under the same approximations: of
Jorward scattering and (26). It's evident that the coefficients and right parts of
equations (23') and their solutions shall depend on four wave vectors: on K,

and Aq that specify the directions of two incident quasi-plane waves and on x
and A that specify two directions of scattering. However because of the same

horizontal statistical homogeneity of the waveguide the coefficients, right parts
and solutions of (23) are proportional to 8(k—A—ky+Ay), therefore the solution

depends really only on three arguments. After introducing new vectors
XK+A Xy + )\.0

= , =K - )\,, =
g ) 4 €o 5
the solution will be proportional to 8(C-Cg). Let's introduce also
G 1(2,25,%,%,)G (2,29, A, A o) = 1 ,(2,2;8,€4,8)0 (5= &,) (29)
where 4 = “+”, “~”_and following notations:
Ma(228,80,0)= (0 U, -0 0 POV -ULUL ) (228.80.0),
M. @3880,0 = (LU, -UU BV -ULU ) @255 00, @O
My (22038, 80,0) = Upp (5.2,) @ U (3,2,), @, B="ul","d".

A T

Using it we derive following equations for I, from Bethe-Salpeter equa-
tions (23):
(-ToE+8/2)WA-Uu(8 ~6/2)) 1 4(2,20:8,E0,6) —
] Moo (6,861 4(2.20,8', 80, §)dE" = R
_ Mo (2,25;8,€0.C) + Mop(z,29,€,80.C) azp.
4, (20,80 )x,(2,80) '
Under the forward scattering approximation by using (21) we derive:
M, (2) = Uy (2,0Us*U, (0,H)*U,*U, (H,2),
M, (2)=U,(z, H)*U *U, (H,0)xU U, (0,z),
Mdu (2,2,) =U,(2,0)*Us*U, (0,2,),
M, (2,2,)= U, (2, H)*Ug*U, (H,2,).

If it is allowed to neglect correlation effects in sound fields for any two
171
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points horizontally spaced by more than on ray cycle length then following
simplified form of the equations (31) derives:

1(202638:80,8) — | Mo (B,E )] 4(2,2038",E0,0)dE" =

M, (2,2038,8,0,0) + M5 (2,2038,E,4,0) (33)
= I, (z0,E0 ) (5.60) vaxb
where
M, (2,2:6,80,6) = (U.U )@ UV Xz.2:8,E4.6) (34)

M, (2,58.80,0) = (U.U, )8 UV X2.28,8,,0) -
By calculating the inverse Fourier transform with respect to § we obtain
equations for the wave spectra I ,(z,2,;€,&,,X):

12,20 %8, 80) = [ Moy (8,8 X 1 (2:20, %8, £, )d 8" =
M, (2,20, %,E,0) + My (2,20, 5,8, (35)
4KV(ZO’€0)KV(Z’€O) ’ * iB’

where the convolution % is done on the variable X.

4. CALCULATION OF MOMENTS
OF SCATTERING AMPLITUDES

Let's calculate kernels and right parts of the equations (26) and (31), (33).

The boundary scattering is described by the second moments of ker-
nels U; that have the meaning of scattering amplitudes. Several methods
of modeling them for rough surfaces such as the sea waving surface or
the rough bottom for underwater sounds. We have no possibility to dis-
cuss those methods in this work but should notice that the most adequate
to the physical phenomenon and to requirements of computer implemen-
tation is now the combined model of scattering index proposed in [15]
and based on the straight calculation of the Kirchhoff's integral of the
small-slope method around the specula direction and on the use of the
resonance scattering index of the dual-scale model for other directions
(see references in [15]).

Also, a rather big number of scattering models for the sea bottom are
known (see for example Ivakin's works) including models accounting the bot-
tom roughness and a stochastically heterogeneous structure of bottom sedi-
ments or the presence of compact scatterers. In this research domain both the
two groups of results of the theory of scattering from rough surfaces and
from volume fluctuations in stratified media are applied. Notice that as it
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bed is necessary for adequate modeling of the bottom reflection and scatter-
ing only for low frequencies where the sound is yet able to penetrate consid-
erably the sediment.

Thus we may consider for our problem that some models of boundary
scattering are known and may be used to calculate the second moments of
the scattering amplitudes U, that are entering in the equations (26), (31), (33).
In this section only moments of forward scattering amplitudes from a strati-
fied layer with fluctuations of sound velocity are calculated.

To do it let's write equations for the horizontal spectra of kernels of the
operators Uy, and U, that derive from the equations (7) under the ap-

proximations of forward scattering and of first order with respect to p

[4,U, (2,25, %) = fix, (2107 (200K, (2.0)/2] Uy (20,55, ) -

_IZi(o Wz, x -k (224, k', K,) a2’
ci@k, (zx)+K, (X)) (36)
d,U,.(2.2,,%,k,) = [FiK, (1) K (50K (26)/2] U, (2. 25, 6,600+

IZI(D ZH(Z,K"K,)UHU(Z«)ZO,K'5KO) d2 ’
<@k, (2K +K, (zK)

U, (2420, K,%0) =8 (k —x,), U, (2),25,K,K,) =8 (x ~K,),

where p(z,K) is the horizontal Fourier image of the fluctuation field pu(x,z).
Here and below we avoid the subscript | for simplification. Notice that the
kernels U,; and U, have the meaning of forward scattering amplitudes of
the waveguide describing the scattering from sound velocity fluctuations.
Then solutions for the amplitudes will be obtained from the above equations.

Approximation of phase screen

In this work we will consider the scattering only from that part of the
spectrum of the field p(r) of sound velocity fluctuations that corresponds to
relatively “large-scale” volume heterogeneity like vortices, internal waves,
fine structure of sound velocity stratification, large-scale ocean turbulence
since that's those fluctuations in the ocean that are the most powerful (for

them ‘/;17 ~1072 +107*). The fact to be of “large scale” means that the

characteristic horizontal and vertical scales of the above mentioned hetero-
geneity types are much larger than the sound wave length. Usually this is true
for sound of hundreds of Hertz and higher in the ocean. On the formal way it

means that the function p(z,K) is not zero only for a narrow interval of k
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around x = 0. Using this we can solve approximately the equations (24) by
applying the so-called phase screen method [4).

Let’s obtain the solution for the scattering amplitude Uy, that we note as
U in this section (the solution for U, is derived by the same manner). To do
it we express

U(z,2y,%,Kq) = Uy(z,2,%) - U)(2,2p,%,Kq) (37
where U, (z,2,,x) = |2 CeKo) exp{irlcv(z’,k:)dz'} . The equation
K,(2,%) %
2i0*p(z,x - k") K,(z,x)

d.U\(2,2,%.%0) = Ic:(z)écv(z,mmv(zn«')) G

<expli [ () -, (0N JU g KRN

and the initial condition for it U,(z,ZO,K,K0)=8(K—K0) derives for

U, (z,z,,x,%,) .

For large-scale fluctuations the number x,(z,x) is slightly changing
when x is changing on the support of  (in the area where p(z,k) is not equal
to zero). Let’s neglect this slight changing in the amplitude terms of the ker-

nel of the equation (38) but respect the linear term of this changing in the
phase terms. As result we deduce:

i(n2
G @)K, (2,,)
with d(z,2.x) = -0 % x, (2", k Jadz’

If the vector d(z,zy,K) is also slightly changing when X is from the sup-
port of u then the kernel of the equation (39) depends only on the difference
K—k' and therefore this equation can be made diagonal by the Fourier trans-
form with respect to x:

AU (2,29,K,Kg) =~ fuzx —K’)ei(d(:’:‘"'()’K'K')Ul (2,20, Ko )dK (39)

2

io
2
¢ (2K, (2,K,)
where 0 is the dual vector to k. Solving this equation with respect to the ini-
tial condition U;(2y,20,0,Kp) = exp{i(d,Kp)} and then doing the inversc
Fourier transform with respect to & we get a solution for the scattering am-

plitude corresponding to the phase screen method.
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U, (2,20,K,K,) = K(z""( p{j’x @ K)a’z}

X 21—17 fd%exp{-—i(x —KO,B)—ifoko(z’)p(z',S +d(z',zo,1c))ds(z')}.

Notice that the length of the vector d is equal to the horizontal length of
the ray corresponding to the wave vector x that goes from the depth z; to the

(@1)

depth z and that ds(z') = —(0(-—)—)-dz is the differential of the ray length.
K, (2',xq

The meaning of the solution (34) is following: the difference of the scattering

amplitude for a medium with sound velocity fluctuations from that for a

medium  without fluctuations is the additional phase term

_[ko (z")n(z',8 +d(z’,z,,x))ds(z’) calculated as integral of the fluctuating

field p along the reference ray path.

Boundaries of validity of the phase screen method for a mean-stratified
medium are determined by the condition that the vector d is slightly
changing on k from the area |Ak| <X,,, with x,, =27n/p, the maximum
horizontal wave number of fluctuations, p; their correlation length in the
horizonta! plane. Mathematical formulation of this condition is:

2
ld(z, 29, K0 + AK) —d(z, 26, K o) < Py VAK: || <=2 | 42)
Pn
The difference in (42) may be developed as the Teylor series. Taking
only the linear term we can rewrite the condition (42) as
2

”F(z Z5,K 0)H .where F(z,z,,x) = —5?(—2 k,(z',x)dz’ (43)
and elements of the matrix F are expressed through the transversal and
longitudinal horizontal divergence of ray beams corresponding to the wave
vector K. Speaking the physical language this condition means that the
horizontal Fresnel zone of rays has to be smaller than the horizontal
correlation length of fluctuations. ,

Let’s calculate now the two first moments of the scattering amplitude
U(z,z9,x,K) under the common supposition [10] that the field p is gaussian.
For the first moment we obtain the well-known result [7]

_ 1
Ul(z,zy,K,K,) =8(k —Ko)exp{- EwZD,(z,zo,Ko)} : (44)
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where D,(z,20,Ko) = j L,(z',e(z',x,),0)c ™ (2')ds(z") and
L,(z,e0)= [ : K u(z,et+0)dt. The vector e(z,Ko) is tangent to the ray
defined by the wave vector Kg at the point z.
Calculating the second moment of the amplitude U(z,2o,k,Ko) we obtain:
U(z,2,,%,%)U" (2,25, M, hg) = M(2,253€,80,008(5 - G,),

M(z,25;8,8,,6) = U (2,206 +&/2)U7(2,20:6 —§/2)8(§ — &) + » (45)
+ M(Z’ZO;§’§O’C)!

where

kv(zo’g.- +C/2)kv(20,€ _g/lz) x
k,(2,€+8/2)k,(2,E -E/2)

<expli [ (18 +6/2) - k(28 ~L/ DY -

M(Z,Zo;ﬁ,f_,o,g) = \/

>3 1 z
_ % [ (@)L, (2 E+5/2)ds(z) = [ LACHINER: —C_,/2)ds(z’)} x

x ;1—71;2— | dza[exp{— i€ —&,,8)+ j [ ko2 (2")dis(z )ds(z")
x K, (2,2",8 + 42, 20,5 +/2) - (2", 2.5 - 6/2) }-1].

After calculating the Fourier image of ]tjf(z,zo;éf,,g0 ,&) with respect to
£ we have the kernel 1\;I(z,z0 ,X;E,& ) of the integral equation (35).

Before calculating the integral from (46) we should notice that
L, (z,e,O)Oszlp, where /, is the integral correlation interval of sound

(46)

velocity fluctuations along the ray path. So far as powerful ray paths in the
ocean have slight grazing angles then I, <pys where py, is the horizontal

correlation interval of fluctuations being about one or more kilometers for
such heterogeneity like internal waves, fine structure of water stratification.
Distance per cycle coming by some ray in layers where fluctuations are
powerful is also about one kilometers or more. Thus, for frequencies higher

than 100 Hz and for p® >107 or higher a big parameter kg u’l [, >>

arises in the exponent. It allows to calculate the integral with respect to & in

(46) by the Laplace method and the integral with respect to - by the
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constant phase method. Such an approach corresponds to the geomerrical
optics approximation. To do it we develop the function L,(z,e,d) as Teylor

series with respect to & up to the second order term. The first order term from
this development vanishes since the function L, has a maximum for & = 0.
When calculating the integral on £ we use the fact that the function

'r (kv(z’,i +&/2)-k (2, - C/Z))dz’ is anti-symmetric, therefore the

second order term in the Teylor series vanishes. Thus the standard method of
constant phase can not be applied for the point £ =0 and we have to take
into account the third order term with respect to { in the Teylor development
of the integral term

[ [ k@)K, (2,28 + 802" 20, & +/2) = " 20, & ~ 8/ 2l es(z").

Points of constant phase are solutions of the equation

r= @220, +5/2) + (22,5 - L) “n

It follows from the symmetry of this equation that if some C is a solution
then —€ is too. The matrix of second order derivatives of the phase with
respect to £ is

F(F(z2,,8+6/2) - Fz.z,8-¢/2)). 8)

Let’s denote

62

L(ze= e L,(z,e,3) (49)

5=0
and introduce matrices

[ (2,280 = [ K@, (6@ ENds(=),
T\(2.280) = [ K@ E)F (2, 8.)ds(2),
[,(2,20,80) = [ k5 @F (220,80, (2.8 F (7', 2,80 )ds(2),
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T (220:8:0) = [ [ k(2 ko(z")ds(z)ds(z") x

2

rr

(50)
—7 K, (2'.2",8 +d(2',2,,§ +£/2) ~d(2",2,,§ - §/2))

8=0

and the value p(z,29,€,0) =
= [ R R, (2,20 20 /D) = " 20 =G D)l Y 2"),
By using these notations we derive following expression for the kernel

Lo
°X"{"2<F "'>} K (20,8)
\/dct{ZﬂF} k.(z,€)

M(2,2038,E,,1) =| [Uy (B)] 8(5 ~,)8(r ~ d(2,2,,E)) +

cos[ @)+ [ (k. (218 18, /DK, (2.8 -0 2)r |
+z :

\/Q{]I(F(z,z.,,wv/m—F(z,zu,é~cv/z))}

2
X exp{— ‘”—[D,(z,zo,a +6,/2) + D(z,2,,E €, /2)]} x

><‘/k (Z(,’C:, G, /[2)k,(2,,€ - szz)
k,(z, §+C [2)k, (2,8~ Cv/z)

61

exp{~;<l“ Tt E —éo))} ,
\[dct {an}

where 1 is a 4D vector 1= {£-£0,x—d(z,20,E0)} and the matrix I'(z,20,&0)
has a block structure

x| (& ~ £9) + expip(z,29.£.,8,)}

I, I

Follows a consideration of the obtained solution that contains two terms.
The first term describes the energy structure of the forward scattering
amplitude of a waveguide layer. It is determined by the coherent component

being proportional to losses |(7V(§)|2 per ray cycle and also by the
178



distribution of energy of the scattered field. The space distribution of the
coherent field is described by the product of d-functions versus the horizontal
coordinates and wave vectors. It means that the energy of the coherent field
is determined only by reference rays and that the angle spectrum of the field
is transferred from the depth z; to the depth z without distortion. The space
distribution of the scattered field is described by a gaussian function that
characterizes fluctuations of perturbed rays in the vicinity of reference rays
and fluctuations of wave vectors of the perturbed rays around the wave
vectors of the reference rays. Notice that the ray's and wave vector's

fluctuations are statistically related (the matrix I', is not zero).

