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PREFACE

The collected papers present recent works of the leading re-
searchers engaged in the area of acoustic field formation in oceanic
waveguides. Considerable interest in such phenomena arises due to
their numerous applications in remote acoustic probing and acoustic
tomography of the ocean. In these applications, it is necessary to solve
a number of interrelated problems of acoustic field synthesis, sound
diffraction and scattering by various inhomogeneities in underwater
channels, inverse problems of the ocean diagnostics, and the problems
aimed at developing adequate methods and algorithms of space-time
acoustic signal processing in underwater antenna systems.

It should be mentioned that the term "the formation of fields"
included in the title is not widely used in acoustics and has a more
optical origin. We employ this term here to emphasize the intrinsic
relationship and analogies of adaptive ocean acoustics discussed in
the book with adaptive optics. The noted analogies permit us to hope
that these areas will enrich each other. Thus, study of the formation
of ocean acoustic fields as the methods of synthesis and analysis of
wave fields adapted to the conditions of underwater sound propagation
and scattering may be interpreted in a wider sense as the development
of hydroacoustic information/measuring systems.

In general, the topics covered in the book may be divided into
three key parts. First, the problems related to the sound fields
synthesis and optimum source excitation for remote sensing of the
ocean at different spatial scales. Second, the problems of acoustic
fields difiraction and scattering by the ocean inhomogeneities, random
and regular ones included. And, finally, the problems of sound fields
analysis performed by antenna systems of underwater observation.
For solution of all these problems, it is necessary to take into account
the intrinsic features of sound propagation in refractive oceanic
waveguides.

Particular attention of the authors is focused on the problems of
the reconstruction of oceanic medium inhomogeneities by using



tomographic techniques. The majority of them considered here were
tested successfully by experiments both in laboratory and in the ocean.

Obviously, it is difficult to embrace all the particular related
problems in several papers collected in one book. Meanwhile, we hope
that the papers presented as well the references cited in them help a
reader to form a general notion of the level of current research in this
modern area of ocean acoustics.

Vladimir Talanov,

Vitaly Zverev



INTERRELATED PROBLEMS OF ACOUSTIC FIELD
SYNTHESIS AND ANALYSIS IN LONG-RANGE
OCEAN ENVIRONMENTS

E. Yu. Gorodetskaya, A. I. Malekhanov and V. I. Talanov

INTRODUCTION

The problems of acoustic field synthesis and analysis in long-range
ocean environments are of particular interest in low-frequency acous-
tic sounding of the ocean and ocean acoustic tomography. The well-
known intrinsic features of such environmets are (i) waveguiding pro-
pagation in underwater sound channels which leads to the finite dis-
crete spectrum of acoustic field normal modes, and (ii) random (vol-
ume and/or surface) inhomogeneities of a channel which perturb the
intermodal phase shifts and cause a degradation of modal covariances
and acoustic coherence loss over long distances. These propagation
features lead to substantial complexity of the indicated problems. On
the other hand, the environmental constraints on the spatial spec-
trum of radiated/received wave fields permitted us to formulate an
adaptive approach to antenna synthesis [1, 2]. The word ”adaptive”
is used here to indicate that the source antenna is optimized in de-
pendence on the statistical effects of propagation and the criterion of
signal processing in receiving array. In short, the problem of interest
is to excite the modes which turn out to be the most ”effective” from
the point of view of spatial signal processing at long distances from
the sources.

In this paper, we give the most essential aspects of adaptive ap-
proach to the wave field synthesis in random-inhomogeneous chan-
nels, and illustrate them by computer simulation using some typi-
cal models of long-range underwater propagation, shallow-water and
deep-water environments included. We focus here on the particular
adaptive algorithms maximizing the received signal coherence which
are based on the multimode signal eigenspectrum analysis and crite-
ria related. All the signals are assumed to refer to a fixed frequency
of the Fourier spectra of radiated/received spatial-temporal fields.

We address the problems by brief considering the eigenvector ex-
pansion in source array synthesis (Sec. 1) and spatial signal analysis
(Sec. 2) in a multimode waveguide. Also, in Sec. 2 we define some
integral characteristics of multimode signal related intrinsically with
its coherence, which are suitable for the further formulations. Next,



in Sec. 3 we formulate an adaptive approach to the problem of
acoustic field synthesis in long-range underwater channels and show
the algorithms which are effective to control the signal coherence at
the long-distanced receiving array. Some significant results of com-
puter simulation are given in Sec. 4. The final Sec. 5 presents a
summary of the results.

1. SOURCE ANTENNA SYNTHESIS: BASIC EQUATIONS

The first step is to outline the antenna synthesis problem in a
two-dimensional regular waveguide. In the papers [3, 4], the synthe-
sis problem was formulated by using a general variational approach
which is widely used in the antenna theory to restrict the superdirec-
tivity and related effects. The synthesis algorithms derived in these
papers have been shown to be the most effective to control the modal
spectrum of excited wave field.

For a waveguide supporting M normal modes far enough from a
source, and a vertical array consisting of N sources (M, N arbitrary),
the (M x 1) vector a of mode the excitation coefficients is given by

N
a=Ufy, am:Zy(n)u;‘n(n), m=1, 2 ..., M. (1)

n=1

Here y is the (N x 1) vector of source excitation coefficients with the
entries y(n); U is the (N x M) matrix of modal structure on the N-
source array; the entries u,(n) are the regular modal shapes over ar-
ray; the superscript # and the asterisk denote the Hermitian transpo-
sition and the complex conjugation, respectively. The modal indices
m correspond to the respective eigenvalues of the Sturm-Liouville
boundary problem. The vector a can be physically interpreted as the
array modepattern by using a close analogy with the beampatterm
in a free space.

We define the criterion of antenna synthesis optimization as to
maximize the ratio u of the power Py, radiated to the discrete spec-
trum modes, to the total radiated power P (P, is fixed):

P M =
©= ?A:, Py = Z lam|?, Po= Z |am|? = const, (2)
m=1 m=1

when the second sum P includes the continuous spectrum modes
(M < m < o0) forming the near-field pattern.

The stated variational problem reduces to the two eigenvalue—
eigenvector problems in the N-dimensional source space and the M-
dimensional mode space which permit one to obtain the orthogonal
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bases of eigendecomposition in the source space and mode space,
respectively [3, 4]. The first (antenna) basis is given by

BpYp = (UUH)Yp, r=1,2,..., R (3)

The second (modal) basis is given by

ppa, = (U U)a,, p=1,2,..., R (4)

Here the eigenvalues p, are the coeflicients of energetic "linkage” of
the eigenvectors y, with the discrete spectrum modes (p, = |a,|?/Po),
and

R = rank(UU#) = rank(U¥ U) < min{M, N}

(in practice, R « min{M, N} for M > 1 [4]). The basis {y,}2, can
be regarded as the basis of "antenna modes”, and the basis {a,}f*,,
as the corresponding basis of antenna modepatterns.