The second term in (51) describes the small-scale interference structure
of the scattering amplitude being effect of the multi-ray structure of sound
fields developed practically for any propagation conditions in the ocean. This
term consists of two parts. The first part characterizes the interference
structure of the coherent field. It is determined by the phase difference of two
coming rays and by appropriated ray amplitudes of the coherent field. The
second part describes statistically the interference structure of the scattered
field. It is characterized by some slighter weakening than that of the coherent
field and its angle spectrum is also a gaussian function. It’s to notice that the
angle scattering for a couple of rays is smaller than for each ray itself. The
reason of it is in the fact that angle fluctuations for each ray are accumulated
along the hole ray path but angle fluctuations for a couple of rays are
accumulated only in the vicinities of the source, receiver and crossroads
points.

5. SOLUTION FOR THE MEAN FIELD

It follows from (44) that the mean field is governed by the Snell-
Descartes low for the reference medium (this is described by the factor 8(x—
Ko)). It is determined by the horizontal homogeneity of the problem. This
property of the mean field is not related to the use of the phase screen method:
if we had solved the problem without using it the mean field should also have
that property, the difference would manifesting only in the corresponding
solution for U(z,z¢,k¢). The value D(z,20,Ko) has a clear physical sense - it's
dispersion of fluctuations of propagation time for the ray path specified by
the wave vector Ky when it goes from the depth z; to the depth z. Thus the
mean field's structure is the same as for the reference waveguide and differs
from it only by the presence of coefficients of coherent reflection for the sea
surface and bottom and by an additional attenuation because of the
scattering from fluctuations of sound velocity, where the attenuation is
determined by the dispersion of fluctuations of ray travel times. If we do the
horizontal inverse Fourier transform and then calculate the integral by the
constant phase method the ray representation of the mean field is derived:
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e l 1 n m
G(r,ry) = Z A, (r,ro)e:xp{i(otu (r,1ry) -39 ZD,u (r,ro)}Us“ U, . (52)

p=l

where M is number of rays connecting points r and ro, the powers n, and m,,

are equal to numbers of ray arrivals on the surface and the bottom of the
ocean, 4, and {, are ray amplitudes and travel times (all these parameters

are calculated for the mean waveguide), D, is the dispersion of fluctuations
[

of ray travel times.

6. SOLUTION FOR THE SECOND MOMENT

It was shown above that the kernel of the integral equation for the
second moment of the scattering amplitude is composed of two terms: the
first one describes the energy space distribution of the second moment and
the second one describes its interference structure. If the second term is
neglected the rest will provide a model that corresponds to the energy
description of sound fields and therefore to the classic radiation transport
theory. Notice that it is possible to transform the standard differential
equations of the radiation transport theory to the form of the above derived
integral equations. The question about when the interference effects may be
neglected we keep still open. But we note that the integral equations derived
in this work under the energy approach (when the interference effect is
neglected) seem to be better than the differential equations of radiation
transport because the numerical algorithm to solve our equations should be
more convenient for computer realization. Really, a numerical solving of the
differential equations of the radiation transport theory needs that some strict
limitations on the step of integration shall be respected. On the contrary the
equation (35) binds the second moment of the scattering amplitude for two
points spaced by the horizontal ray cycle length. Therefore the grid in
distance to solve numerically the equation (35) for some waveguide may be
equal to the minimal horizontal ray cycle length for the environment. The
equations derived under the energy approach correspond to the classic
radiation transport theory with account of the use of the phase screen
method.

To see more clearly the structure of solutions of the equations (35) let’s
consider only water ray paths to do not account of the boundary scattering.
Furthermore let’s assume for simplification that fluctuations of ray travel
times per cycle are so powerful that it is reasonable to neglect the coherent

— 2 . . .
field |UC(§0)| . In this case an iterative procedure may be used to find the
solution as 2 Neumann series:
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L (220 :EsEg) = 3 Mo (E,8" XY yt M (7, E" )

x Ma (ZazoaX;g"3E_|o)+ qu(z,zoaX;é"9§0) o
4x,(zy,8,)k,(2,€,) ’

So far as the kernels M are gaussian functions for our case and a
convolution of two gaussian functions is also a gaussian function then the
obtained Neumann series is a sum of gaussian functions. Therefore the
structure of wave spectra of the scattered field is a sum of gaussian functions
each of which is concentrated around the corresponding ray for the reference
medium. It means that the mean vector of those gaussian functions is the
vector {&q,d(z,20,E0)}, where &g is the wave vector of the reference ray,

d(z,z0,&o) is the horizontal vector connecting the source point and the point

where the reference ray comes to the depth z. The matrix I (2,20,&0)

determines fluctuations of the wave vector around the reference vector and
fluctuations of the ray path in the vicinity of the reference one. The upper

diagonal block in the matrix I determines fluctuations of the wave vector,

the downside diagonal block determines ray path fluctuations and the non-
diagonal block describes statistical correlation between the wave vector

fluctuations and the ray path fluctuations. Thus the matrix I is accumulated

along each reference ray, therefore fluctuations grow when the distance from
the source is growing, hence maybe it is not a monotone process.

If d depends slightly on &g for the characteristic variability scale of Iy

then it follows from (53) that the solution for the second moment of the field
becomes

®3)

#B.

exp{— % (F;I(Z’ ZO’E.-O)lx ’|x>}
\/det{an,(Z,Zo,E.,o)} |

where Iy and I, are calculated as sum of per cycle values I' and 1 along
reference ray paths connecting the source and receiving points (the sum is
calculated on the total number of cycles and on final ray arcs).

To obtain the wave spectrum of a point source the expression (54) has to
be integrated on &

(64)

IA(stO’X;g’&O) =

exp{—% <I‘;l (2,2 ’go)lx 1y >}

Jdet {2nrx(2, Zo,E..o)}
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If nevertheless the value d versus &g is changing considerably on the

characteristic variability scale of I, then it becomes necessary to calculate

carefully the convolutions of gaussian functions when calculating the
solution as a Neumann series (53).

7. ON THE VALIDITY OF OBTAINED EQUATIONS
AND SOLUTIONS

The phase screen method was used above to calculate the forward scattering
amplitude for volume fluctuations. The calculation of the integral in (46) by the
Laplace method corresponds to the geometrical optics approximation. Therefore the
equation (35) with the kernel (51) describes well the angle distribution of the total
field in the case where the geometrical approximation is valid for one ray cycle. On
the contrary, the solution (54) is valid in the case where the geometrical
approximation is valid for the total ray’s length between the source and the receiver.
To obtain a more rigorous solution being valid for distances where the geometrical
approach is not applicable it is necessary to calculate “truly” the terms of the
Neumann series that is the iterative solution of the equation (35). So-obtained
solutions describe already the micro-multi-ray phenomenon. Really, not only the
direct ray paths coming to some point contribute to the second moment but also
other rays coming in some vicinity of this point. This vicinity is defined by
fluctuations of those ray paths. So, if the point is lying in some vicinity of a caustic
of the reference field and is in the shadow zone for some reference ray family and if
fluctuations of ray paths from this family are enough strong to cover the
observation point then this ray family contributes to the second moment of the
scattered field. Thus, virtual rays arise in this point that don’t come to it in the
reference waveguide.

Notice that equations (33) and (35) were derived only with the use of the
Jorward scattering approximation and of the approximation (26). Therefore they arc
valid also for the low frequency case and for small-scale fluctuations when the phase
screen method can not be applied. If it’s the case we should try other approximations
than the phase screen method to describe the sound scattering per ray cycle and to
calculate the kernels of the equations. We notice that even under the phase screen
approach the above derived mathematical model is able to describe statistically
fluctuations of the interference structure of sound fields. It means that the model
describes the correlation of signals coming to the receiver along different rays. It's
done by means of the second term of the kernel (51).

8. ON STRUCTURE OF ALGORITHMS
FOR NUMERICAL IMPLEMENTATION OF THE MODEL

Algorithm for numerical solution of the equation (35) in the presence of
only volume fluctuations is very simple. It is based on to the algorithm of ray
path calculation for a regular layered waveguide. It consists of following steps:
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e calculation of ray paths going from the source for some grid of vertical
directions,

e calculation of ranges d(z,29,£p) where the ray paths come to some given
receiving depth,

e calculation of the matrix F(z,zo,io),

¢ calculation of I, and 1, and application of () or “truly” calculation of
the convolutions of the Neumann series () and summation of them.
Account of the boundary scattering from the waving sea surface and
rough and statistically heterogeneous bottom does not change the above
algorithm but asks to calculate convolutions of second moments of scattering
amplitudes of volume fluctuations with those of boundaries. Nevertheless for
the high frequency and small-slope roughness case where the second
moments of scattering amplitudes may be approximated by gaussian lobes
the account of the boundary scattering resumes as adding to the upper non-

diagonal block of the matrix I some matrices that characterizes the angle

width of the lobes in the vertical and horizontal planes. There are no changes
for other topics of the numerical algorithm.

Notice that the above designed numerical solving algorithm is to obtain
solution of the equation (35) for the angle spectrum of the total field. So this
equation provides a field characteristic whose physical sense is more clear for
intuition and corresponds to the notion of ray intensity used in the classic
radiation transport theory 5). However there is another way to calculate the
second statistical moment of the field that is based on the equation (33) if the
kernel describing the volume scattering is a “narrow” function versus &. In this
case all functions entering in (33) depend practically only on the difference £,

so the equation (33) may be solved by the Fourier transform with respect to &:
Mn (Z>Zoax;€) + Map (Z,Zo aX;C;)
— ,ouzR
4, (20,80 X, (2,8 )1 - Mg (%,5))

where 1,(z,20,X,£) is the Fourier image of the covariance function of the field
with respect to the difference of coordinate vectors:

lﬁ(z,zo,x;é;)=atl—); [K (2,2, %,8)exp G, 8)% - 67)

I,(z,2,,%;6) = (56)

Thus the covariance function is calculated by the inverse Fourier
transform with respect to C:

Ma(Z,ZO,X;C)+MnB(Z,ZO,X;C)

4K, (20,80 )%, (BEN(~ My (x,0))
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Numerical algorithm corresponding to the above described solution for

the covariance function is following:

calculation of Fourier images of the kernels M of various subscripts,
application of (56),

calculation of the inverse Fourier transform (58) with respect to £.
Under the phase screen approximation the Fourier image of the kernel

M can be easily calculated from (46):

R(z,2, x:8) = | Ko Corb+6/DK (2,5 -6/2) |
T k(28 +5/2)k, (2,5 -C/2)

<exp§ [[(.(2.8+8/2) -k, (2.5 -¢/2)) ' -

_% L ki(z)L,(z,E +5/2)ds(z") —% L) K2(2)L (2,6 ¢ /2)ds(z')} «

X [exp{ J: L Z ko (2")k,(z")ds(z" )ds(z") x 59

x K, (22" 3+ (2", 20,8 +6/2) - d(2" 2, § = &/2) 1.

CONCLUSION

The problem of deriving equations for the two first moments of sound

fields in the random ocean waveguide with simultaneous account of the
scattering from rough boundaries and fluctuations of sound velocity in the
volume is considered and solved in this paper. Main moments of the work
and obtained results are listed below:

An operator formalism is used to formulated the mathematical problem
and to derive main equations (section 1).

General equations are derived that describe the two first moments of the
field (section 2).

Forward scattering amplitude for a mean-stratified layer with
fluctuations of sound velocity is calculated by using the phase screen
method and the geometrical optics approximation (section 3).

Structure of solutions of the equations for the mean field and the second moment
using the geometrical optics approximation is described (sections 4 and 5).

Validity boundaries of the derived equations and their solutions are
discussed (sections 3 and 6).

Algorithms for numerical implementation of the developed mathematical
model are described and discussed (section 7).
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COHERENT STRUCTURE OF BROADBAND
PULSE SIGNALS IN THE SHALLOW SEA

E.L. Borodina, A.A. Stromkov and A.I. Khil’ko

INTRODUCTION

Various techniques of acoustical monitoring and communication in
shallow regions of the World ocean require understanding of the co-
herent properties of broadband pulse structure. Formation of these
structures is caused by an interference of partial waves (i.e. nor-
mal modes). With receding from the source the broadband coher-
ent structures are substantially transformed due to inter- and intra-
mode dispersion (a difference between mode frequency dependencies
during propagation). In common, an increase of pulse duration and
special dependencies of a number of interacting modes and mode ve-
locities from a waveguide structure at various frequencies produce
rather complex space - time structures [1-3]. At low frequencies in
the shallow sea the Rayleigh and Stoneley - Scholte waves significantly
contribute into a total field formed by a few modes [4-8]. With growth
of frequency the number of interacting modes increases; besides, some
waveguide modes may have close or multiple wave numbers, under
the certain conditions it can cause the formation of non-stationary
beams, just as it occurs in deep-water waveguides [9-12].

The interference effects in oceanic waveguides appreciably depend
on a coherence of modes, that, in turn, is defined by an influence of
random inhomogeneities and an attenuation in bottom. For exam-
ple, in deep waveguides at small distances the interference structure
of the broadband pulse is formed mostly by a refraction duct; and in
shallow waveguides the influence of bottom composition and atten-
uation is defining. Thus, the correct modeling of broadband space
- time structures in shallow waveguides requires to account at least
the phenomena of: the transformation of the interference structure
during propagation along the waveguide, the influence of the bottom
attenuation and the scattering of modes by random inhomogeneities.

The study of an influence of a bottom structure on acoustical sig-
nal propagation [13, 16] shows, that a part of modes interacts with
sediment layers at resonance that yields an increased attenuation in
a bottom and deformations of the broadband interference structure.
Note, that just these resonant modes can give the information about
the layered bottom structure. The scattering by random inhomo-
geneities also causes a transformation of the signal spectrum [17-20;:
the most powerful part of spectrum shifts to higher frequencies, where
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attenuation in the bottom is largest. So that, due to the scattering
a part of modes forming the multi - mode interference structure dis-
appear {10, 19, 20].

The present paper is devoted to an investigation of the influence
of sediment layers on the space - time coherent structure of broad-
band pulses. The formation of unsteady in time beams caused by an
interference of waveguide modes in a wide frequency region is consid-
ered. An influence of variations in acoustical parameters on a shape
of wide - band acoustical pulses is investigated. The conditions of a
constructive interference of modes are analyzed.

1. MODELING THE BROADBAND PULSE PROPAGATION
IN THE SHALLOW SEA

1.1. Acoustic field structure in the shallow waveguide

For the modeling of the real conditions of propagation we have
taken the composition of two fluid layers and the elastic half-space
[21]. All media are supposed to be iso-velocity, here ¢, ¢, c, are re-
spectively the water, the sediment and the bottom sound speeds,
v, the shear speed; with constant demsities p,,ps,ps, respectively.
A cylindrical-polar coordinate system is introduced having z-axis
pointed upward, and an origin at the water surface. A point source
is assumed to be disposed in the water layer of the thickness H at the
depth z,; h is the thickness of the sediment layer. In the foregoing
formulation, we use the potential approach [2]

2
[A - iéar] olr,0,2,0) = 28z~ 2)6().  c={ewena}, (1)

52
[A*,l»gt ]Wﬁ,z,t)—o ”2” \/"

where ¢ is the scalar particle displacement potentla.l of compression

waves, ¢ == (0, v, 0) the vector potential describing the rotational com-
ponent of motion, the scalar ¢ is a function of r and z only, A, 4 the
Lame parameters.