As a result, the optimal source excitation vector y,,; for the most
effective (as regards the criterion used) excitation of a desired modal
spectrum, or modepattern ao (arbitrary), is obtained by the following
eigenvector expansion:

R H
ap A,
Yopt = E (—Oﬁl)'p . (5)
p=1 Hp

According to Eq. (5), the expansion of arbitrary source vector y in
the basis {y, }f=1 permits one to evaluate its efficiency from the point
of view of waveguide excitation and radiated power transportation by
normal modes. This efficiency is seen to increase with the weight co-
efficient of the eigenvector y; which corresponds to the largest eigen-
value g, (for ordered eigenvalues: py > p2 > ...up > 0). By the
special source arrangement we have an opportunity to increase con-
siderably the energetic "linkage” of the sources with a desired group
of normal modes. In its turn, the modal spectrum ag is chosen in de-
pendence on the particular problem of application (in remote sensing,
communication, and so on).

Thus, the particular problem of antenna synthesis in a waveguide
stated to maximize the radiated power transformation into the de-
sired spectrum of normal modes is solved by using the weighted eigen-
vector expansion (5) which depends on both the modal shapes and
source arrangement. It should be emphasized that the sharp reduc-
tion of the total number of the basis components (3), (4) in compari-
son with the total number of modes, R « M, limits the sensitivity of
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the synthesized multimode fields to mismatch effects. This property
is a principal advantage of the synthesis technique outlined above.

2. MULTIMODE SIGNAL ANALYSIS FORMULATIONS
2.1. Karhunen-Loeve expansion in mode space

The second step is to consider the optimal eigenvector expansion
of the multimode signal to be processed at a large distance from
sources. Recently we have used this expansion to analyze the perfor-
mances of optimal array signal processors in random-inhomogeneous
waveguides, with application to long-range underwater acoustics [5-
8].
] For the waveguide considered above, the signal vector s from an
K-element receiving array and its spatial covariance matrix M defined
by M =< ssf’ >, are expressed by the modal decomposition:

M
$= Y dmVm, M=VRVY (6)

m=1

Here, v,, are the (K x 1) vectors of modal shapes and V is the (K x M)
matrix of modal structure on the array, a is the (M x 1) vector of
modal spectrum, and R =< aa” > is the (M x M) matrix of modal
covariances. The vectors v,,, and the matrix V are determined by the
waveguide eigenfunctions and the array element arrangement, similar
to the vectors u,, and the matrix U in Eq. (1).

The random amplitudes a,,(t) are related to the excited compo-
nents a,, (1) by

dm(t) = Amamenm(t)exp (—thmp), m=1, 2,..., M, )

where A,, are the regular coefficients of spherical decreasing (not of
vital importance), h,, are the radial wavenumbers, p is a distance, and
€m(t) are the random complex functions describing stochastization of
modal amplitudes in a random-inhomogeneous channel.

The key point of the model (6), (7) is that the signal is assumed
to be a superposition of regular modal shapes multiplied by random
amplitudes. Generally, this model can be refered to the signal consist-
ing of the discrete spectrum spatial harmonics (modes) with arbitrary
intermodal covariances.

We use as the basic technique the signal orthogonal decomposi-
tions in the sensor space and mode space, similar to the approach
(3), (4). The first of them is the well-known Karhunen-Loeve expan-
sion (KLE) in the eigenbasis (A,,m,) of the signal spatial covariance
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matrix M [9], and the second, the signal modal spectrum decomposi-
tion in the basis determined by the following eigenvalue-cigenvector
problem [5]:

Apcp =RQc,, p=1,2,...,r (8)

Here, Q = V#V is the (M x M) matrix of modal shape orthogonalities

with the entries «

Qmn = Z U (K)va (K),

k=1

the (M x 1) eigenvectors ¢, are the modal spectra of the (K x 1)

eigenvectors m, (i.e. m, = Vc¢,), and the eigenvalues ), are assumed
to be ordered and normalized:

K
M2A > >0, Y A =1, 9)

p=1

and
r = rank(M) = rank(RQ) < min{M, K}.

According to Egs. (8), (9), the multimode signal (s, a) is inco-
herent superposition of the orthonormal eigencomponents (A,, my, c;)
with the intensities ),, spatial shapes m, and modal spectra ¢,. De-
composition in the basis {,,m,,cp};_, is the KLE generalized for
the discrete spectrum signals, or the modal KLE. Two intrinsic fac-
tors, the modal covariances and mode orthogonalities affect mutually
the signal expansion. The number r of components is considerable,
1 € r < M, if the signal-carrying modes are weakly correlated and the
array length is large enough for their orthogonality, or spatial reso-
lution. This case corresponds to the coherence-degraded signal when
the coherence length K. < K, and the multimode signal processor
need to be substantially complicated.

It should be emphasized that the modal spectra c, (8) are only de-
termined by the modal orthogonality factors Qmn, if the modal covari-
ances are substantially degraded owing to statistical effects of long-
range propagation in a random-inhomogeneous channel. In turns,
the modal orthogonalities depend on the waveguide eigenfunctions
and arrangement of the array elements, so these two factors should
be taking into account in a prior: estimating the signal eigenvalues A,
and the modal spectra ¢, which "form” the eigenvalues in accordance
with Eq. (8).

Figure 1 illustrates the absolute values of modal spectra |c,(m)|
for the horizontal array in two different cases of equidistant (a) and
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[cp(m}|2
[c,(m)]?

Fig. 1. The modal spectra |cp(m)| for the horizontal teceiving array in the cases
of equidistant (a) and nonequidistant (b) spectra of the radial wavenumbers.

nonequidistant (b) spectra of the radial wavenumbers [2, 6-8] (the
intermodal correlation scale, or the number of modes correlated with
some arbitrary mode. is less than "modewidth” of the patterns @n,(n)
in both cases). For the vertical arrays, the modal spectra of the signal
eigencomponents can be more complicated owing to oscillating modal
shapes v, (k) and more complicated structure of the matrix Q.