Assuming the normal-mode propagating model for a monotone
oscillation of a frequency f consider the solution as a result of the
Fourier-Bessel decomposition by plane waves

o(r,z,1) = /000 Jo(€r)p(€, z)EdE et (2)
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where Jo(-) is zeroth order Bessel function, w = 27 f.
We now seek the boundary conditions, and begin with writing the
displacement @ and the pressure p in the general form

E=Ve+Vxy p=—pcV-q. (3)
Hence the equations for the pressure at the boundaries of the water
layer give

Pli=0 =0,  puwpl,_pr =PsPliops 4)
where H, = —H is the depth of the lower water layer boundary,

HY = H,+0, H, = H, — 0. The condition of continuity of the
normal displacement at the boundaries of the sediment layer is

_ o L0210 (,00)
s=H} =%z " ror \"or

z:H,': - Oz
where H, = —(H + h) is the depth of the lower sediment layer bound-
ary, H} = H,+0, H; = H, — 0. The condition of continuity of the
normal stress is

Op

(42 9y
Oz

1
s=HZ 0z

, ()

z=H,S

a (dy 8%y
sCIA = = | 5 -5
PsCy 90L=H,+ AA90+2/16Z <az + Ay 622) v (6)
the condition of zero shear stress gives
Bcp 0%y B
Do+ Ay~ 232”{_-0‘ (7

The field ¢(r,2) in a water layer satisfying the inhomogeneous
Helmbholtz equation (1) and boundary conditions (4)—(7) can be ex-
pressed in the form

H{D(eryede , (8)

it [ Pl + H)$/H) sin(zo61/H)
o(r,z,t) = / ) W s

SvVdZv
F(¢) = _\/czi)?——l sin ¢[P cos ¢z — @ sin ¢3] + cos [P sin 2 + Q cos ¢, ,

S 1 vdR?r-17 4, 2 o) 53
Q_E(av)‘* — [(bv -2) —4\/a—bv\/1—av] ,
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where H(()l) is the zero-th order Hankel function and z, < z. The
expression for the case z, > 2 can be obtained from (8) by the re-
placement z, = 2. Then use of the standard procedure of integration
of analytical functions over the closed contour in the upper half-space
of the complex ¢—plane [1, 2]. Thus, the expression (8) can be di-
vided into two parts: a sum of residues and a result of integration
by branch cuts. As in the investigated frequency region a value of
the last component is negligible, the acoustic potential field can be
presented in a normal-mode form:

roz i) = O —iwfd—iwt \/EF( 33+H)¢|/H)sm(z¢1/H)
P f Z SEToFen gk,

here z; < z, v, is the phase velocity associated with n-th mode, n =
0...N, satisfying the corresponding dispersion relation

F(¢1)=0 . (10)

For the considered relation between sound velocities ¢,, < v, and
¢s < v, In absence of the attenuation wavenumbers of propagating
modes lie on the real axis, i.e. §&, = 0 when € > w/v;. So that, the
condition v, = vy substituted into (10) gives the expression for critical
frequencies fS corresponding an origin of a mode with number n

L (1+Q2)tan ¢,
tan gy, = —Q; (1+ 0,(1 —Qgtancﬁ,)) ’ ()

dw=kHV1 - 02, &, = kh/d? — b2

R ey NV, o
'TROE-2 T RE-&

The numerical estimation of (11) shows, that when the relation ¢, <

¢; < vy, < cp takes place, mode critical frequencies decrease with
growth of the sediment thickness.
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As it was mentioned above, interactions with the sediment layer
result in an appreciable attenuation of resonant modes in correspond-
ing frequency regions [13]; moreover, these modes are characterized
by a substantial intra-mode dispersion, so that propagated signals
are distributed over a large interval of delays. However, restrict
the discussion to a simple model in form of linear dependence of
attenuation factor in the water layer: 8, = fBo.f. The value By,
is also proportional to a mode number. Numerical simulations for
Bon = 5.1077...1.1075 dB/(m.Hz) shown the coincidence with exper-
imental results at small values of 8y,.

It should be mentioned, that more correct model of attenuation
in fluid media {16] gives a linear dependence only for zero-mode. Fre-
quency dependencies of other modes correspond the group velocity
curves, with maximums at the ranges where each mode is resonant
to the sediment layer.

1.2. Influence of the sediment layer parameters on
the mode dispersion

Modeling a seafloor by uniform half-space defines a shape of the
group velocity frequency curve with a single minimum, so-called the
Airy phase [1, 3]. An account of a bottom stratification transforms
this dependency.

The influence of the layer is evidently seen in the Figs. 1,2 showing
the frequency dependencies of phase v,, and group v, velocities for
parameters: ¢, =1.4510°m/s,c, = 1.58 10> m/s, v, = 1.70 10> m/s,
o, =270 10°m/s, pp, =10 103 kg/m?, p, = 1.5 10° kg/m3, p, =
20103 kg/m®* H =300m, » =30mand A = 50 m.

First of all, the slow fundamental mode is clearly resolved having a
constant velocity in all the frequency region above 10 Hz. An account
of stratification results in additional spatial resonances. Condition-
ally it is possible to separate at least three space scales: the thickness
of water column, the thickness of sediments and the total thickness
of two liquid layers, which define peculiarities of dispersion curves.
The mode critical frequencies are defined, in general, by the total
thickness. An increase of the sediment thickness leads to decrease
of mode critical frequencies: in the considered case the number of
propagating modes is 65,72,79 for & = 0,50,100 m, respectively.

In the set of waveguiding modes it is possible to find a number
of modes (of small numbers) with frequency dependencies similar to
ones for the Pekeris waveguide [1,3]. In another words, these modes
do not experience an influence of the deposit layer. A number of such
modes increases with reduction of its thickness (Figs.1-3).

Since some numbers the shape of dispersion curves changes qual-
itatively: frequency intervals appear where velocities increase. Such
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"resonant bursts” are determined by space synchronism of wave num-
bers in the liquid layers. Depending on thickness of the sediment layer
it is possible to allocate the group of modes with single resonant bend
(Fig.3). The "burst” magnitude grows with frequency producing an
additional dispersion special for each mode.

With further increase of frequency the modes with two (and more)
resonant bends arise; the number of modes in these new groups de-
pends on the sediment thickness (Fig.3). The next frequency period
can be determined as an interval between two neighboring minimums
of group velocity within a band of modes. Apparently, this space
period can be explained by an influence of the deposit layer.

Figs.1-3 show, that the set of mode dispersion curves can be di-
vided into groups characterized by approximately similar shape. If
the quantity of bends is chosen as a criterion, the total field can be
written in form

L{Hh, . M{Hh,.

QD(T‘,Z): Z Z Wlm(”;z) ) (12)
=1

m=1l

where quantities of modes in each group M depend on the waveguide
parameters (for example, M = 15 for h = 30 mand M = 5 for h =
100 m) and satisfy the condition N = L - M.

Each group is characterized by its extreme values of v and

. . - . . g
v**® in definite frequency regions, that provides a special character

of propagation at these frequencies. So that, the study of broadband
pulse propagation in waveguiding conditions can be decomposed into
partial problems concerning described groups localized within nar-
row angle intervals. Besides, it allows to found mode bands bath
interacting ard ”ignoring” the sediment layer at chosen frequencies.

Note here, that in narrow frequency intervals of wide band pulses
the mode groups with small intra - mode dispersion and negligible
inter - mode dispersion can be found (Fig.4). In the investigated
interval of distances low number modes actually propagate without
dispersion, since theirs dispersion curves tend to c,; a number of
such modes increases with frequency. The next kind of mode groups
is characterized by small intra - mode dispersion and inter - mode
dispersion with approximately the second power dependency from
the mode number. And, at last, all the other modes propagate with
large intra- and inter- mode dispersion (i.e. resonant modes of high
numbers). The described structure of dispersion characteristics de-
termines space-time distribution of broadband pulses in the shallow
sea.
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1.3. Frequency characteristics of the waveguide

Except of dispersion relations, there are frequency characteristics
depending on mode excitation factors (10), that determine the space-
time structure of broadband pulses in the shallow sea. The frequency
characteristic composed of a large number of excited modes has a
complex form due to constructive and destructive interference. Fig.5
shows the field intensity in the depth - frequency domain for the
considered propagation conditions (see Section 2.2). It is clearly seen,
that the interference structure by depth becomes more definite with
an increase of quantity of modes. In the frequency interval 110~
120 Hz zones of focusing develop, especially near the surface and
the bottomn. Note also, that the area of constructive interference
1s in neighborhood with the shadew zone. The similar structure is
observed also in frequency interval of 220-240 Hz. The frequency
period of focusing is expected to be determined by a dependence of
wavenumber on a mode nwmnber.

Demonstrate this effect using the simple model of the shallow
waveguide — the Pekeris waveguide composed of the liquid layer
of thickness H and the liquid half-space with acoustical parameters
cw,pw and cl,pp, Tespectively. As it follows from the structure of
dispersion curves, the appreciable part of modes has close phase ve-
locities distributed by the square-law dependency on mode number
n (Fig.6). So differences of neighboring wave numbers are directly
proportional to n, that causes a formation of areas where modes are
added in phase. Taking Taylor series of the wave number ¢, about a
point w/c,, and retaining the first terms we obtain

0 2,2 -1\ °
5nz;_:.ll—%—(ﬂw/cw+(R1/R—a,2) ) ) (13)

where a; = ¢, /c,. And the condition of constructive interference of
two next modes is

72 (2n - 1)

r(€n-1 — €n) = r_w = = 2Tm

“ (Hw/cw + (13\/13——_5,7)_1)2

where mm = 0,1,2... This condition allows to determine frequencies at
which modes appear in phase at the fixed distance r = r;.

As waveguide modes are known to be quasi- periodic in depth,
the relation (14) accounting z— dependence defines also focusings by
depth. For fixed ry and various numbers m the focusings arise with
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Fig. 7. The amplitude - frequency characteristic for the Pekeris waveguide.

equal frequency intervals (Figs.5,7). Note, that the approximate con-
ditions (13) and (14) are satisfied only for modes with sound velocities
rather close to ¢, .

The coherent structure of pulse signals is formed mainly by these
modes with low numbers and weak attenuation. Some small differ-
ences from square law cause spreading of areas of constructive inter-
ference expanding with an increase of distance r and multiplicity of
focusing m. The width of focusing zone (in a frequency - depth do-
main) is determined by a difference of the wave number distribution
from square low and can be derived analytically retaining second -
power terms in Taylor decomposition. At the same time, numerical
simulations indicate the reduction of the focusing properties of shal-
low waveguides with complication of the bottom structure (Figs.5,7).

A part of modes does not couple in focusing formation, namely,
normal modes arising in the considered frequency interval and modes
effectively interacting with the deposit layer (Fig.4). The contribu-
tion of these modes in focusing formation depends on relation between
the distance and the sediment thickness.

As it was described above, the total field in the waveguide with
layered bottom can be separated into mode groups characterized by
specific dispersion curves and also by frequency characteristics. Fig.8.
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shows the frequency characteristics of three first groups (go, g1, g2)
for the sediment thickness h = 50 m (corresponding Fig.3.(d,e,tg)).
The strongest focusings are formed mostly by modes with numbers
from first to sixteenth practically ignoring the deposit layer.

Other modes of higher numbers interacting with the deposit layer
form theirs own zones of constructive interference, but field ampli-
tudes in these areas are much weaker (it is not clear from Fig.8, since
each frame is normalized independently).

An account of bottom attenuation for the waveguide model com-
posed of liquid media [13] have shown agreement between attenuation
and group velocity frequency curves. Reasoning similarly, with al-
lowance for elasticity of substrate we can conclude about the increased
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attenuation for modes effectively interacting with the sediment layer
in corresponding frequency intervals. In general, an account of atten-
uation results in a substantial decrease of high - number modes (and
suppression of high frequency part of a signal spectrum).

2. COHERENT SPACE - TIME STRUCTURES

As it follows from the analysis of dispersion curves (Figs.1-4) and
frequency dependencies (Figs.5,7,8), an appreciable part of most pow-
erful modes follows approximately the square low distribution by
mode numbers (see section 2.2). It results in forming of focusing
zones at various distances and depths at corresponding frequencies.

For wide - band signals it results in formation of zones with ele-
vated intensity presented in form of a beam in space - time domain.
Fig.9 shows the development of the beam with time during interac-
tion of first two tens of waveguide modes. In the chosen frequency
interval the sediment layer influences only on the modes with numbers
from 15 to 20. In the corresponding interval of delays (0.6...0.7 s)
the pulse interference structure becomes irregular, and the field in-
tensity diminishes due to a large dispersion and an attenuation. First
eight modes experience, mostly, the inter - mode dispersion, so that
adjacent mode pulses do not overlap in time. Besides, the spacing
by depth of the interference structure decreases with growth of time
delay. Since some mode number (in the examined case, since 10th
mode), each mode pulse begins to lap over the second below owing to
an intra - mode dispersion. The interference of these modes results
in formation of beams (taking up a whole water layer) with a time
period increasing with growth of delay.

Moreover, the influence of bottom stratification leads to asymme-
try in the interference pattern formed by low number modes, that is
seen from transformation of the pulse structure with increase of the
sediment thickness & = 10, 70, 100 m shown in Fig.10. A rather fast
destruction of mode pulses is caused, in particular, by modes with
resonant bends (Figs.1-4). The power of these modes is uniformly
distributed over the wide interval of delays, so that some blanks or
distortions of the intensity pattern at the appropriate intervals are
brought about by mode destruction. Note, that these components
probably contain an information on characteristics of sediment layer.
For example, in a wide frequency band (to 300 Hz) the mode group
with one resonant bend (see b, ¢ in Fig.3 and ¢, in Fig.8) forms cor-
responding parts of the total pulse at various instants of time, that
is indicated in Fig.11 for ~ = 30, 60, 100 m.

The discussed behavior of the interference pattern can be used
for diagnostics of sedimentary bottom. Numerous calculations of the
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pulse structure in the shallow sea have shown a weak influence of
sediment layer on the narrow band pulse propagation in far remote
areas. Then, owing to attenuation the pulses are formed mainly by
modes of low numbers. Within narrow intervals of high frequencies
dispersion dependencies for various models of shallow waveguide with
the same water depths have the similar structure, so that the simple
model (ignoring sediments) can be used for approximate estimations.

From the other hand, groups of low number modes are convenient
for diagnostics of the water layer. The mode selection can be car-
ried out by means of time gating or filtering of angle pulse spectrum.
Fig.12 shows the development of pulse angular spectrum versus time
of arrival for various quantities of modes (under propagation condi-
tions taken for Fig.9). The shown pulse has a structure of the angle
beam (as it is seen from alternating by depth intensity pattern). The
parts of spectrum appropriate to modes effectively interacting with
the bottom are weakly pronounced, as the corresponding intensity is
distributed over a large interval of delays.

3. SENSITIVITY OF THE PULSE STRUCTURE
TO INITIAL PARAMETERS

The presented analysis of sound propagation in the waveguide with
layered bottom have shown that an amplitude - frequency character-
istic of the propagation channel depends on many parameters, often
specified unprecisely. For example, the precision of distance source
- receiver measured at the best using GPS (satellite navigation sys-
tem) is in the order of 150 m in the standard condition The similar
problems arise in evaluation of the source and the receiver depths,
sound speed profile, etc. Especially it takes place when the source
and the receiver drift due to a surface waviness, as usually occurs
in the experiment. Therefore, even at the utmost in accuracy of all
initial parameters calculations poorly coincide with an experiment.
Examine the sensitivity to variation of initial parameters.

Represent the received signal in frequency domain in form

P(f,r,z)=5(f)-G(fir,2,G) + N(f,r, 2) (15)

where S(f) i1s the spectrum of the incident signal, N(f,r, z) the noise
spectrum, G(f,r, z,¢;) the Green function, (;, j = 1...J the vector of
parameters characterizing the propagation channel.

Actually, the argument (/,r, z) represents a finite set of M/ inde-
pendent measurement positions in space and time domain. Designate
these points by the discrete variable z; and obtain the expression for
propagating signal Y (z;, () = S(f) - G(zi,¢n)-
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Estimate the sensitivity of space - time structure to variation of
parameters using the criterion of square residual [22]. As it is known,
under the normal distribution of noise n(z;) a maximum of logarithm
of likelihood ratio (evaluating correctness of the model) is reached at
minimum of the functional Q:

M
Q:Z[P(:ci)—Y(xi,Cj)]z , j=1...J. (16)

Since the source spectrum S(f) is usually takes up a limited fre-
quency interval, the number of independent points by frequency is
equal to a product of the band by the signal length. The total num-
ber of independent points M typically is equal to a product of a
quantity of hydrophones by a number of frequency samples.

Differentiation of (16) with respect to waveguide parameters with
an equating of derivatives to zero produces the set of equations:

M

T, . M r:. (i
Z [P(wi)a—}%%ﬁ] =Z [Y(xi,g)a—y%é@] : j=1...J.
l 1 (7

An analytical solution of this problem can be obtained only when
rather simple analytical representations of the function and its deriva-
tive are known. For example, when Y (z;. (;) is directly proportional to
¢;, the set of equations becomes linear and easy solvable. In absence
of analytical representations for Green function and its derivative the
minimum of functional @ can be founded using various numerical
methods [22,23].

A choice of an iteration method is determined by a statement of
a specific problem. If the functional @ is known to have a single
. minimum on the whole domain of parameters, all methods lead to
an unique solution varying in time of calculations and an accuracy.
So that, the choice of method for source location is determined first
of all by that time [24]. In another case, when the functional ()
has both a main minimum and local ones the solution depends on an
initial distribution of parameters. Apparently, a complete exhaustion
of combinations of parameters (even the small quantity of ones) is
often impossible. To facilitate the search of solution combinations
of various methods can be applied (Monte - Carlo, gradient descent,
Newton methods, etc.) [22-24).

An existence of any priory information substantially promotes the
solving limiting a range of the initial parameters. In the consid-
ered case the peculiarities of forming focusings, beams, shadow zones
bound the area of parameters. If there is an opportunity to evaluate
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priory some area of parameters close to desired solution and including
a single general minimum of the functional, Newton method seems
to be the most suitable [24]. The efficiency of application of similar
methods is determined by the sensitivity of solution to an accuracy of
initial parameter definition. The easiest way to evaluate the sensitiv-
ity is to analyze derivatives of the functional @ by each of parameters
close to its main minimum.

Fig.13 presents matrixes of functional @ depending on the sedi-
ment thickness h and the vertical displacement 2 for the waveguide
of thickness H = 300 m, the distance » = 90 km, in the frequency
intervals 50-150 Hz and 150-250 Hz with sampling of 0.6 Hz and the
vertical array of 64 equidistant receivers. Fig.14 shows values of @
depending on ship drift speed u in z — u and h — u domains. It is seen
from Fig.13, that notwithstanding that the diagonal of the matrix
has a deep minimum for all h, the functional has a higher sensitivity
to change of sediment thickness A at small ones (10-30 m) and at high
frequencies. An existence of additional minimums at the distribution
of Q by source and receiver depths allows to bound theirs precise by
value of 10-15 m.
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An influence of source and receiver drift appears insignificant and
can be neglected.

Fig.14 shows the behavior of functional @ about the main min-
imum depending on various pairs of parameters. It enables to de-
termine the allowable accuracy of priory evaluation of parameters at
which the solution converges to the true one.

Under experimental conditions a random interference is expected
to moderate the sensitivity of the signal structure to initial paramn-
eters. In Fig.15 the same dependencies are shown including an in-
terfering noise. Here the signal/noise ratio is —6 dB. Under such
conditions the amplitude - frequency characteristic looks irregular,
but the functional bas a distinct minimum coinciding with the true
distribution of parameters.

CONCLUSIONS

In the paper the peculiarities of formation of space - time pulse
structure were considered for shallow sea conditions. The rather sim-
ple model of layered bottom including a liquid deposit layer was used.
The main attention was given to study of forming of focusings and
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beams due to the constructive interference during multi - mode prop-

agation, and also the analysis of influence of deposit layer parameters
on the pulse structure.

‘ The main results can be formulated:

1. The set of normal modes in the shallow layered waveguide
can be divided into groups characterized by the specific shape of
dispersion curve with inherent number of resonant bends. Quantity of
modes in each group decreases, and number of groups increases with
growth of sediment layer thickness. Dispersion dependencies within
each group are identical in topology. This circumstance simplifies an
interpretation of broadband signal propagation in the shallow sea.

2. In forming of broadband pulses at high frequencies (when a few
tens of normal modes are excited) modes with large numbers can con-

“tribute insignificantly into the total field. It is caused, probably, by:

1) an intra - mode dispersion, when the energy of high modes is dis-

tributed within intervals of angles and delays substantially exceeding

the corresponding intervals for low number modes; 2) the relatively

large attenuation of high modes. So the total field is formed mainly

by low number modes with appropriate resonant bends arising at
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low frequencies. In this case, due to the characteristic inter - mode
dispersion of powerful modes the broadband pulse structure at high
frequencies is similar to one formed in the waveguide with homoge-
neous bottom.

3. The distribution of wave numbers close to square law for a
significant part of powerful modes results in development of focusings
of field in space - frequency and space - time domains. Monotone or
narrow - band signals form such zones of increased intensity periodic
in frequency and space areas. The field intensity in focusing zones
increases with growth quantity of propagating modes. A complication
of a bottom structure leads to growth of differences between wave
number distribution and the square low, that results in spreading
of focusing zones. Such phenomena are close to that which were
investigated for radiophysical waveguides [24].

4. In forming of broadband pulses at selected distances it is possi-
ble to separate two sets of powerful modes: in the first group an inter
- mode dispersion substantially exceeds an intra - mode dispersion.
These modes form the initial part of the resulting pulse consisting
of sequence of weakly overlapping mode pulses. Another group with
dominant intra - mode dispersion forms the next part of pulse pro-
ducing a beam localized in space and time areas.

5. The time period of the obtained beam varies with distance.
The time dependence of propagating pulse at the selected depth can
be divided into three intervals of time delays: the first group is a re-
sult of interference of mode pulses with low numbers, the next group
corresponds the separate pulses, and the last part is formed by inter-
fering long - drawn modes of high numbers. During propagation the
pulse expands by time delay axis, and since some distances the third
forming group of modes becomes dominant.

6. The analysis of sensitivity of coherent broadband interference
structure to variations of waveguide parameters and geometry of the
problem have shown, that a number of initial parameters (for ex-
ample, a source depth and a sediment layer thickness) appear to be
dependent ones. Another parameters are orthogonal. In other words,
for correct estimations, for example, of the sediment thickness it is
necessary to determine the source depth with enough precision. Nu-
merical evaluations of the functional @ in the area close to a main
minimum allow to determine the examined sensitivity and, also, the
possible resolution in solving of the inverse problem and the range of
coherence of pulse signals at varying initial parameters.

7. Study of dependence of wide-band pulse structure on the sed-
iment layer parameters, have shown that a part of modes with low
numbers propagate ignoring the bottom stratification (forming so-
called water component of pulse). Other modes interacting with bot-
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tom layers in certain angle and frequency intervals form the bottom
component of a pulse. Because within the set of modes, forming
these pulse components the modes parameters differ only slightly,
coherence in these pulse components is maintained for propagation
to long distances. Due to this they after a corresponding filtering
can be used, respectively, for further tomography reconstruction of
water column and bottom parameters in the shallow sea as well as
for acoustical imaging [25].
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USING REGULARITIES IN THE BEHAVIOR OF A
TWO-FREQUENCY CORRELATION FUNCTION OF
ACOUSTIC FIELD IN MONITORING OF OCEANIC

INHOMOGENEITIES

A. A. Pokrovsky

The recent years witnessed intensive development of various
methods of oceanic inhomogeneity reconstruction in the interests of
World ocean assimilation. The key role is plaved by acoustic methods,
sirce acoustic oscillations are hest suited to transfer information in a
water medium.

On of the most difficult problems in acoastic monitoring of ocearic
inhomogeneities is that of extracting inhomogeneity-scattered signals
and estimating their parameters against the background of intermode
interference and acoustic field fluctuations dne to the broad spectrum
of background inhomogeneities of the medium.

Generally, these factors are alleviated by spatio-temporal
filtration procedures requiring, as a rule, use of extended vertical and
horizontal antennas and complex illuraination signals in combination
with consistent signal processing [1].

in this paper we consider a simple tomographic scheme which
uses an acoustic path between the spaced emitter and receiver. We
estimate the possibilities of using such a scheme to extract and
estimate signals scattered by oceanic inhomcegeneities against the
background of a fiuctuating direct iliumination field by exploiting
the properties of an interfrequency acoustic field correlation function
in a waveguide with random inhomogencities.

In [2], theory is developed to describe sound field characteristics
in the fluctuating ocean for a canonic ocean model and Harret—
Munk internal wave spectrum. Expressions are cbtained for the
interfrequency correlation in terms of diffraction parameter A and
inhomogeneity parameter ®. It is shown that the coherence band
depends on the variability scale of the structural phase function and
the space correlation interval of sound speed fluctuation. ™m the
ocean model adopted there, the “distance-frequency” plane is divided
into domains corresponding to various sound propagation modes on
account of internal wave scattering. In the domain cof nonsaturated
fluctuations, the signal is the sum of signals arriving along many
perturbed paths, and each signal satisfies the applicability conditions
of geometric approximation. For each perturbed path, the normalized
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coherence function can be writien as

($()- W (1) = exp | (%—’i) »,

where i and f, are frequencies of the emitted signals; Af = f; —
fa, | = ,L;Liz; U(Z,t, f) is the normalized complex amplitude of
the random field; @ is the inhomogeneity parameter of the medium,
which represents a root-mean-square signal phase fluctuation at the
reception point in geometric-optics approximation.

It is demonstrated that the coherence bandwidth of the signal
arriving at the reception point along one deterministic beam can be
calculated by the approximate expression

Afe = f(x26) (/L) [A®*Ine] 2)

where [, is the variation scale of the structural phase function, /.,
is the space correlation interval of sound speed fluctuation, and A
is a diffraction parameter describing the influence of sould speed
fluctuation on diffraction effects.

For beams which do not contact the ocean bottom and surface
and for typical dispersion of relative sound speed fluctuations (,uf)} =

2.5+ 1077 the estimates of Af, are about a few tens cf hertz if
distances are about a few tens of kilometers and [ is on the order of
a few hundreds of hertz.

Assume that against the background of the afore-mentioned
direct field fluctuations we must extract perturbations caused by
inhomogeneities of a different nature, for example, by a fish school, a
vortex or sitnilar irregularities which can be written approximately &s
a set of randomly arranged point scatterers. Then, using the known
expression for the normalized correlation function of the scattered
field p(Af), when the scatterers are randomly arranged over a circle

of diameter %, we find [3]
p(Af) = Jo(Af-T), (3)

where c is the speed of sound, and Jo(é - T') is a zereth-order Bessel
function.
For this model, the expression for the scaitered field coherence

band car be written as |

Afi < — (4)
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It follows from (4) that the interfrequency coherence band is a few
hertz when the scatterers region is as long as a few hundreds of meters.
Thus, for appropriate relationships between the parameters of the
problem, the interfrequency correlation intervals between fluctuations
caused by background inhomogeneities exceed considerably the
correlation intervals between the scattered field fluctuations caused
by inhomogeneities of a different nature, for example, by a scatterer
field. Therefore, by analysis of the behavior of the interfrequency
correlation function of the received signals, we can, in principle,
record the occurrence of a scatterer cloud on the emitter-receiver
path. Basically, the estimate of A fi makes it possible to evaluate
the spatial length of the scatterers cloud on the basis of expression
( 4): the smaller A f, the longer the scatterer domain on the emitter—
recerver path.

We now consider the factors influencing the possibility to record
other than background inhomogeneities on tke emitter-receiver path.
Let us analyze first a simple case in which a single acoustic beam
connects the emitter and the receiver and the beam passes through
a scatterer cloud leading to additional (with respect to background)
discorrelation of envelope signals at frequencies f; and f;. We shall
designate the interfrequency correlation factor of the envelopes at
frequencies f; and f; by ), in the presence and by 7,, in the absence
of a scatterer cloud. The nonzero value of ., is due to background
inhomogeneities on the emitter-receiver path.

Consider a shnple scheme of received signal processing, which is
based on the deduciion of the signal envelcpe at frequency f, from
the signal envelope at frequency f; and the subsequent analysis of
the difference. We finally arrive at

Sovtput = {05, +nyp —ap — Npl2, (5)

where ay, (1) and ay, () are the envelopes of the illumination sigrals,
and 1, (1) and ny,(t) are the additive noise envelopes a¢ frequencies
f1 and f,, respectively. The overbar means temporal averaging.

In the ideal case of a deterministic channel,
Soutput =nj, + "2},

under the assumption of complete correlation between envelopes

at frequencies f; and f;. In the other limiting case of complete
discorrelation duz to inhomogeneities, we have

Soutput = aj, +aj, +nf, +nf,.
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Thus, as a criterion of inhomogeneity occurrence on the
emitter—receiver path we can use the increase in dispersion of the
output processing effect due to disturbance of correlation between
illumination signal envelopes at frequencies f; and f5.

The factors impeding observation of inhomogeneities include,
firstly, the incomplete correlation between illumination signal
envelopes at the carrier frequencies due to background
inhomogeneities and, secondly, their incomplete discorrelation in the
presence of the observed inhomogeneities.

In this situation, the signal-to noise ratio at the output of the
signal processing scheme can be represented as

N 7
S/N E—— [aflkt) af2(t)]l — (6)
[Aflkt) + "fl(t) - af2(t> —1f (t)];[

The designation |...]; means that we consider the realization
when the observed scatterer cloud is on the emitter—receiver path, and
[...];1 means that we consider the time interval before the occurrence

of the inhomogeneity cloud.

: 7 2 _ 2 22— 2 o2
Assuming thai aj, = af, = o) and 0} = nj = o, the
expression (6) takes the form
2 /
() JR— 1 .
SIN = = (= 732) (7)

? (7'2 N :
(o2 !
nl+ 22l =7y

In the more general case of a multibeam channel, a situation
is possible where the beams which did and the beams which did
nct pass through the scatterer cloud cannot be received separately.
In this case, the signal at the receiver is the sum of perturbed and
unperturbed beame, and the beams which did not pass through the
perturbed area introduce additional noise. It can be easily seen that
the signal-to-noise ratio can be written as

oa(l = rigr

S/N = . ey T > (8)
oa |1+ Tf{(l - le)J”

where 03.. is the total dispersion of all the beam envelopes at the
reception point. In deriving (8), it was assumed for simplicity that
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the interfrequency correlation is the same and is equal to ’"Iz for all the
received beams. From expression (8), we can estimate the conditions
under which we can watch inhomogeneities along multibeam paths
by using interfrequency correlation laws for illumination signals.
The calculation (fig. 1) show typ1ca.l dependences of S/N on the

parameters of the problem (1: %-21 = 02 =10,7r"12=1; 2: ;’ =
7.

o2 o? ”
=i 107"12-—09 33— =0,1--% =10, r"2 = 0,95
ﬂ2

% =05 % =10, =09% 5%=05 % =10,

r'i2 =0,9). The analysis of (8) shows that the signal-to-noise ratio
increases with a decrease in 7},, the correlation of envelope signals
at frequencies f 1 and f;, which passed through the scatterer cloud,
an increase in r12, the interfrequency correlation of envelope signals
entering the receiver in the absence of the observed scatterer cloud,
and a decrease in the number of beams which arrive at the receiver
without transmission through the scatterer area.

. To . ' ensure SN
high efficiency of this method of T
watching oceanic inhomogeneities 1[]~\(‘
with use of acoustic paths, we 1
must have a model of a random
acoustic signal in the area of
interest and a description of the
inh e . 57\(2
inhomogeneities to be observed in ™
terms of interfrequency correlation

functions. A combination of -
all this will make it possible to 3
determine the optimal parameters 0 T '

r
of the acoustic path, including 0.5 1 12

the distance between the emitter
and the receiver, the depth of
their submergence, the radiated
frequency, and the directivity
characteristics.