The optimal quadratic processor maximizing the deflection crite-
rion {9] in a special case of the signal (6) and spatially white noise
background has been shown [5-8] to be obtained by incoherent A,-
weighted combination of the linear modal filters matched to the sig-
nal eigencomponents. The additional quadratic gain over the optimal

linear filter matched to the most powerful component (A;,my,c;), is
equal to the ratio:

(}:;:1 A:)1/2

G= W ,

1<G< /2 (10)

Thus, the modal KLE is a proper technique for the multimode
signal analysis in dependence on the signal propagation and scatter-
ing, with particular application in long-range underwater acoustics.
An essential advantage of this decomposition consists in a possibility
of effective exploiting the close relation of spatial coherence to modal
covariances to examine the array processor performance/complexity.

2.2. Integral characteristics of multimode signals

&

The quantity G (10) is one of the integral characteristics of the
signal eigenvalue spectrum (8), (9) suitable for the processor perfor-
mance/complexity consideration.

In addition to the analysis outlined above, a partially coherent
multimode signal may be considered by using a general informational
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approach. According to this approach which is well-known in statisti-
cal optics [10], each component (m,, c,) is interpreted as the coherent
eigenstate of the signal (s,a), and the corresponding eigenvalue ‘A,
(9), as the probability of signal localization in that eigenstate. Then,
the number r is the total number of degrees of freedom and character-
izes the spatial "disorder” caused by modal covariance degradation.
Obviously, an increase of the spatial disorder physically corresponds
to a decrease of the ratio K./K, or loss of the signal coherence.

Following the informational approach, we define the entropy H of
the spectrum A, as the integral characteristic of the signal disorder,
and the normalized quantity I as the inverse characteristic:

H

max

H==3% X}, I=1- (11)
p=1

The entropy Hmin = 0 corresponds to the case of deterministic, or
perfectly coherent multimode signal, while the entropy

Hpax = In[min{M, K}]

corresponds to the maximum signal disorder. On the contrary, the
quantity I decreases monotonically with broadening of the spectrum
Ay from Iyax = 1 (order) to Iyin = 0 (disorder), so I can be defined as
the order index.

An essential point of the informational approach consists in the
fact, that the maximum available number of the signal eigenstates is
intrinsically limited by the total number of modes: ryax = M, Hpax =
In M. This entropy value corresponds to the special case of uncor-
related and perfectly resolvable modes with the uniform intensity
spectrum, when all the eigenvalues A, = 1/M. Since the mode resolu-
tion can be achieved only in overdetermined case (K > M), the latter
(K — M) eigenvalues are zero. So generally, the signal can be partially
coherent (not spatially white) in spite of the condition 7 = 0. For a
free space, however, always Hpay = In K, so the signal is incoherent if
and only if the order index I = 0.

Thus, the integral characteristics of the multimode signal (6) which
are intrinsically related with the eigenvalue spectrum (9) of its spa-
tial covariance matrix, are the quadratic gain G (10), the entropy H
and the order index I (11). These characteristics are useful for the
formulation of adaptive synthesis approach which will be given in the
next section.

The particular dependences of the integral eigenspectrum char-
acteristics G, H, and I on the key patameters, such as number of
modes M, number of array elements K and intermodal correlation

13



scale, were analyzed in details in our recent paper [2]. Of the most
importance is the fact that the signal eigenvalues are "formed” by the
different modes (see Fig. 1) so the signal-carrying modes have the es-
sentially different effects on the signal eigenspectrum. Therefore, we
can (i) estimate the modes which are the most effective to control
the eigenvalues and integral characteristics, and (ii) formulate some
adaptive algorithms of modal spectrum correction.

3. AN ADAPTIVE APPROACH TO ACOUSTIC FIELD
SYNTHESIS IN UNDERWATER CHANNELS

3.1. Basic idea

An interrelated consideration of the optimal source antenna syn-
thesis and signal processing in an underwater channel makes it pos-
sible to state the different problems of active remote sensing, target
detection, and communication. The signal coherence is the key fac-
tor in all of these problems which restricts the system performances.
In particular, from the point of view of the detection problem, the
source optimization is to form the multimode signal s with essen-
tially nonuniform eigenspectrum A, on the receiving array. In this
case, the reduced-complexity suboptimal processing is achieved by
the low-rank spatial filtering as it follows from Egs. (8)~(10). Fol-
lowing the informational interpretation, the problem is to form the
signal with the minimum entropy, or the maximum order index.

Thus, the basic idea consists in the most effective correction of the
excited modal spectrum to maximize the received signal coherence.
This correction is achieved by optimizing the source array excitation
as it was shown in Sec. 1. Using the concept developed in the previous
section, the problem is physically formulated as that of source radia-
tion focusing into the eigencomponent (A;, ¢;) of the signal to be pro-
cessed at alarge distance from the sources. The presented approach is
considered to be adaptive one since the correction pointed out intrin-
sically depends on gi) the modal covariances, (ii) the receiving array
arrangement in a channel, and (iii) desired scheme and criterion of
the array signal processor. The key point of waveguide propagation
leading to the adaptive synthesis formulation, is the discrete spec-
trum of normal modes which permits one to select the most effective
modes to control the signal coherence and, therefore, to achieve the
"matched” wave field synthesis.

Taking into account the statistical effects of coherence degrada-
tion, the perfectly coherent signal (Ay =1, G =1, I = 1) can be
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synthesized only at one Sa,rbitrary) mode. Meanwhile, if the mode or-
thogonality matrix Q (8) is not diagonal, then the resolution "mode-
width” incorporates a considerable number of modes exceeding the
intermode correlation scale. The synthesized wave field may be mul-
timodal and, simultaneously, the received signal will satisfy to the
desired eigenvalue distribution. The a prior: estimate of modal re-
solution (orthogonalities) determines the requirements on the receiv-
ing array arrangement for increasing the signal coherence at the given
eigenvalues p, %3), (4).

3.2. Adaptive algorithms

Using the approach formulated above, we can define the interre-
lated criteria of adaptive wave field synthesis by the following equa-
tions [2]:

M=, G=Go, I=1I, (12)
where the quantities Ag, Go and Iy are desired values of the corre-
sponding characteristics. Generally, these criteria can be used for any
model of signal propagation in random-inhomogeneous environments.
However, the key propagation feature in a mutimode wavegude that
was emphasized above is the principal possibility to control the signal
eigenspectrum by the optimal modal excitation.