Fig. 1. Typical dependences
of S/N on the parameters of the

problem.
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PROPAGATION OF LOW-FREQUENCY SOUND IN A
HYDROACOUSTIC WAVEGUIDE WITH SURFACE
COVERED BY A NON-CONTINUOUS ICE LAYER

S. M. Grudskii, A.l1. Khilko , S.5. Mikhalkovich

The present paper is devoted to the problem of sound propagation
in a stratified waveguide which is a non-homogeneous liquid layer
overlaying multi-layered liquid-clastic bottom. The surface of
waveguide is covered by thin (in comparison with length of an acsoutic
wave) homogeneous ice layer with polynia of finite width.

Influence of the polynia to characteristics of an acoustic field is
investigated. The main asymptotic terms of elements of reflection
and transmission matrices by a small parameter ¢ are obtained,
where ¢ characterises thickness of ice. These formulas are uniform on
parameter L, where L specifies polynia width. The similar formulas
for a finite width ice-floe laying on a liquid layer are given. In this
case influence of attenuation in the ice on the diagonal members of
the transmission matrix is analysed. We note that the used approach
can be generalized to a case of a finite number of ice-floes.

INTRODUCTION

The study of sound propagation in the world ocean regions covered
by ice during an essential part cf a year i1s an urgent problem. Its
meaning increases in connection with the plans of realizing a wide-
scale hydroacoustic experiments in the region of Arctic ocean with the
purpose to research the global rise in temperature on the glohe. Note
that if we take into account all real properties of ice (the botlom
edge indenting, nonhomogeneities on a route, presence of a snow
cover. icebergs and etc.) the problem of sound propagation is very
complicated and its complete solution is apparently impossible at
present.

In this paper we investigate an influence of polynia in an
ice surface to a hydroacoustic field peculiarities.  The similar
analysis' is also made in a case of a finite width ice-floe
laying on a water surface. In this case ice is simulated
by a homogeneous elastic layer of constant thickness (acoustic
characteristics of this layer are described in details in [1], for
example).  The stratified hydroacoustic waveguide is supposed
to be two-dimensional and consists of a rnon-homogeneous
liquid laver laying on multi-layered liquid-elastic bottom (see
figure 1).
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Fig. 1. Model of the waveguide.

Despite comparative simplicity of this model the authors consider
that its research allows to describe peculiarities of an acoustic field
structure in a case of low frequency sound, when wave length A > h.
where h is a thickness of an underwater part of ice.

For the problem soluticn a Wiener-Hopf method [2]-[4] is applied.
To this end the ice layer is replaced by equivalent (see section 1) in
some sense condition on a surface z = 0 (surface of thawing ice). This
condition looks like the equation of convolution

ple,0)+ 5= [ Fla-3)2(5,0[ds =0, z€R,
R\(O,a) (1)
o(z,0) =0, z € (0,qa),

where p(z,z) is a complex amplitude of sound pressure and F(z) is
a {unction taking into account acoustic parameters of ice. The ice
in this case is "defreezed“ in the sense that the original waveguide is
replaced by a waveguide completely filled by a liquid at z € (0, H).

Problem with a condition (1) can be easily reduced to the equation
of convolution on a finite interval ([3] [4]) or, in Fourier images, to
so-called ([1], ch.5) modified Wiener-Hopf equation.

To solve this equation we use a method of matrix Riemann
boundary problem ([4] - [7]). It allows to construct asymptotic
formulas to solve a problem of surging on edge 2 = 0 mode and to
obtain effective formulas for elements of reflection and transmission
matrices. These asymptotic formulas are uniform on parameter a.
So, the results of the present paper are applicable in a case of a great
distance between ice fields (hundred and thousand kilometers).

In the first section of paper we explain how to proceed to a
condition (1) on "equivalent® surface of thawing ice z = 0. The same
approach and its asymptotical aspects on h — 0 were dcveloped in [8]
in the case of a solid ice layer. 220



In the second section we solve a surging mode problem by
reduction to the modified Wiener-Hopf equation, then we built
asymptotic on h — 0 solution and explain its uniformity on
parameter a.

In the third section we present qualitative and numerical research
of the obtained formulas. In conclusion we mark that the given
technique is suitable for a case of finite number of ice-floes and ice-
holes on a surface. Certainly, the offered technique allows to analyse
a field of a point monochromatic source and also to consider more
complicated sources.

1. THE REPLACEMENT OF AN ELASTIC LAYER,
SIMULATING ICE, BY EQUIVALENT CONDITION ON A
SURFACE OF "DEFREEZED“ ICE

Consider a problem of waveguide covered by a solid homogeneous
ice layer with thickness d. Suppose that the water layer has constant
density go and ice layer has constant density gice. Choose an origin
of 2z coordinate at a level of "defreezed® ice, so that low edge of ice
will be at level z = h, where h = szd, and upper one will be at level
z=h—d.

Let p(z,z) be a complex amplitude of sound pressure in a water
layer z € (h, H). Then the process of sound propagation at z € (h, H)
is described, as well known ({9]), by Helmholtz equation

32 32
371;’(1, )+ Ez—f(x, 2) + k¥ (2)p(z,2) =0, z€(hH), (2
where ko = w/cy is a wave number, ¢y is a certain typical value of
sound velocity, w = 27 f is the cyclic frequency, f is the frequency in
hertzes, n(z) = co/c(z) is the index of refraction of the water layer,
¢(z) iz the profile of the sound velocity.

In the elastic layer 2 € (h—d, h) propagation of sound is described
by classical system of Lame equations. We will not write out these
equations and say about conditions on interface between the elastic
layer and liquid (see, for example, [9], [10]). Further note that using
the Fourier transformation (in dimensionless form)

[e.9)
W)= [ ple,)explikons)ds, weR, (3)
and taking into account the interface conditions we can replace the
elastic layer by an equivalent ([9]) impedance condition on the lower
surface of ice z = h:

\Il(p,h)+%2-ﬂ~%£—
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where the function f(u) is given below ({8]):

sin(kond) sin(ko(d) 1—cos{kond) cos(ko(d)
Gice 47 ¢ T 2 %+ (?

2 ng (p cos(kond)‘u—zi" kc"(d + d cos(kn(d) sin{kynd) I:,U"d)) ,

fw) = - (5)

where

PEalod (C=ni-ul p= (-l

a=16u*n?C? +p?,  b=4u’p(n* +(?), d=4p7n?

n=8, np=
¢y, g are velocities of longitudinal and transversal sound waves in ice.

Our goal is by "defreezing” ice and by replacing it at z € (0, ) by

a homogeneous water layer with density gy and sound velocity cg to
pick up function fo(u) so that an impedance condition at a level of
thawing ice z = 0, equivalent to a condition (4), will look like

folw) ) 8_‘1’
ko az
Note for this purpose that p(z, z) in a formed layer of water z € (0, h)
satisfies the equation
8’p 8%p

a—xf(ﬂf,z) + 6—2—2(37,2) + k3p(z,2) = 0.
By acting on this equation the Fourier transformation (3) we have

5%y

) + B (1 - ) 2) =0, 2 € (0,h).

¥(p, 0) + (H’O) =0. (6)

The general solution of the above second order differential
equation has a form

U(p, <) = A(p) sin(y(p)koz) + B(p) cos(v(p)koz), z € (0,h),

where A(y), B(u) are coefficients dependent on p, y(u) = /1 — u2.
From (4) and (6) we have:

o ¥(w0) 1 tglkoy(m)h) + fp)y(k)
Jolw) = ko%(u,o)— @ Fngtamn -1

Let € = koh be a parameter characterizing thickness of ice. Simple
asymptotic analysis gives the formulas

f(u) = —¢ + L(p)e® + O(e), }

folw) = € (35 + Liw)) + O(%),
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where
2
apt (1= 3) (62 = nd) & nfi(n - 203) + nind
L(p) = - 2 : (9)

3(2) nd + 420} - n3)]

(S

Note also that as far as the functions f and f; are odd on
parameter ¢, the expansion in the formulas (8) is conducted by odd
€ powers.

Acting on (6) by the inverse Fourier transformation and taking
into account that product in this case transforms into a convolution,
we obtain:

p(z,0) +

/R F()(x—.s)@(s,O)ds:O, r €R, (10)

2mkg Oz

where the function Fy(z) is the inverce Fourier transformation of
function fo(u).

Thus, the condition (10) is equivalently replaces a layer of
homogeneous ice in the sense that the solution of an original problem
with an elastic laver and solution of a problem with a condition (10)
coincide at z > h.

Now return to a problem with polynia (figure 1). Let by analogy
with (6) the following condition is realized:

folw) oMo

HO(IL’O) + ICO (92'

(1, 0) =0, (11)

where My(p,z) = (fi)oo—kf:oo) (p(z, z) exp(tkguz)dz). Acting on (11)
by the reverse Fourier transformation and taking into account that
product transforms into a convolution, we obtain:

g—?_ .[R o (g, O)e'ikomt dp+
+3= [Ry0,0) Folz = 5)3(5,0)ds = 0, z€R,

Taking into account the condition on a free surface
p(z,0)=0, =ze€(0,a), (13)

one can obtain from (12) the equality

1 Op
0 Fo(zx —8)=—(s5,0)ds =0 R
P 0+ 5 o, Rz =905 =0, s,
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which, according to (13), decomposes on two equalities

p(z,0) +

1 .
kg /R\( Fo(z - s) (s 0)ds =0, zeR\(0,a), (14)

dp
Fo(z — 5)+(5,0)ds =0, =z€(0,a). (15)
/R\(o a) 9z

In contrast to a problem without polynia the problem with
conditions (13)-(15) is equivalent to the original problem with polynia
only in asymptotic sense (at ¢ — 0). In the present work we are not
stopped on a rigorous proof of this statement.

2. THE PROBLEM OF SURGING MODE

Consider a problem of sound propagation in stratified waveguide
with conditions (13)-(15) at a level 2 = 0. The liquid layer z € (0, H)
is supposed to be stratified and nonhomogeneous so that the complex
amplitude of sound pressure p(z, z) at z € (0, []) satisfies the equation

azp 8213
3oz (&) + gg(,2) + kgn’(2)p(x,z) = 0, (16)

where n(z) =1 at z € (0,h). Sound pressure p(z, z) satisfies at a level
z = 0 the conditions (13)-(15) and at a level z = H the standard
impedance condition, caused by set of a liquid and elastic layers in
bottom. In Fourier images this condition has a form

%\g(u, H) + koq(p)¥(u, H) = 0. (17)

After the Fourier transformation (3) the Helmholtz equation takes on
a form

a?q, 2/ 2 2
*&7(#,2)4"100(" (z) ~ p*)¥(p,2) = 0. (18)
We shall consider two spectral problems:
(18),
(17, (19)
¥(p,0) =0,
and
(18),
(17), (20)

\Il(ﬂvo) + Ilk%l : %"(/‘)0) =
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and denote as (k3p2,¢,(z)) and (k3p?,, ¢,(z)) eigenvalues and
eigenfunctions of the problems (19) and (20) respectively. Suppose
also that eigenfunctions ¢,(z) and ¢,.(2) satisfy the conditions

fo les(2)2dz = 1 and i lp e(2)]? dz = 1.
Let n > 0 modes be guided in waveguides without and with ice.
Let also the j—th mode (j < n) over-runs on an edge z = 0:
pie(x, 2) = @je(2) exp(ikop;je ).

Denote the perturbated field by ¢(z,2) , so that

p(z,2) = p(,2) + ¢je(2, 2).

For selection the physically correct solution we shall require that
p(z, z) satisfied to a principle of limiting absorption.

We shall denote through ®(u,z) the dimensionless Fourier
transformation of function ¢(z, z):

“+o00 a .
Gy, z) = / ple. 2)e*orodr = ®o(p, 2) +/ p(x, z)e*ordr,

— 00 0

Dolp, 2) = (/_‘;o +/a+m> (p(x, z) exp(ikopr)dx).

Taking into account that o(z, z) = p(z, z) ~ p; (2, z) and conditions
(14), (15), one can obtain:

where

@(2,0) = —@; (0)e*esse?, z € (0,a);

o0+ g [ Fole 53,00

= ~(pse(ptorrr + 22

X / Fo(z — s)e*Foriesds), zeR\(0,a);
R\(0,0) B
T7Es JRoo.e Fo(z — s)—(s,O)ds =
= LPQJ;kOS ,/R\(u . (2 — s)ethorsesgs, z € (0,a).
Acting by the Fourier transformation to each equality, we have

@a(31,0) + 2D 220 (40) = 3, (O)F gy o () 5+
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( )

¢ (0)
fO(M)

K F (xR 0.0y @)047)] =

=~ |©;,(0) + 3',:(0)] [F(eForre™ — F(x(0,0)(z)e oHr<7)],
where x5 is a characteristic function of set A, F(y) is a Fourier
transformation of function ¢.

Taking into account that the the eigenfunction of a problem (20)
satisfies the equality

10+ 2 1 g) =,
we have 05
4’0( O)+ fo(#) azo(#,o) _
0
= 20— g - 00+ s ) ~ o0
where

exp(iL{p + pje)) = 1
iko(p + pje)
L = ka, and é(u) is the Dirac delta-function.
As far as fo(—pje) = fo(pj ) = 0, we have
[Fo(u) = folmj,e)16(p + pj,e) = 0.

Thus, we finally obtain:

Glu) =

Qo(p,

”b"z—(u) 0) -

fo(:) _aq)O 9‘91 (0 )[fo( ) = foluj.e)lg(p). (21)

Let W¥(u,z) be throughout below in a paper the function
satisfying only the conditions (18), (17), and also to the condition

fOH [¥(p, 2)|2dz = 1. Then @(u, z) has a form

®(u, z) = A(p)¥(u, z) (22)

with some unknown function A(u). Differentiating this equality with
respect to z and assuming z = 0, we have:

AG¥(1,0) = (1 0) = 20(0,0)+ "oz, 0) explikouz)dz,  (23)
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Alp )8\11(8/: 0)

( 0) = 8¢>0( 0)+/ 5y (z,0) exp(ikopz)dz. (24)
Excluding from (23)-(24) A(g), we shall obtain
(I)O(/‘l': 0) -

pjc(z,0) exp(ikopzr)dz
0
_ (. 0)

{8@0
22(u,0) | 0z

(25)
)+/ B (z O)exp(zkopx)dx]
where

a a
/ w;e(z,0 thous gy — 9oj,€(0)/ eRolu=tye)s Jp — wie(0)g(p)
0 0

Define the following notation
X;L(/l)

X~ (p)

= a“’ (:c 0)e'Fordz + o) (0)g(n);
/ (9 (z O)e'k“‘”dm

eFEX () = / 6—f(x 0)etkorsdy.
follows:

l'aking into account a condition (21), rewrite the equation (25) as

\Il(él 00)) 4 fok(:)) "

(Xt (8) = 0}, (0)g(m))

= —p;(0}9(1) + &5 ¢ (0)
]s(())fn #) g(p) =

fu I
= =95 (0) 77— (o)
r, after transformations

fO(ﬂJ c) 9(e)

(X~ (1) + exp(iLp) X * (1)) (
3 (n,0)

82 (u,0)

fo(u)— folwje) o(u) =

exp(iLp) X ¥ (u) + X~ (1) + G(p)

X2 = =22 CG, o)
where (,0)
G(p) = a : (27)
folu) 0¥
Pl A
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Thus, the originalal acoustic problem is reduced to the modified
Wiener-Hopf equation (26)—(27). This problem has the symbol G(p)
with zeroes and poles on a real axis (more precisely, near a real axis,
because of the principle of limiting absorption). Really, the definition
of ps, ps e and ¥(y, z) gives us

{ W(u,,0) = 0;

( 35,0)_{_ fO(/ls e) oy (28)

'(.3_2(“3,8’0) = 0’

where the first equality (28) represents the dispersion equation of a
problem (19), and the second one - of a problem (20). Note also that
as far as fo(u) = O(e%), we have g, ~ i, = O(¢2).