A particular adaptive algorithm can be shown as the following it-
eration procedure [1, 2]. As the first step, evaluation of the eigenbasis
(Ap,¢p), (8) under the initially excited modal spectrum a, (for exam-
ple, with the uniform intensity spectrum |ag(m)|? = const(m)) makes
it possible to obtain the source vector y,p: (5) so as to synthesize the
signal with the intensity spectrum < |ay,|? >= |e1(m)|2. Since this
correction leads to the effective excitation of the first (most power-
ful) signal eigencomponent, the modes that forming the high-order
ones are suppressed. Iteration of the same step results in subsequent
narrowing of the eigenvalue spectrum, and the total number of steps
is determined by the desired values (12). Asymptotically A\; — 1, and
the signal coherence length K. > K. As the result, the quadratic gain
G — 1 according to Eq. (10), and the order index I — 1 according to
Eq. (11). In the opposite case, if the modes of high-order components
are the most excited ones, the signal coherence only degrades.

Thus, the adaptive algorithm is expressed by

M
lao(m)[} ~ ler(m)li_1, Y lao(m)|] = const(j), (13)
m=1

where the iteration index j =1, 2,... J, and J is the total number of
iterations. The second equation fixes the total power radiated to the
normal modes during the iterations.
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The essential point is estimation of the modal spectra |e;(m){}_;
which requires elaboration of special signal processing techniques
(see, for example, {11, 12}). So the other iterative spectra are of par-
ticular interest to be exploited in a more simple scheme. For example,
the spectrum |Fi(m)|?_,, where the entries Fi(m) are determined by

K
Fy(m) = vm (k)ma (k).
k=1

The vector F; is the first eigencomponent modepattern which is ob-
tained by using only modal shapes and the first signal eigenvector.
In this case the adaptive algorithm is expressed by

M
lao(m)[} ~ [Fy(m)}_1, D lao(m)|} = const(s). (14)

The algorithms (13), (14) are interrelated due to the close relation
of the iterative spectra,which is clear from F; = Qc;. However, they
have the different efficiency and, in particular, the different value of
J for the given values of the criteria (12).

Incorporating the effects of range-dependent modal intensity spec-
trum and/or the range-dependent modal structure leads to an in-
creased complexity of the source optimization problem. In these cases
the synthesis of additional multimode signals are required to correct
the adaptive algorithms.

4. RESULTS OF COMPUTER SIMULATION

The adaptive algorithms are examined here by simulations for:

(1) horizontal A/2-array in an isovelocity shallow-water channel
with perfectly rigid bottom and free surface, and

(2) vertical A/2-array in a deep-water channel with Munk’s sound-
speed profile.

The main goal of simulations is to illustrate the effect of increasing
the received signal coherence by the adaptive correction of excited
modal spectrum in accordance with the algorithms (13), (14) under
the condition of substantially degraded intermodal covariances.

gor the intermodal correlations (6), a simple exponential model is
used:

Tmn = €xp(—|m —nl/A), 0< A< o0, (15)

where the parameter A denotes the intermodal correlation scale, or
the coherence "length” in mode space, which is a function of the dis-
tance to source and depends on ocean environment. In accordance
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with some theoretical results [13, 14], a physical foundation for this
model can be the random phase modulation ¢y, (t) (7) in an under-
water channel with large-scale random inhomogeneities (see also the
paper by A. G. Sezontov in this issue). We note that the typical dis-
tances of modal covariance degradation (when A « M) for sound
frequency > 100 Hz may be up to ~ 100 km in shallow-water chan-
nels and up to ~ 300 km in deep-water channels (the degradation is
caused mainly by acoustic scattering by wind-induced surface waves
and internal waves, respectively) [13, 14]. The regular modal phase
shifts which should be generally written in Eq. (15) are not of vital
importance and omitted for the sake of simplicity.

It is clear that the adaptive algorithms discussed are of the most
interest exactly for the small scales A « M since the large scales
A ~ M lead to rather high spatial coherence.

Following the algorithm (13), the matrix R(j) is simulated by
using the iterative procedure:

R; = (diaglci(m)|;-1) Rj-1( diagler(m)]j-1) (16)

under the constraint Tr(R;) = M. The initial matrix Ry is expressed
by Eq. (15),i.e. the initial modal spectrum is simulated to be uniform
(all the modes are excited).

In its turn, the algorithm (14) leads to the following iterative
procedure for the matrix R(j):

R; = (diag|Fi(m)|j-1) Rj_1 (diag)F1(m)|j-1). (17)
under the same constraint and initial condition.

4.1. Horizontal array in a shallow-water channel

In this example of the receiving array arrangement, the modal
vectors v,, are the plane-wave vectors, and the entries of matrix Q
coincide with the convenient beampattern factors of the phased array:

um (k) = exp (irkm(k — 1)), &m = hysind,

_ sin(KZmn)

_ (K — Kn)
Qmn = sin(zmn) ’

exp (i(K — D)zmn), Tmn = T

Here h,, are the radial wavenumbers, 0 is the angle of arrival in
the horizontal plane of the receiving array arrangement, ko is the
wavenumber in a free space. Nonequidistant spectrum of the isove-
locity channel eigenvalues h,, [15] leads to considerable difference (by
~ M?3/2 times) in spatial "density” of the lower-order (m ~ 1) and the
higher-order (m ~ M) modes. Following the noted analogy with the
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Fig. 2. The dependences A1(j), A2(j) (a) and I(j) (b) using the algorithms
(13), (16) (the solid curves) and (14), (17) (the dashed curves) for the values
M=16, A=0.1 and Ksinf = 8.

phased array operation in a free space, or the mode-angle analogy,
the multimode signal can be interpreted here as superposition of the
plane waves with the angular spectrum corresponding to the radial
wavenumber spectrum.

Figures 2 -and 3 illustrate the adaptive algorithms (13)-(17) for
the following values of parameters: M = 16, A = 0.1 (uncorrelated
modes), K sinf = 8. The dependences A,(j), A\2(j) and I(j) are shown
in Fig. 2, and the iterative spectra, in Fig. 3. As can be easily seen, the
eigenspectrum localizes rapidly in the largest eigenvalue, so the signal
"forgets” its initial coherence degradation and spatial disorder. The
rather effective localization (A, ~0.9,1 ~0.9) is achieved even for J =
2. It should be pointed out (see Fig. 3) that the first eigencomponents
are essentially not single-modal.

The dependence G(j) which is determined solely by the largest
eigenvalues, is more steep: G(1) ~ 1.0. Therefore, one cycle is quite
sufficient to achieve high-performance linear processing matched to
the first eigencomponent (which is carried here by the lower-order
modes).

Nonoptimal correction of the modal spectrum does not lead to the
required localization of the eigenspectrum. For example, the excita-
tion of high-order modes (m > 10) leads to a more uniform spectrum
of the signal eigenvalues in spite of the considerable decreasing of
the total number of signal-carrying modes [1]. Therefore, the criteria
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(12) are achieved not simply as the result of decreasing number of the
excited signal modes but due to the optimal source power focusing
to the modes that carry the first signal eigencomponent.