Reduce a problem (26)-(27) to a problem with a symbol without
singularities on a real axis. To this end represent G(u) in the form

G() = I(p)(1 + € Ke (p)), (29)

n
p? =l
L(p) =
H N
and the function K.(z) has not nelther zero nor poles on a real axis.
Defining the notation
fip(p) = exp(iL(p + pje)) — 1;
exp(:Lp) —exp(2Lug
fe(p po) = GLe) ( “);

where

B o
-1
ai’ = Res (M) ,
p + “j'e p=tp,
one can see that
I~ (p) z ( >
o+ Hj.e s=1 H— s ﬂ' + Hs
and
fi,
G(/J) - ] L(/i)

tho(p + pj.e)

Multiplying (26) on I~!(y) and taking into account the last
equality, we shall obtain

e PEXH ()T () + X~ (I () + (14 AR (1) XL () =

30] 5(0) Qg A_s (30)
Zf(ﬂ]t)f] ( )[Z<l‘ ﬂs+#+#s>]
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Let C; (k) be the right part of (30) and a4, . be the expression
P, 5(0)

zfO(F‘J e)

form:

. Coeflicient C; 1(¢) may be represented in the following

]L }1) Eas fJ,L(/"') f] 'us +§: ssf;l‘ ZS)+
s=1 s=1 s

’L(F‘+ﬂs -1 n eiLl‘J.e — ei[/l‘s
iL

———— ety e

pt ps

s=1

+Za s e T

Transfer second and fourth terms to the left part (30) and
introduce new unknown functions:

B+ s

\MMED SIMIISMEDY p f’“a -
- (“—s,sf‘.L(s—_:ts) — ) exp(iLus)
- 2::1 Ea— s ’ (31)

7 (u) = X~ (W (u)-
_ & - i s fj L(fts) — Ts explilp,)
\ 3=1/1+,U's s=1 K~ Hs

bl

where unknown constants z., depend on ¢ and are chosen so that
the functions ®*(u) have no poles in points y = +p,. In the terms of
functions ®*(p), &~ (p) the equation (30) will be written as:

xp(iLu)®+ (p) + (u)+(1+€31\ (W)X () =
= Z cettiie —2) fr(p, ps) + X_jl(a_s,e + oy )etlt fr(p, —ps)
i i (32)
In contrast to the equation (26), the obtained modified Wiener-
Hopf equation has a symbol, not containing zeros and poles on a

real axis. Solving it, applying the reverse Fourier transformation to
®(p, z) and taking into account (22), we have:

o(z,z) = % /—oo A(p)¥(p, z) exp(—ikouz)dp.

From (23) and (26) we shall find A(u):

3 (fo(p)/ ko)X +L(l‘)
W(p,0) + (folw)/ ko) 5% (1,0)
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Let ©(x) be a denominator of the fraction above, so we have:

oz, 2) = / fo() X5, 0 () ¥(p, 2)

exp(—ikopa)dp. (33)

O (k)
Using a standard technique [9], deform an integration contour into
a complex plane. Taking into account residues in points p = —p,  and

the fact that ¥(p,.,z) = ¢,(2), neglecting the integrals decreasing
at |z|] — oo, we shall obtain the following representation of a field
outside of an interval (0,a) as a sum of guided normal modes:

n )
i Z IO(”‘(:;)(IE‘;L‘(”‘ ‘)Soj,s(z)e_lkolx"tr: r< 0’
o s L (30
Z o(— u-z S L(—ts,c ,E(z)e”“°"'-‘x,x>a.

u#se

Similarly one can obtain the representation of a field at « € (0,q).
Note that the given method allows also to obtain formulas for integral
terms (lateral waves).

Let
_ Jifolse )Xt (=1}
Aur = { OuThi,e) 0 }1,] . (35)
A _{ifo(—#:,t)xj,L(#l,e)}
re = AT R P

be the transmission and reflection matrices accordingly, where §;; is
the Kronecker symbol.

Below we shall find the asymptotics of coefficients of matrices A,
and A,.; at ¢ — 0. For this purpose we need a number of auxiliary
asymptotic formulas.

a) An asymptotics of p, ..

Taking into account (8), (28), one can easy to obtain an
asymptotics of pu, .:

3 4 5 6 7
Mse = s+ €156 + Co 56" + €356 + ca 0 +O0(g7), (36)
where
( ¢ _ _L1!#:2 . ‘I'z 1,0 .
ls = ko "I’p l‘uo)’
Cys = 0;

L? ] 'I’: ,,0 .
{ €35 =~ ’“f:: 3 ﬁ.,o ; . (37)
1,8 1,s
o = — i\p 0y
4, y \Ilp(/lg,o) /‘#E‘/‘L ) 9
L “L&"’lq’z(l—‘s,o) + _lk(g_‘lq’zu(lis;o)] s
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Li(p) and Ls(p) are the coefficients of asymptotics
Fo(p) = Li(p)e® + La(p)e® + O(e),
taking place in accord with (8) and oddity of f, on ¢.
b) An asymptotics of ay,.
By definition a4+, = Res <w) , and from (36) one can

Bt bie) ly=tp,
deduce the following asymptotic formulas:

aj=1+ (% -2 %) €3 + 0(c%);

=1,3#j
1 (38)
a;:—m_l’_; +O(65) 1<i<n
a_; = — ;:"y +0(e®); l#j 1<i<n.

¢) An asymptotics of z4,.
Let ®*(u) and ®%,(u) be plus and minus components of the
solution of (32) with the right part fr(u, u,) and exp(iLu,)fr(p, —ps)

accordingly, and ®¥ () be plus and minus components of the solution
of (32) with the right part

n n
Z as,seiLuJ"fL(,uuu'S) + Za—s,felll#’ fL(/‘) _aus)'
s=1

s=1

From (31) one can obtain formulas for X*(u) and X~ (u):

X*(p) = H(,u) - E m’¢+(ﬂ) + le—sq>f,(p)+ &t (u)+

- #: s:l wtps

(39)
X‘(n)=ﬂ(u) —ZMI) (1) +ch s (1) + g (u)+

$=

n ﬂ 1L
T [} r.’l,L(l‘l)—zse he
+ s§1 st Z B—ps ] :

\

Taking into account that these functions can’t have poles in
points p; . and —p; . accordingly, we shall obtain the system of linear
equations of 2n x 2n order for the determination of the numbers z,
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and z_,:

4

321 s (_m e— s q>+(/‘”€)) + Z T (%%:—f'ﬁ—:l - Qf,(m,s)) =

= &F (m.e) + z a_,.fuel ;'3:;:('“-)- 1<i<n;

szzjlx ( %‘%’{%’2 + 2 (-m, s)) + 3z=:1 s (#r.el—u. - (D:s("ﬁ‘l,s)) =
| =oiomo - Dt 1sicn

(40)
In [5]-[7] in a case of symbol G(x) growing at infinity the uniform
on L asymptotic estimates were obtained for the soluion of a problem
(32):
[@%,(p)| < c-e3nel.

In the present work the function G(n), defined by (27), is bounded
at u — oo. Therefore it is possible to show that

£ M<e e

I<I>i,(im, N<e e, (41)
@5 (2p,e)l < e - €2,

where the constant ¢ does not depend on L.

From (41) and (36) one can obtain that the system (40) has a

prevailling main diagonal. Therefore an asymptotics of its solution
looks like:

ifo(kje) Wt py (42)

Xi = oy 1210 exp(ilisc) = explilyy) +0(%),
X_1 = 0(65).

d) An asymptotics of ¢; .(0).

. . L1} (#. 0)61 .53
AEO =¥ ',OC ,63[1+@i€2+£‘_&163+ psulbk]H g +O€7
©;,6(0) u(pj,0)er 5 c1 oy U, (4;,0) 2 ()
(43)

e) An asymptotics of ©,(y;s).

Oulise) = Wl 0) (1 + (1 32D ) ) oy o). )
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Pass now directly to the solving of (32). Let H, r(u) be the right

part of (32). Formally applying a perturbation method and taking
into account that H; p(g) is the Fourier transformation of function
with support on [0, a], we have:

{ XL (n) = Hya(n) + O(2);

5
&+ (), &~ (1) = O(e%). 42

However, the equalities (45) are not uniform on L because the
function Hj () at L — oo tends to infinity in points p = p+;.
Now consider an auxiliary problem:

el @t () + (14 e Ke () XF (1) + (1) = fr(u, o),  po € R. (46)

To achieve uniformity of the main asymptotic term of the solution
(46) on L > 1, we shall find it as follows:

() =0, Xio(w) = defLlp, po)-

Then we have the following problem for a difference of asymptotic
and exact solutions:

exp(iLp)(®+ (1) — &7 )(1) + (27 (1) = B5 (1) + (1 + > Ke(p)) x
x(XF (1) = XFo(w) = frlp po)l(1+ € Ke(p))de — 1] (47)

Choose d. so that the expression in square brackets in the right
part of the equation above vanished at g = puq:
_ 1
T 143K (o)’
Taking into account the boundness of K, (u), one can easily show that
in this case the norm of the right part of (47) is bounded in L.(R) by
¢ - €3, where the constant ¢ > 0 is independent from L and .

Thus, the principal asymptotic term of the solution component
X;L looks like

€

X]?‘,-L(/’I') =~ Z dse(as,e exp(ilpje) — z5) fr(p, ps) +

s=1

+) doge(amse +2oy)exp(ilps ) fr(m, —ps) (48)

s=1

where dy,, = 1/(1 +£°K.(p,)) (note that d_, . = d, ) and asymptotic
formulas (48) are uniform on L > 1.
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f) An asymptotics of d; ..
It is obvious that d,  ~ 1, s = 1,...,n. The coefficient d; . requires
more exact representation.

dje = (1+Ke(py))™! = (M (W)Gw) 2, 0

n

Ge=1+e |2 50 Sl 0L L oEt). (49)
Ny N el I R

Find an asymptotics of X}/ (—u;.):

X;:L(_If-j,s) ~ Z ds,s (as,e eXP(iLﬂ'j,e) - xs)fL(_le,E ! /“S)+

s=1

+ Z ds,e(a—s,e + m—a) exp(iLl-‘s )fL(_ﬂj,s , —ﬂs)

s=1

) Taking into account (37), (38), (39), (42), (43) and (49), we shall
obtain

Xfi(—njc) = dj, ea—j cexp(ily; ) fr(—pje, —pj) =

Crsbs  Caj Cij
~ 14682 - =~ 1 | X
( Z pi—p? ey 2#;})

s=1,8#j
n
Ci,j Cl,sihs
x |1+ | 2L -2 St TLaClN B N
2 ,ZIZ,;# pi — p?
©j.e(0) . exp(—iLpj ) — exp(—iLy;
~ W, (1s,0) [1_ Ca,j 3 4 \I’#u(ﬂmo) CIJE ][eiL(uj—uj,.) —1]
ifO(/‘j,s) C1,5 (ﬂ]ao) 2 '

Taking into account (44), find now the asymptotics of [4,]); ;:

ifo(l‘j.e)XIL (—Hj.e)

+ 1=
@u(ﬂj,E)

[Asr);; =

~ fo(pje) W, (4;,0) [1—}- ““(“ b) &‘%L__ ﬂgs]

C1,5
folkiie) w,(,0) [1 4+ Tﬁ%‘f"y T
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x[exp(iLl{pj ~ pje)) — 1] + 1 = exp(iL(p; — pj,e))-
Thus, we have:
[Atr)s,; = exp(iL(pj — pj¢)) + o(€®). (50)

The main terms of asymptotics of [A.];1, | # j, and [A,.;];; have
been obtained similarly:

U (1,0)  La(u)eitme o .
[A"]f"“”€3kowi(;tz 2))' l(zj)—u; e —ettm] 15 (51)

[Areslii =~ —€

3 ¥(p,0)  Li(w) [ttt 1] (52)

koW (1, 0)  p + p

Note that the formulas (50) — (52) are uniform on parameter L >
1. Pay attention also to the fact that the term of €3 order is absent
in (50) (as far as in the case of a constant impedance fo(u) = const of
works [5J - [7]). The exact analysis based on the formulas (41) shows
that in (50) o(e®) = O(e®).

Remark 0.1 The problem with ice-floe of finite width a laying on a water
surface can be solved in the same way. Making the similar calculations, it
is easy to obtain that in the final formulas for coefficients of transmission

and reflection mairices p; and p; . changes places. So, for diagonal terms
of a transmission matriz we have

[Air)jj = exp(iL(pje — pj)) + o(e®). (53)

Remark 0.2 If the system of several polynias with widths a;,...,ans (M >
1} is considered, the transmission and reflection malrices for the whole
system are obviously the same as the product of transmission and reflection
matrices of each polynia separately. Hence, the diagonal elements of a
(ransmission matriz for system with m polynias looks like:

s=1

[AS™);.5 ~ exp (iko > sy - ﬂj,e)) : (54)

m
Apparently the given formula is uniform on m and L = ko ) a, that
s=1
makes its altractive for use in a considered problem.

The similar formula takes place for system of m ice-floes.
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3. THE ANALYSIS OF COEFFICIENTS OF TRANSMISSION
AND REFLECTION MATRICES

As follows from (50), the elements of reflection matrix and also
non-diagonal elements of transmission matrix have the order O(e3).
The diagonal elements of [A;]; ; have the order O(1) and

JTHse
~ _ : _ m(2s-1 3
[A:r]j,j ~ -1 if ‘L h}[‘&' <K l,SGAN.

Thus, in the first case (particularly at Le® < 1) the influence of the
polynia to a transmitted field is negligible, in second one (particularly
at L= n/|p; — p.l) it is maximal.

To obtain quantitative estimates we spent the numerical research

of relation between the first ”critical® size of the polynia o] =
m, when [4,,];; ~ -1, from frequency and thickness of ice (here

A is a wave length). Model of "liquid homogeneous layer on liquid
homogeneous half-space“ with parameters H = 200 m, ¢;;4 = 1500 mps,
0 = 1 g/sm3, opor = 1.4 g/em®, chor = 2000 mps, ¢; = 3500 mps,
¢y = 1800 mps, gice = 0.9 g/em?® was considered. The calculations were
realised by means of the program developed by authors of [8] for the
solution of dispersial equation of stratified model mentioned above.

The results of calculations at thickness of ice d = 10 m are
illustrated on fig. 2.

{[A,,]j,jm if |L—%—r\sa<<1,seN; 5

al, km
105 ' T T ] T 1 1 1 )

10% | -
108 F 1

r .
i \
L a2.
;
L S
1

100 F

Fig.2. Dependence of the first polynia "critical“ size from frequency for
various modes.
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The calculations show that in the shallow sea (H = 200 m) the

first "critical“ length of the polynia o} is great (at frequency 40 Hz it
equals ~ 15— 200 kms depending on mode number) and with increase

of number j of surging mode af is decreased.

4. INFLUENCE OF ABSORPTION IN ICE ON AN ACOUSTIC
FIELD

The following group of calculations is devoted to investigation the
influence of absorption in ice on attenuation of an acoustic field. The
absorption in ice is taken into account as the small image additives
i6; and i, to n; and n, accordingly (6; > 0, 8, > 0). For quantitative
estimates the waveguide with the parameters same as in the previous
section was chosen, with point monochromatic source located on
depth 100 m. As a measure of attenuation of sound pressure on
distance R from a source we consider the difference of average values
of fields (taken in Db) without the polynia (ps,) and with it (p22'),
averaged by the rectangle 0 < z < H,R—-r<z < R-+r (r~2-5km,
R > a).

In )calculation shown on fig. 3 the length of polynia varies from
1000 up to 5000 km; the frequency f of a point source equals 11
Hz (two-moded waveguide), thickness of ice d = 10 m and distance
R = 5100 km. The specific position of the polynia between a source
and receiver does not play a role. Here one can see a few calculations
with various §; and 6. satisfying the equality 62 + 62 = 0.05%.

Pav — pgfl, Db
0F T T T T T T T

-10

-20

-30

-40

-50

1 1 —t L i 4

-60 :
1000 1500 2000 2500 3000 3500 4000 4500 5000a, km

Fig.3. Dependence of field attenuation from ice-floe length.
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In calculation shown on fig.4 frequency varies; thickness of ice
d = 10 m, distance R = 1100 km; coeflitients of absorption 6, = 0.02,
by = 0.046 satisfy the equality 67 + 63 = 0.05° and the attenuation
is maximum (bottom diagram). For comparison similar calculation
(top diagram) at absence of absorption in ice (§; = §; = 0) is given.

Pav = Pov', Db
0f" K

/]
-10F
0t
-30f
-40 [
.50 F
-60 F

Ry " N A . s L
0 H 10 15 20 25 30 35 40 /.Hs

T T T T T ]

Fig. 4. Dependence of attenuation of a field from frequency.

pur — p2¥. Db

0 v T T Y T 7 T v
-2

4}

8

8}

10

a2t

-14 1

.16..

BT S Y

0 2 4 6 8 10 12 14 16 18 Wiw
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Here the conversion from one-mode to two-mode waveguide (f ~
8.5 Hz) is clearly seen. After this convertion both curves begin to
oscillate with amplitude ~ 3 — 8 Db, and the bottom curve decreases
with an average gradient ~ 2 Dbon 1 Hz.
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At last, in calculations shown on figures 5 and 6. thickness of
ice varies; the other parameters are the following: R = 1100 km,
f = 11 H: (two-mode waveguide), &, = 0. The calculations differ
only by value of é,.

As we can see from the diagrams, difference of fields with and
without polinia decreases with growth of ice thickness and absorption
in ice. The increase of ice thickness also causes the oscillations on
the diagrams with amplitude ~ 4 — 8 Db, which become the more
imperceptible, the greater is absorption in an ice layer.

This study was supported by RFFI, Grant N 95-01-01285a.
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DIFFRACTION OF ACOUSTIC WAVES BY
SPATIALLY-LOCALIZED INHOMOGENEITIES IN
HORIZONTALLY-INHOMOGENEOUS SHALLOW

WATER OCEANIC WAVEGUIDES

A.l Belov and A.I. Khil’ko
INTRODUCTION

Various kinds of spatially-localized and randomly distributed
inhomogeneities situated in shallow water oceanic waveguides can be
interesting as the objects for acoustical tomography reconstruction

1,2].

[ \]/ery often the direct illuminating signal mask in essential degree
the acoustical signal diffracted by inhomogeneities basically at small
angles [3-5]. [Efficiency of scattering signal resolutivon can be
associated with both the features of forming of multi mode acoustical
field in complex structure shallow water waveguide {5-7] and the
coherence of diffracted acoustical signals [8,9]. In particular, in a
number of papers [1-4,10,11] the possibilities of filtering by means of
mode shadow zones (formed by the use both the vertically distributed
receiving and radiated array and pulse signals) were considered. In
[2,5,12] the opportunities of use of natural mode shadow zones for
measuring of diffracted acoustical signals were mentioned, where the
observation region can be located in shadow zone in relation to direct
illuminating acoustical field. It was supposed in this case, that
inhomogeneities cause of the illumination of natural shadow zones.
The possibilities of an additive elimination of direct illuminating field
were analyzed [5,13] in the scheme, where the diffracted field was
measured in mode shadow zones which were formed in shelf regions of
shallow water waveguides. In this case, it is possible to speak about
"megaphone” effect. A combination of the "megaphone” structure
of a waveguide bottom profile and the characteristic sound velocity
profile in the shallow sea form the depth-dependent distribution of
intensity of illuminating acoustical field. The shadow zones arize
under the surface or near the bottom, if the acoustical source is
located in shallow area of shelf [5]. Researches of opportunities for
diffracted acoustical fields measurements can be associated with the
availability of megaphone’s effect for tomographical reconstruction of
the inhomogeneities characteristics, located in narrow oceanic straits,
where the tomographical monitoring, for example, "of hydrophysical
weather” can be especially urgent. In this connection, there is the
requirement in more detailed research of features of diffraction of
acoustical waves in shallow water oceanic waveguides with significant
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Fig. 1. Geometry of problem and structure of shallow water waveguide (29 =
10 m) (a) and sound speed profile (b).

horizontal variability of depth. Such investigation can be useful for
estimation of the formed shadow zone depths, as well as of the degree
of theirs illumination by diffracted signals for various waveguide
parameters, location of scatterers and observation regions.

According to this, the purpose of the present research is the study
of structure of natural shadow zones, in particular, the efficiency of
illumination of such zones, formed in shallow water waveguides with
megaphone form, due to diffraction of acoustical waves by spatially-
localized inhomogeneities taking into account the optimization of
measuring scheme for tomographical monitoring in shallow water
straits.

1. MEGAPHONE ILLUMINATION IN SHELF ZONE OF
SHALLOW WATER WAVEGUIDE

As it is known [13], in relatively deep-water parts of shelf regions
the localized by depth field is formed, if a source is situated in
shallow water region (fig. 1). Physically, the structure of the bottom
reminds the megaphone. Combination with refractive hydroacoustic
waveguides can cause the localization of the acoustical field with
depth. In shallow water regions the under - surface or near -
bottom waveguides are observed very often (fig. 1) with the structure
depending on seasonal conditions. As measurements show, because
of an influence of seasonal conditions an acoustic field can be much
more weak at under surface or near bottom parts of the waveguide.

Let us estimate the depth of these shadow zones and also other
features of illumination field structure for the case, when the shelf
bottom structure is simulated by the law, shown on fig. la, and
for typical under - surface or nearz-lbottom waveguide dependencies
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of a sound velocity vs depth (fig. 1b). We shall consider bottom
consisting from absorbing liquid layer of deposits and elastic half-
space with absorption.

We shall formulate the problem of field calculation for submitted
above model of shallow water waveguide non-uniform in horizontal
domain as follows: the water layer by thickness ho(z), where
r = {z,y=0}, z - the waveguide depth, ¢(z,r) two-dimensional
distribution of sound speed, and py density, —is situated on the system
of m liquid layers with given acoustical parameters: hi(r),p(z,r) and
ci(z,7),l = 1,...m, where h; — thickness of a I-th layer. The system
of layers is placed on the elastic half-space with p; (7), ez (r) c7 (7).

We shall look a ficld in water layer in an adiabatic approach by
the use of cross sections method [14}):

p(z,r):\/é nz:lgon 20, 0) ¢n (2,7) exp lizo/&n( )drj' ae;%(r),
1)

where @, (r) and ¢, (z,7), accordingly, eigenfunctions and normalized
eigennumbers of a following boundary problem:

0., (z,r) + [K% (z,7) = 2% (r)] @ (z,7) = 0,
v(0) = [go’z (z,7)+ g (@) e(z,7) o) =0, (2)

K (z,7) = g5, H zh(r g (@) = £ [a?(r) ~ K2 ()",

The solution of the prob]em can be found separating of the
waveguide into the set of layers, in which K2 (z,r) can be approximated

as
Kﬁ (z,7) = K? (zp,7) + ap (r) [z — 2, ()],

where z, (r)~ border between layers p—~1 and p. In layer the solution
of the system (2) can be presented as

ep (2,7) = ap (r) Ai(t) + by (v) Bi(t),

where Ai and Bi - Airy-function [14], ¢ = —ap * (r} [K2 (z,7) — 2 ().
Factors a, (r) and b, (r) are derived {rom the discontinmty condition
of pp(z,7) and ¢, (z,r) recalculating the layers from the top using
boundary conditions. The solution ¢, (z,7), satisfying to bottom
boundary condition, is normalized by value

1/2
= [ pp° dz} .
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Final solution functions e, (r) and ¢, (2,r) can be presented as the
linear interpolation in given waveguide sections.

The account of sediment layers and elastic half-space attenuation
is important for estimation of the shadow zones illumination efficiency.
In this case it is necessary to consider, that K (z,7) = 725 +i8(z,r).

An image part of eigennumbers pu,(r) can be calculated by the
perturbation method FIS 16]:

pn () = 277 (1) / p8(2,1) s () e (3
1]

where p, (r) is taken into account only in the exponential factor,
which basically determins losses of the acoustical field. We shall
consider the simplified numerical model, accounting generally the
typical conditions, observed in shallow water shelf zones. Let
parameters of model, submitted on fig. 1la,b accept the following
significances: h; = 50 m, is the Jayer of sediment with following
parameters: {p;,c;} from {1.5;(1456.8+ix0.028)} to {2;(1600+:ix0.049)}
respectively and elastic bottom with g = 2.2, ¢f = (2300 + i % 0.03)
and c¢p = (450 + 7 = 0.049).

We research space distribution of acoustical field intensity in the
case, when the acoustical source with frequencies f = 100 and 500 Hz
is located in shallow water region of shelf waveguide on the depth
z; = 10 m, in condition of near bottom waveguide. The structure of
a field intensity is shown on fig. 2,3. It can be seen, that in both
cases it is possible to note formation of a deep shadow zone in under
water part of waveguide. The depth of a shadow zone is in limits
50 +80 dB on depths up to 20 m. Formation of such weak illuminated
area arises due to effective excitation of near bottom waveguide by
megaphone part of waveguide. In high frequency region the indicated
effect is expressed brighter due to greater localization of wuveguide
modes more close to the axis of the refractive near bottom channel.
Marked field distribution by depth, in principle, permits to judge
about potential possibilities for tomographical monitoring of oceanic
inhomogeneities in the shelf zone. In respect to a weak illumination
in under surface area the tomographical reconstruction of surface
inhomogeneities practically will be impossible. In the other hand,
the near bottom inhomogeneitieslocated will be well illuminated. For
under surface propagation the situation will be contrary.

Except of the shadow zone forming, the another important effect
can be noted - the beam forming as the kind of narrow quasi
- periodical space structure, which is characterized by increased
intensity appropriate to areas the illumination field. The indicated
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Fig. 3. Distribution of level of illuminating field for frequency 500 Hz.

244



phenomenon - occurrence of a weakly diverging bundles in refractive
oceanic waveguides was observed experimentally and was explained
by existence of the smoothed local extremums in dependencies of
rays cycles on output angles (17-19]. The similar phenomenon in
shallow water channels, in particular, the arising of the field focusing
due to constructive mode interference, can be explained by affinity
of dependencies of wave numbers from number of modes to square-
law [20]. In considered case the effect of the beam arising in the
field interference structure is connected with multiplicity of mode
numbers. Brightly the beam structure is displayed in forward part
of deep-water section of investigated waveguide in distances interval
60 < r < 90 km, at once for an equivalent megaphone type source
of illumination (it is possible to use such terminology only admitting
some share of reserve). The multiplicity conditions are satisfied only
approximately, therefore the bundles interference structure begins
to be destroyed with increasc of distance. On higher frequencies
of similar structures are destroyed with growth of distance faster,
though in the region of their forming they are expressed more brightly.

From the point of view of optimization of illumination in the
acoustical tomography schemes the bundle formation is of great
interest. so as the field can be 10 — 15 dB more in these areas. The
field coherence in thesc areas is also higher [17-19]. Actually, it is
possible to interpret the areas of beam formation as field focusing
areas. The analysis of theirs structure is important in the problems
of shadow zones formation and illumination of them in presence of
oceanic inhomogeneities. As it is shown in [17-19], the beam structure
can depend on the source depth as well as the sound speed profile,
thus, it is possible to speak about scanning by a bundles, for example,
changing the acoustical source depth. We shall note, that at rather
slow change of the waveguide properties on the horizontal domain the
bundles can exist undergoing the smooth changes [17].

Arising of the shadow zones and the focusing areas is the feature
of formation of the acoustical field in shallow water shelf. In this
connection, the field structure in rather narrow straits can be possibly
presented as the system of two megaphone zones, directed on cach
other. In these conditions it is also possible to assume about an
availability of shadow zones near the bottom or under the surface
of waveguide, and also the essential non-uniformity of the acoustical
field distribution because of the arising of focusing areas.

2. INHOMOGENEITIES MODEL

Oceanic inhomogeneities can cause the illumination of shadow
zones, due to transformation of acoustical energy to high mode
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difraction field, f=500Hz

depth (m)
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Fig. 4. Space structure of diffracted acoustical field for f = 500H:z
(inhomogeneity was located in point: zy = T2 km, zg = 69.5 m.}

number area of the mode spectrum due to diffraction. As researchs
of features of diffraction of the acoustical field by inhomogeneities
in layered waveguides [1-4,21-23] show, the illumination of shadow
zones can be carried out by spatially-localized as well as randomly-
distributed inhomogeneities. Besides, the characteristic scales and
variations of acoustic parameters satisfy conditions, defined by inter
mode dispersion structure for a non-uniform waveguide in field of
inhomogeneities location.

For simplicity we shall consider features of illumination of the
mode shadow zones on example spatially-localized inhomogeneities,
associated with the fish shoals [24]. We shall consider, the sizes of
shoal equal 102 m in horizontal and 15 m in vertical domains. The
influence of a plenty fish bubbles permits to consider shoal as some
impedance body. Features of acoustic fields diffraction by impedance
bodies with relatively large wave sizes allow to analyze in Kirchhoff
approach [21,23]. The major part of incident acoustic energy will
be scattering under small angles, so that illumination efficiency high
wave number range of the mode spectrum will be defined basically by
vertical structure of inhomogeneities. At the same time, the intensity
of illumination will be depended also from its horizontal sizes.

For calculation of diffraction field we shall replace inhomogeneity
by the set of secondary sources, located in limits of shadow making
equivalence screen with available complex amplitude depended from
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incident field, which have the phases changed on % relatively the

phase of incident waves L21,23]. Then, using representation (1) for
the diffraction field, we shall receive the following expression:

V,M
P (2, 7"y= = 3 on(z0,8) em (2, 7) x
n,m

exp[i&" (s')j exp[io’?m(r')]e"%
@G @ )T

(4)

Snm;

where s’ = (2% + 2)1/2 ‘= ((a-eny +92) N= | d
s = (e +88) v = ((a—2s) 7)) L @ (s) = [ (r)dr,
0

a - distance between source and field observation field, The index
m(M) concerns the diffraction modes, zs, ys, zs - coordinates of
center of inhomogeneity. Efficiency of exchange by energy between
the incident and the diffracted modes is defined by a scattering matrix
Spm, which in our model can be submitted in kind of integral:

Spm = iy, (5) T T 0((1’7) en (¢ + z5,5') om ((+zg,r) x (5)
-00 — 00 9

X exp (1’ (aen ()L + e (r') i—:)) dndc,

where o (¢, n) -- area, limited by shadow line.

As against the case of horizontally uniform waveguide, in (5)
matrix Sam = Sum (rg) - is function of inhomogeneity location
relatively source and receiver, because the structure of eigen functions
and wave numbers are various in various parts of waveguide.