4.2. Vertical array in a deep-water channel

In this example, we use well-known Munk’s model for the sound-
speed profile in a deep-water channel [15, 16]. The values of the
model parameters are as follows: H = 4 km (the depth), B =1 km
(the depth of the sound-speed minimum), and M = 212 for a cw
source of 230 Hz.

The key dependences of the eigenspectrum characteristics on the
vertical array arrangement, large-aperture and short-aperture arrays
included, have been analyzed previously [2] with an emphasis on the
most important case of weak intermodal correlations (the scale A <«
M). In this section, we restrict ourselves only by simulation showing
the adaptive algorithms for the case of degraded modal covariances
(A = 0) and relatively short A/2-array of K = 32 elements (z; =
100 m and 25 = 208.5 m when z; denotes the array element depth).
This type of hydrophone arrays is widely used in underwater acoustic
applications.

Figure 4 illustrates the dependences of the first three eigenvalues
A1,2,3 (a), the quadratic gain G and order index I (b) on the iteration
index j for the algorithm (13), (16) (the solid curves), and for the
modified algorithm (the dashed curves) using the following iterative
spectrum:

&1(m) = [er(m)] (100 < m < 130), & (m) =0 (m < 100, m > 130). (18)

Figure 5 illustrates the iterative spectra for these algorithms. The
modified algorithm (18) is synthesized to correct the modal spectrum
so that the main lobe of the spectrum c¢;(m) is maintained but the
"tail”(corresponding to the high-order modes) is suppressed. This
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curves).

additional narrowing of the modal spectrum leads to a more effective
iterations as it is shown in Fig. 4.

Thus, the simulation results exhibit a principal possibility to con-
trol the acoustic coherence in random-inhomogeneous underwater
channels by adaptive correction of the signal modal spectrum. The
algorithm efficiency is shown to be dependent on the rate of the signal
eigenvalue localization desired in accordance with the criteria (12).

1 —
le,m 1, j=3
Y 2 1
C,(m)l._1 } |

o

Fig. 5. The iterative spectra |c;(m){;j-y (for j = 1) and &;(m) (for j = 2,3)
for the algorithms (13), (16) and (13), (18), respectively.
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5. SUMMARY

- In this paper, an adaptive approach to the problem of acoustic
field synthesis in long-range ocean environments was considered. The
optimal source excitation and spatial signal analysis were shown to
be obtained by using similar techniques of the eigenvalue-eigenvector
expansion associated with the normal-mode model of propagation in
an underwater channel. This fact was exploited to formulate the
adaptive acoustic field synthesis which was shown to be the iterative
correction of the excited modal spectrum depending on the modal
covariances and the receiving array arrangement.

Two particular adaptive algorithms were presented and compared.
They were proposed to optimize the modal signal spectrum so that
the signal coherence is increased considerably in spite of modal co-
variance degradation in a channel. The computer simulation results
exhibited distinctly a rather high efficiency of the algorithms in the
most interesting case of small ratios of the intermodal correlation
scale to the total number of signal-carrying normal modes.
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FORMATION OF ACOUSTICAL FIELDS
BY LEAK MODES AND SHEAR AND SIDE WAVES
IN LAYERED OCEANIC WAVEGUIDES

E.L. Borodina, A.I. Khil’ko, V.N. Shirokov

Anomalous high losses of hydroacoustical field may often be ob-
served in natural oceanic waveguides [1]; to describe this phenomenon
it is necessary to study the effect of mode energy leakage. This prob-
lem can be solved. for example, by choosing of sound speed profiles
and density stratification in the waveguide ?2] with the exception of
shear vibration in the ground or the ice layer. Inclusion into the prop-
agation model the shear oscillations allows to calculate accurately the
leak mode absorption and requires to study the behavior of normal
modes caused by an interference of reflected transversal and longitu-
dinal waves and also Rayleigh and Stonely waves propagating along
the ground surface {3,4]. The elastic ice covering in the oceanic shal-
low waveguide leads both to a change of the critical frequencies of
hydroacoustical modes [5] and an appearance of symmetrical and an-
tisymmetrical zero-order modes of the ice layer. An influence of the
antisymmetrical or flexural mode on the interference structure of hy-
droacoustical field near the ice layer was shown in papers [6,7]. The
contribution of symmetrical zero ice mode also can be appreciable
(even dominant, for example, in a mode shadow zone appeared due
to the high decay of hydroacoustical normal modes).

Examine now the contribution of leak modes, side waves, Rayleigh
and Stonely waves to the hydroacoustical field in various waveguides.
All modes of the oceanic waveguide are leak due to the influence of
sediment layers of low sound speeds and upper air boundary. Correc-
tions to the mode wavenumber caused by the leakage of the acoustical
energy (for example, to the air layer) are relatively small and can be
calculated by method of disturbances. Determination of the mode
characteristics in the waveguide with sediment bottom is more dif-
ficult, it requires a solution of the dispersion equation in a complex
domain. We will consider the field structure according to the compli-
cation of the waveguide model: from the Pekeris waveguide covered
by a liquid half-space of low sound speed (the model of air covering)
to the elastic half-space composed of three iso-velocity layers (as the
model of ice-covered shallow sea).

As stated above, the account of the air does not change appre-
ciably the sound field characteristics, but the difference appears due
to the air side wave caused by acoustical wave propagating in the
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air. When the source is situated in the air half-space, this difference
becomes significant.

THE WAVEGUIDE COVERED BY THE AIR HALF-SPACE

Observe now the waveguide composed of a horizontal liquid layer
between two liquid half-spaces. The acoustical field characteristics in
this model proceed to those of the Pekeris waveguide when the den-
sity of the upper medium tends to zero. The point monotone source
is situated in upper medium on the height k, (the origin of the cylin-
drical coordinate system is on the upper boundary, and the vertical
axis z is directed to the air). Then, satisfying the continuity condi-
tions of fields and those derivatives on boundaries and the condition
on the infinity one can obtain the decision of wave equation for the
pressure in the layer:

pi(r, z,t) = prw? exp(iwt) /:c k Jo(kr) gi(k,2)/di(k) dk | )]
where

91(k, 2) = 2qo(p1/po) exp(—iky hy) {~ag cos[ao(h — z)]+
i(po/p1)ez sinfao(h — 2)]} ,

di(k) = sin(aoh)[(p1/po)ad +(po/ p2)e1 @3] + i cos(aoh) (a1 +(p1/ p2) 2] o

kl =w/c1 ,ko=w/Co ,k2=w/C2 s

ay =\/kf—-k2 ,ao=\/k§—k2 ,azzﬁlk%—lﬁ ,

h - is the layer thickness, ¢;,cp,c2 - are the sound speeds in upper
half-space, layer and down half-space, respectively, p1, po, p2 - are the
densities of corresponding media, ¢o - is the source power.

Present the integral in equation (1) as a contour integral by closed
path in upper half of a six-sheets Riemann surface [8]. On condition
that kr > 1 using residue theorem one can obtain:

N 3
pi(r,z,t) = Z Res(kn) — Z Im | (2)
n=1 m=1

wherethe first item presents the sum of residues of integrated function
in poles inside the contour, and the second item is the sum of integrals
by Pekeris cut sides in the plane of complex k.
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Fig. 1. Dispersion curves of phase velocity amplitudes (a) and wavenumber
imaginary parts (b) of waveguide modes in the model of three liquid layers

Examine now the case of rare air half-space: ¢;/co = 0.2,p1/p0 =
0.001, where only modes with complex wavenumber take place. Sub-
stitution of the wavenumber k in the form k = k, + s to the expression
for di(k) (here k, - is complex wavenumber determined in Pekeris
model [8,9]) yields Re(s) =~ (p1/po)’ and Im(s) ~ (p1/po), i.e. the
normal mode parameters of this waveguide and Pekeris model differ
slightly. Fig. 1 shows amplitudes of mode phase velocities (a) and
imaginary parts of wavenumbers (b) versus normalized frequency for
¢a/co = 1.13, p2/po = 1.5. Unlike Pekeris waveguide, the wavenumbers
in studied model have small i imaginary corrections visible when the
frequency exceeds the critical mode frequencies of the waveguide.
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Integrals I, in (2) by sides of vertical cuts in a complex plane to
points k = ki, k = ko, k = k3 can be presented as

3 ko k1
Yoin= / k HY (kr) Fy(k) dk + / k HO(kr) Fy(k) dk+
m=1 i

/.- c: k HSO(kr) Fo(k) dk | (3)
A= G~ 0 L,
SR M
SR ) M

The sign + on «a; denotes integration by the left side of the cut, the
sign — corresponds to the right side. The first and second items in
(3) describe bottom and surface side waves, respectively. The third
item turns to zero because integrals by two sides of the cut by path
Re(k) = ko are equal in magnitude and opposite. In approach

2 tan? [koh\/l - (co/c1)2] < (c2/co — co/c2) kor

the first integral yields

Li(r,2) = 2(p1/p2)/r2 exp [ikgr —kihs/1 - (cl/cz)z]
[iao(p1/po) cos{apz) + a1 sin(agz)] /

{ao[ao(pl/po)sin(aoh) + ton cos(aoh)]z} . (4)

Evidently, the function I;(r, z) oscillates along the depth and depends
on a distance as 1/r2. When

(p1/p0)? (cofer — c1/co) kor € 1,

the second integral turns to

L(r,z) =2(p1/po)/7T exp [ikzr — koz/(co/c1)? — 1] )

26



The function I(r, z) exponentially decreases with the depth increase,
and it is inversely proportional to the distance.

At frequencies lower than the first critical frequency of the first
waveguide mode the total field consists of side waves only. When the
frequency goes up, the contribution of first quasi-propagating modes
becomes predominant, but only near the source, because this field
exponentially depends on a distance. Fig. 2 illustrates this phe-
nomenon showing amplitude-frequency characteristics of side waves
and the total field for A, = 0,2 = —0.1h. In the region below the
critical frequency one can see a predominance of side waves (curves 2
and 3) over the normal mode field (curve 1) at large distances. Inclu-
sion of dissipation losses to the model increases this effect. As it was
obtained, in contrast to the bottom side wave the surface wave expo-
nentially decreases with the increase of a distance to air boundary or
‘a frequency.

As a result, one can conclude, that for studied waveguide in ab-
sence of propagating modes the spatial-frequency form of the acous-
tical field is complicated by the side waves; and the main peculiarity
of this waveguide appears the surface side wave, especially for the
excitation of the waveguide from the air.

ICE-COVERED WAVEGUIDE

Consider the system composed of a liquid layer between an elastic
layer and an elastic half-space. The corresponding limiting process
transforms this waveguide to the well-known model of a liquid layer
with the elastic bottom. If the point monotone source is situated in
the liquid layer on the depth h,, then the corresponding solution for
the field pressure can be written as:

p2(r, 2,t) = pow? exp(iwt) /0°° k Jo(kr) go(k, 2)/d2(k) dk , (5)

where
D(hz—h,)Q(z+h1), z > —h,
gZ(kl Z) = qo

D(h2 + z) Q(hs - hl)y z < —h,

dy(k) = ai(po/p)ki [(po/p') o} ki* sin(aoAR) + i ap R'(k) cos(agAh)] x
Pi(k) + ag [(po/p') o} k}* cos(aoAR) + iap R'(k) sin(aoAh)] x Pa(k) ,
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D(z) = (po/p') o} kL sin(aoz) + i g R' (k) cos(aoz) ,
Q(z) = (po/p') a1 ks Pi(k) sin(aoz) — ag Pa(k) cos(aoz)
Pi(k) = (2k? — k})? cos(arhy) sin(aihy) + 4k% ooy sin(arhy) cos(ah; ) |

Pa(k) = 8k2aqa, (2k — k2)* [1 — cos(ahy) cos(azh)] +
[(2k* - Ic2) + 16k*a;2a,?] sin(arhy ) sin{ach;) ,

R (k) = (2k% — k2)? + 4k,

ki=w/e ki=wfe ko =wfeo ki =w/e) ki =w/fc, a1 = [k k2,

ar = k2 — k2 a0 = \[k2— k2 o} = \[k]* — k2 ,a} =\ [k} — k2,

hy - is the thickness of the solid layer, hy —h; = Ah - is the thickness of
the liquid layer, ¢, c;, p - are the propagation velocities of longitudinal
a.nd shear waves and the density of the elastic layer, respectively,
¢}, ch, p’ - are the corresponding values in the elastic half-space, co, po
- are the sound speed and the density of the liquid layer. Integration
of (5) in the domain of complex k when kr > 1 yields the expression
similar to (2), but with five integrals by cuts. Observe now the mode
structure of the acoustical field and compare the contributions of
different normal waves.