Due to losses of acoustical field in shallow water part of
investigated waveguide, as well as in the field of coastal wedge
in deep-water part of waveguide field of illumination is formed,
the main energy of which consists of some set of low numbers
waveguide modes. In essence, the mode shadow area is formed [1-
4]. Defined by scattering matrix structure (5) the width of the mode
spectrum of diffracted field is increased with relative reduction of
the characteristic sizes of inhomogeneities ¢ (¢.7n) along coordinates
¢. From (5) it follows, that factor of modes transformation S, is
increased for depths and locations concerning source, receiver and
waveguide inhomogeneities, at which appropriate eigen functions
accept the maximum values. Taking into account that diffracted
field is defined as the sum of interference waveguide modes (4),
it is possible to assert, that the maximum of perturbation in
unperturbed field will be formed, if localized inhomogeneities is in
area of focusing maximum of the illuminating field (in our case it is
a bundle. formed in the beginning of a deep-water waveguide part).
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Simultaneously, the receiving system should be in the shadow field
of direct illumination signal. For considered waveguide this area is
formed in under surface region of waveguide. It is necessary to note,
that the secondary source of the diffracted signal is in uniform deep
water part of waveguide. They excite the modes in this waveguide
just as they are excited by the extended array with distribution of
secondary sources on in limits of array which determined by incident
field. Thus in this waveguide the space structure of acoustical field is
formed, having its own system of focusing as in kind of the bundles,
and in kind of local zones of increased intensity of diffracted field (4).
As the analysis of space structures of diffracted field and form of the
angular spectrum of its vertical sections show (fig. 4), the significant
part of diffracted field near inhomogeneities is scattered under large
angles, transforming in modes with high numbers. In agreement with
the used shallow-water waveguide model, high numbers modes have
rather large attenuation, so that their contribution in diffracted field
decreases with increase of distance quickly. Modes of lower numbers
form zones of increased intensity of diffracted field with space period
about five kilometers.

direct and diffraction fields, =100 Hz
‘80 T T T T T

N
Q
o

P . h=10 m

L
]
o

intensity (dB)

SN
>
oyl

L0 4L
= O 9
o & O

intensity (dB)

N
)
(am}

_1 30 t ! 1 1
65 70 75 80 85 90 95 100

range (kmj

Fig. 5. Perturbed (dashed line) and unpertubed field outside (h = 240 m)
and inside (h = 10 m) shadow zone, for f = 100K :.
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3. ILLUMINATION OF SHADOW ZONES

As already was specified, efficiency of shadow zones illumination
due to diffraction on oceanic inhomogeneities can be important by
optimization of an scheme dislocation of elements of tomographical
monitoring system. We shall consider a situation more detailed,
when effect shadow zones illumination in investigated waveguide will
be maximal. So we shall locate an inhomogeneity in maximum
illuminated area , associated with focusing zone of incident field, on
depth 69.5 m and on distance from scurce on 72 km. Fig. 5,6 indicates
horizontal sections of a level of perturbed fields at various fregitencies
outside and in a shadow zone. It can be seen ( Fig. 5), ihat the
perturbation in shadow zone can be reached in some places of values
up to 30 =40 dB relatively to unperturbed signal. On the average.
these perturbations have the level of order 15 dB at frequency 500
Hz. In low-frequency range the shadow zone illumination efficiency
is much less (fig. 6). In spite of the fact, that on small distances
{rom inhomogencities the perturbations can reach 15 dB, as a whole,
they quickly fall down because rather fast attenuations of modes with
high numbers, which form of diffracted field. It is interesting to note,
that an inhomogencity is plased in area between interference maxima
of the bundle, a illumination level practically not varies (fig.7}. It is
explained by that a zone of weak illumination between interference
bursts in bundle is formed also due to the destructive interference
of all illuminating modes. Due to transiormation of mode spectrum,
which is described by matrix S,.m,, diffractive modes change phases
and the illuminating signal in shadow zone can be rather more.

On the basis of indicated and other results of investigation,
it is possible to make a conclusion that in considered (typical
for real conditions) shallow water waveguide the tomographical
reconstruction of spatially-localized inhomogencitics will be more
effective, if the receiving systems are placed in mode shadow zones
(1-4]. In case of near bottom waveguide propagation, similar shadow
zone is limited by depths up to 50 m and distances from source
since 60 km. In other practical case of under surface waveguides,
the similar situation is observed, however the mode shadow zone
is formed alrcady near to bottom. All conclusions, which can be
made relatively near bottom waveguide it is possible to apply and
to case of under surface waveguide. It can be noted, that other
competing sources of shadow zone illumination can be randomly
distributed oceanic inhomogeneities. As well as in case spatially-
localized inhomogeneities, the efficiency of shadow zone illumination
will be defined by scattering matrix S,,,, which now is random [1-4].
Such matrix depends on the inhomogeneities type, for example, wind
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Fig. 6. Pertubations (dashed line) inside shadow zone for f = 100 and 5004 =.

waves, bottom inhomogeneities, turbulence pulsations of a sound
speed in water column and other. For considered in this research
waveguide the influence of wind waves will be insignificant, because all
surface inhomogeneities are poorly illuminated by the incident field.
Main source of random reverberation in shadow zone in this case can
be volume and bottom inhomogeneities. The case with under surface
waveguide was considered in [5] theoretically and experimentally,
where the more essential source reverberation noise was the wind
waves. Despite simplification of used in [5] model, it is possible to
understand. that shadow zones ilumination due to wind waves can
be of the order of 5 + 10 dB.

The effect of the suppression of a direct signal can be increased
by use of the vertical receiving arrays for additional filtering in
space domain. The opportunity of such filtering can be evaluated
by analysis of structure of space spectrum for arrays with different
lengths, diplaced in different depths and different distances relatively
of inhomogeneity. On fig. 8 angular spectra of direct illumination
and diffractive signal at frequency 500 Hz are shown, when the array
is placed at shadow mode zone. This distributions show, that an
angular spectrum of the direct signal in whole is more narrow in
relation to the spectrum of diffracted signal. This circumstance
permits some additional possibili2ti5e5 for suppression of the direct
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signal in order to 5+ 10 dB. It is interesting to note, that the angular
spectrum of diffractive signal has quasi periodical space structure,
so that on appropriate distances from inhomogeneity the spectrum
tends to high frequencies and a filtering of direct signal can be more
effective. As it was shown numerically, if the array is placed outside
of shadow zone, the level of direct signal in high-frequency region of
spectrum grows and measurements of diffracted signals are hindered.

CONCLUSION

In this work the possibilities of use of natural mode shadow zones,
arising in horizontally non-uniform shallow water oceanic waveguide,
are investigated analytically and numerically concerning an increase
of signal measurement efficiency in schemes of acoustic tomography
in the ocean.

The following results can be formulated:

1. In horizontally non-uniform shallow water waveguides, which
often can be seen in shelf regions of ocean, where the acoustical source
of illumination is located in shallov;svs{a,ter part of waveguide. the decp
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Fig.8. Angle spectrum of incident (the upper distribution) and diffracted (the
low distribution) fields for frequency 500 Hz.

mode shadow zones — up to 30 — 40 dB - are formed in regions close
to surface (for near-bottom channels) or close to bottom (for under-
surface propagation). Moreover, due to the constructive interference
of waveguide modes in deep-water part of shelf waveguide the system
of focusing zones is formed in the form of bundles with the intensity
contrast of the order 10 dB. As it is shown in [20], it is possible to
explain the occurrence of bundles by features of mode spectrum of
the deep part of shelf waveguide.

2. Diffracted field is characterized by the set of focusings, which
can be seen as bundles, that it is well visible from an angular
spectrum of vertical arrays (fig. 8). For chosen characteristics of
inhomogeneities the essential part of diffractive field is transform
to high mode numbers region of mode spectrum. By virtue of
dependence of the scattering matrix from structure of horizontally
non-uniform waveguide in the field of location of inhomogeneities,
the structure of diffracted field depends significantly from horizontal
displacement of inhomogeneities.

3. Efficiency of mode shadow zone illumination is analyzed
depending on diffraction of incident acoustical field by spatially-
localized inhomogeneities. Perturbation in shadow zone reaches on
the average 10 =15 dB (close to an inhomogeneity it can be up to 30
dB) at frequency 500 Hz. In the low frequencies region (~ 100 Hz )
this effect also is observed, however its value is less. The indicated
phenomenon can be interesting in differential tomography of oceanic
inhomogeneities, which is based on selection of mode pulses [1-
4]. According to this approach, illumination field was carried out
by excitation of selected waveguide modes by vertically developed
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radiated arrays. In work [5] opportunities of use of natural shadow
zones in real waveguides were discussed for realizations of principles of
differential tomography without the use of the radiating arrays. The
obtained in the present research estimations of the field perturbation
values in mode shadow zones in shelf regions permit to estimate the
efficiency of the direct illuminating field suppression in respect to
application them in tomographical monitoring of ocean in narrow
straits.

4. It is possible to expect the suppression of direct illuminating
signal on 30 =~ 40 dB due to angular filtering of diffracted field by
vertically developed arrays displaced in shadow mode zones.

Summarizing received results, it is possible to make a conclusion
about an opportunity of optimization of receiving and radiating
elements displacement in tomographical monitoring of straits. It
is seen, that in the near bottom or in under surface areas the
mode shadow zones can be formed in relatively deep-water part
of waveguide. Theirs structure is connected with the change of
hydrological condition which lead to change of the sound speed
profile. Hence, inhomogeneities in under - surface or in near -
bottom areas can not be reconstructed tomographically, if they are
not illuminated by the incident acoustical field.

As is known, in the differential tomography approach it is
necessary to suppress the direct illuminating field considered as a
noise [1-5]. From this point of view, the displacement of receiving
arrays in the shadow zones can be considered as the optimum, because
the noise background there can be formed, mainly, due to scattering
by randomly-distributed oceanic inhomogeneities, such as volume
inhomogeneities and, accordingly, surface or bottom ones.

This work was supported by RFFI (grant N 97-02-17536).
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ABSTRACTS

E. Yu. Gorodetskaya (NN University), A. I. Malekhanov, A. G. Sazontou,
V. 1. Talanov (IAP RAS), and N. K. Vdovicheva (IMS RAS). Acoustic
coherence in a deep water: effects on array signal processing.

Recent results on combined consideration of the sound wavefield
coherence and array signal processing in long-range deep-water environments
are presented. A distinctive feature of this study is incorporating realistic
calculations of the signal MCF of space to predict the coherence effects on
the array beampattern and gain for several types of processors, optimal ones
included.

A. {. Khilko, A. G.Sazontov (IAP RAS), and N. K.Vdovicheva (IMS
RAS). Diffraction of acoustic waves by an object in a random oceanic
waveguide.

Statistical problem of short wave diffraction of partially-coherent
multimode acoustic field by a scattering object in a deep-water oceanic
waveguide is considered. The method presented is based on the combined use
of the Kirchhoff approximation and the small angle radiation transport
equation for the second moment of the medium Green’s function. The general
expressions for the energy and correlation characteristics of a diffracted signal
in the farfield have been derived. The multiple volume scattering effects on
the target strength have been also estimated.

1. P. Smirnov (NN University), J. W. Caruthers (NRL) and A. I. Khil'ko
(IAP RAS). Multiscale coherence of the acoustic field of a noise source in
randomly inhomogeneous ocean.

The space distribution of coherence of sound fields in refractive oceanic
waveguides with randomly distributed volume inhomogeneities for noise
acoustical sources was investigated. Conditions for bundles of rays existing,
which arise due to interference of rays with close parameters were formulated,
as well as their coherence were studied. The possibilities of their application
for diffracted fields measurements were discussed.

A. V. Lebedev and B. M. Salin (IAP RAS). Experimental Method for
Determining the Scattering Characteristics of Elongated Objects.

The scattering characteristics of elongated objects were investigated by
measuring of acoustical scattering signals in lake. The influence of noise and
environment random perturbations on result of measurements were
experimentally studied.



M. Yu. Galaktionov, V. V. Borodin, A. V. Mamayev (AKIN). Numerical
and experimental study of sound field forming in shallow water environments.

Investigation of sound field forming in shallow water areas is made based
on simulated and experimental data. A software set for numerical modeling
of sound fields, raw signal data and sonar signal processing is presented.
Simulated and experimental data are studied and processed and main
particularities of sound field forming in shallow waters are established.

V. V. Borodin, M. Yu. Galaktionov (AKIN). New mathematical model of
sound field fluctuations in shallow water environments with boundary and
volume roughness.

New equations for the two first moments of sound fields in random
mean-layered waveguides are derived to describe simultaneously the
scattering from rough boundaries and volume fluctuations of sound velocity.
The model is valid for a large interval of sound frequency and various
environments including the shallow water case. The phase screen method is
used to calculate the scattering amplitude that describes the propagation
through a water layer with large-scale volume fluctuations. Its statistical
moments are calculated that are entering as kernel and right part in the
integral equations for the two first statistical moments of sound fields.
Structure of solutions of these equations is described when various
approximations are used. It is shown that these solutions can describe the
micro-multi-ray phenomenon and the correlation of scattered f{ields
propagating along different ray paths. Appropriate algorithms for numerical
implementation of this comprehensive theoretical model are proposed and
discussed, The algorithm to compute the angle spectrum of the field proves
to be analogue to the ray paths calculation in a layered waveguide.

E. L. Borodina, A. A. Stromkov and A. I. Khilko (IAP RAS). Coherent
structure of broadband pulse signals in the shallow sea.

The paper deals with the investigation of the influence of sediment layers
on the space - time coherent structure of broadband pulses. The formation of
unsteady in time beams caused by an interference of waveguide modes in a wide
frequency region is considered. An influence of variations in acoustical
parameters on a shape of wide - band acoustical pulses is investigated. The
conditions of a constructive interference of modes are analyzed.

A. A. Pokrouvsky. Using regularities in the behavior of a two-frequency
correlation function of acoustic field in monitoring of oceanic inhomogeneities.

In this paper a simple tomographic scheme which uses an acoustic path
between the spaced emitter and receiver is considered. The possibilities of
using such a scheme to extract and estimate signals scattered by oceanic
inhomogeneities against the background of a fluctuating direct illumination
field by exploiting the properties of an interirequency acoustic field correlation
function in a waveguide with random inhomogeneities are estimated.



S. M. Grudskii (RnD University), A. I. Khilko (IAP RAS),
S. 8. Mikhalkovich (RnD University). Propagation of low-frequency sound in
a hydroacoustic waveguide with surface covered with a non-continuous ice
layer.

The present paper deals with the problem of sound propagation in a
stratified waveguide which is an inhomogeneous liquid layer overlaying a
multi-layered liquid-elastic bottom. The surface of the waveguide is covered
with a thin (in comparison with length of an acoustic wave) homogeneous ice
layer with polynia of finite width. Influence of the polynia on characteristics
of an acoustic field is investigated. The main asymptotic terms of elements of
reflection and transmission matrices are obtained by a small parameter, where
the small parameter characterises thickness of ice. These formulas are uniform
in parameter L, where L specilies polynia width. The similar formulas for a
finite width ice-floe lying on a liquid layer are given. In this case influence
of attenuation in the ice on the diagonal members of the transmission matrix
is analysed. We note that the used approach can be generalized to a case of
a finite number of ice-floes.

A. 1. Belov (SF AKIN) and A. I. Khilko (IAP RAS). Diffraction of
acoustic waves by spatially-localized inhomogeneities in horizontally-
inhomogeneous shallow water oceanic waveguides.

The purpose of this research is the study of the structure of natural
shadow zones, in particular, the efficiency of illumination of such zones,
formed in shallow water waveguides with megaphone form, due to diffraction
of acoustical waves by spatially-localized inhomogeneities taking into account
the optimization of measuring scheme for tomographical monitoring in
shallow water straits.