As stated above, the sound field structure in a given model is
complicated by additional modes caused by elastic oscillations in the
upper layer and the bottom half-space. Fig. 3 shows the dispersion
curves of phase velocities (a) and wavenumber imaginary parts (b)
for h — Ah, ca = ¢}, p2 = o', c2fco = 1.53, ci/co = 0.67, ct/co =
0.61, p/po = 0.9, hy/Ah = 0.02, that corresponds to the experimen-
tal characteristics of the ground where shear wave speed is less then
sound speed in the ocean, and the elastic properties of season shelf ice.
As seen from a comparison of Fig. 3a and Fig. 1a, critical frequencies
of normal waveguide modes in the second model are shifted to high
region due to the change of 1mpedance boundary conditions. These
modes (see curve 1) are leak in all frequency band, and those attenu-
ation constants exceed the corresponding values of the Pekeris model
SFlg 3b, 1b). At high frequencies (HF) (w > ¢}/Ah, Aw > ¢;/h;) the

lspersron equatlon d2(k) = 0 proceeds to three expressions:

o} (po/p') k;" + oo R'(K) =0 , 1 (po/p) ki* + aoR(k) =0 , R(k) =0,
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where R(k) = (2k? — k?) + 4k?cyoy. The first and second expressions
present Stonely dispersion equation of the systems water-ground and
water-ice, respectively, and the third one is Rayleigh equation on the
ice surface [10]. Al low frequencies (LF) (w < c}/Ah, Aw < ci/hy)
the dispersion equation has two solutions: k, = k?/(24/k? — k7) and
Rayleigh wavenumber for sealed ground (derived from R'(k) = 0).

As seen from Fig. 3a, one mode (curve 2) called below the ground
wave corresponds the solution of Rayleigh equation for the ground at
low frequencies (c = ¢!) [4] and the solution of Stonely equation for
the system water-ground at high frequencies (¢ = ¢,). The Stonely
wave is leak in this model and, as follows from [3], becomes noticeable
at transversal wave speeds ¢; > 0.65¢o. The LF asymptotics ¢, = w/k,
characterizes the symmetrical zero mode of the ice layer (curve 3).
Phase velocity of this mode is almost invariable in the observed fre-
quency band, the expended dependence is given in [7]. Rayleigh
wave velocity is the HF asymptotics of antisymmetrical zero or flex-
ural mode of ice layer (curve 4), the phase velocity of which goes to
zero at LF.

The ground mode is propagating (with zero losses) for any param-
eters, because both of phase velocity asymptotes do not exceed the
bottom share wave velocity [11]. For the given conditions the flexu-
ral mode is propagating too, and high-velocity symmetrical wave with
low attenuation is leak at all frequencies (see curve 3 at Fig. 3b). As
wavenumber vertical projections ap of flexural and ground modes are
imaginary, these modes appear inhomogeneous in the liquid layer,
i.e. exponentially decreasing with an increase of the distance from
interface surfaces. On the contrary, the symmetrical mode oscillates
with the depth change:

The limiting process of (5) when h; — 0 or p — po, ¢; — oo yields
the expression for the pressure in absence of the elastic layer:

pa(r, z,t) = pow? exp(iwt) /(;00 k Jo(kr) g3(k, z)/ds(k) dk , (7

where

D(hg — h,) sin(apz), z > —h,
g3(k,z) = g0 ,  da(k) = D(hs) .
D(hy + z) sin(aoh,), z < —h,
The dispersion curves of this waveguide are given in Fig. 4. A
small shift of critical frequencies occurs relatively to the previous
case, and the phase velocity curve of the ground mode is practically
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Fig. 5. The pressure amplitude versus the frequency and the distance: at the
depth z = —5hy (h, = 2hy)
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the first hydroacoustical mode (z = —15h;, h; = 13h, r = 20Ah)

the same as shown in Fig. 3, i.e. the elastic layer does not influence
on this mode; elastic layer modes are lacking.

Compare numerically the contributions of various modes into the
total field ps(r, 2,t). Fig. 5 shows the pressure amplitude at the depth
z = —5h1(h, = 2h;) versus a distance to the source and a frequency.
At frequencies below the first mode critical frequency of liquid layer
the flexural mode is predominant, at above frequencies the total field
consists of two main waves: flexural and first hydroacoustical modes.
Four exponentially decreasing resonance peaks coincide in critical fre-
quencies of the second and the next modes of the liquid layer. At
distances r > 10Ah the field is defined by propagating and weakly
leak modes. As mentioned above, besides the first hydroacoustical
mode at frequencies Aw > 10c¢o/Ah, the symmetrical zero ice mode
also is weakly leak. Comparative amplitude-frequency characteris-
tics of these and other modes at r = 20Ah(z = —5h;, h, = 15h;)

iven in Fig. 6 show the largest contribution of the flexural wave al

F (w < 5co/Ah). With the frequency increase the excitation coef-
ficient increases, and the symmetrical mode becomes predominant.
At (w < 10cy/Ah) the attenuation of the first hydroacoustical mode
goes down, so that its influence becomes significant; and the total
field is the sum of this mode and the symmetrical mode. One can
expect the decrease of the attenuation of the second and the next
modes with the further increase of the frequency or the liquid layer
depth, i.e. these modes will take part in the total field. The numeri-
cal estimation of the ground wave shows its visible contribution when
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the source is situated near the bottom or the frequency is below the
critical one in the absence of an elastic layer.

Fig. 7 shows isolines of the field pressure versus a frequency and a
distance for two positions of the source: near the surface and the bot-
tom at frequency w = 8.5¢p/Ah. In the first case we obtain the sound
field of so-called near-surface character formed mainly by propagat-
ing near the elastic layer flexural wave; and, on the contrary, in the
second case the source near the bottom excites effectively the ground
mode exceeding other waves especially at large distances (r > 10Ah).
Thus, the numerical calculations show, that in shallow sea, where
the shear wave velocity is less then the sound speed in the water
at distances r > 10Ah and frequencies w > 10co/Ah, the total field is
formed by shear waves in the ground and in the ice layer and also side
waves predominant near the bottom and the surface of the waveguide.
Moreover, far from the boundaries this field is getting visibly weaker.
At frequencies w > 10cg/Ah the field within liquid layer is composed
of one or two weakly leak hydroacoustical modes. The symmetrical
zero ice mode also can significantly raise the field at these frequencies
when the leak waves are strongly attenuated.

At presented calculations we did not take into account the mode
decay due to a dissipation and an energy absorption. This decay
depends on various factors: the age of the ice, its large-scale inho-
mogeneities (ice-hummocks, cracks, erosions, etc.), characteristics of
sediment layer. All these factors can result in a significant decay
of the surface propagating and leak modes. Mention in the conclu-
sion, that an account of various inhomogeneities complicates the field
structure by reciprocal excitation and transformation of hydroacous-
tical modes and Rayleigh-Stonely waves.
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ACOUSTIC COHERENCE
IN A DEEP RANDOM OCEANIC WAVEGUIDE

A.G. Sazontov

Introduction

The study of the combined effects of scattering and regular refraction
on acoustic coherence is of great importance in understanding statistical
behavior of oceanic sound transmission. From the theoretical point of
view analysis of this problem reduces to evaluating the mutual coherence
function (MCF) of space and time. There have been many theoretical
treatments of this subject. Recently, the systematic investigations exa-
mining the propagation of the MCF in a refractive oceanic waveguide
containing random inhomogeneities have been carried out in a ray oriented
approach using the path integral formalism developed for this situation by
Dashen [1]. The predictions of acoustic coherence from the path integral
theory and its comparisons with single-receiver measurements are fairly
well summarized in the book by Flatte et al. [2]. It should be noted that
a solution for MCF equivalent to that obtained by path integral methods
can be derived as the first approximation of the second moment equation
when only one path of multipath configuration is treated [3,4]. Wilson
and Tappert [5] have employed the Monte-Carlo technique for obtaining
the MCF from the acoustic transport equation that allows to simulate the
fluctuation phenomena in a deep sound channel where rough surface and
volume scattering effects are important.

There is an alternative method to describe the statistical properties of
acoustic signal based upon mode coupled treatment which is more suitable
for the important case of low~frequency long-range propagation. Applied to
ocean acoustics this approach has been developed in a series of publications-
(see, e.g. [6-16]). Most of the research to date using a mormal mode
decomposition has dealt with the average wavefield intensity evolution which
was obtained by numerical integration of coupled mode power equations
[8,9] or by means of a diffusion approach [6,7,14,15] when a discrete set of
guided modes is regarded as a continuum. The analytical works concerning
the correlation characteristics of a miltimode signal have also been tried by
use of a matrix analog of the Rytov approximation, although their results
are applicable only to the case of short propagating distances [13,16].

The aim of the present paper is to provide an efficient method for
solving the radiation transport equation for a multimode oceanic waveguide
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and to find in a closed form an useful approximate expression for the
total MCF which is valid for a wide range of refractive index profiles and
types of scattering irregularities. It is important to have such a solution
since it enables one to study acoustic propagation and loss of coherence in
realistic underwater environments. The body of this paper is organized as
follows. Section 1 contains a brief discussion of the radiation transport
equation in a randomly inhomogeneous oceanic waveguide and related
theory. The analytical method used to solve the transport equation is based
on quasi—classical approximation and generation function technique and is
described in Section 2. Section 3 addresses the validity limits of the theory.
Section 4 derives a simplified asymptotic version of the total MCF and
comments on its relation to the results obtained by using geometrical optics.
Section 5 shows how the method proposed may be extended to comsider
rough surface scattering effects. Calculations of the expected spatial and
temporal acoustic coherence from oceanic internal waves and fully developed
wind seas are presented in Section 6. In Section 7, we summarize the key
results.

1 Formulation of the propagation model

Consider an underwater sound channel of depth H, in which the refractive
index is the sum of the deterministic background profile ng(z) depending on
vertical coordinate z and the stochastic field u(r, z,¢) modeling the acoustic
medium fluctuations. Here, r = (z,y) is the horizontal two—dimensional
position vector and ¢ is the time. (The coordinate system is chosen with
the z-axis downward.) The pertutbation u is assumed to be Gaussian
random variable with zero mean, and can be described by its autocorrelation
function

< /-I'(rl’zhtl)ﬂ'(r% 227t2) >= Bll(lrl - r?lazlaz%tl - tZ)-

The angular brackets < - -+ > indicate ensemble averaging.

Let a nondirectional acoustic source be located at coordinates (0, zq)
and emit a cw signal of a carrier frequency wo. The waveguide with the
background medium is described by the normal mode functions, ¢n(z),
defined by the eigenvalue problem

d2

o ale) + [Brd() — K2 ga(z) = 0

together with appropriate boundary conditions and an orthonormality
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H
relation, i.e., [dz@n(2)¢m(z) = 6am. The eigenvalue corresponding to
0

the n-th modal function is designated by «2, and k = wo/co, where co is
some reference sound speed. The complex envelope of the acoustic pressure
field p(r, z,t) in an irregular oceanic channel can be formally represented by

M
p(r, z,t) = Z pn(r,t) oa(2). (1)

n=1
Here, M is the number of propagation modes and p,(r,t) is the random
normal mode amplitudes. The time factor exp(—iwot) has been suppressed.
In writing (1) we ignored the possibility of radiation modes and associated
continuous spectrum using the fact that these modes make a very small
contribution to the farfield. The expansion coefficients p,(r,t) satisfy the

coupled wave equations: ‘

(v2 + 82)Pa(r,8) = =) Vam(r,1)pm(r, t), (2)
where -
Vi (1, 2) = 282 / dz no(z) u(r, 2, t)on(2)om (2)
0

and v? stands for the two-dimensional Laplacian. The matrix Vi (r,t)
appearing in (2) is real and symmetric. At this stage we make the quasistatic
approximation, that is, the temporal variations of the envelope function
caused by volume inhomogeneities are small compared to the harmonic
oscillations.

We will be interested in the behavior of the second moment of the sound
wave that has passed through a scattering medium with regular refraction:

T(ry, 21, t1|re, 22,t2) =< p(r1, 21, t1) p(ra, 22, t2) > . (3)
Inserting Eq. (1) into Eq. (3), one finds that

D(r1, z1,t1jrs, 22,82) = Z Tam(1,2) @n(21)em(22), (4)

n,m

I‘nm(lvz) =< Pn(rl,tl) P:,.(l‘z,tz) >,

where labels 1 and 2 refer to two different horizontal position points and
times. Thus, the problem of finding a result for I' in an oceanic waveguide
how reduces to evaluating the cross-modal coherence functions I'y,,(1,2).
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We define sum and difference coordinates as r = (r; +r2)/2, p =r1—13
and introduce the angular distribution function Jym(r, s, 7) of propagating
radiation:

Fam(1,2) = Tp(r, o 7) = fds Jum(r, s, 7) exp(is;,, ps), (5)

where s is the two—dimensional unit vector, the symbol § denotes integration
over all s directions, T = t; — ¢, and &}, = (kn + &m)/2. The equation
governing the change of Jom(r,s,7) as a result of the scattering can be
derived from the Bethe—Salpeter equation and has the form

[svr —1(Kn — nm)] Jam(r,8,7) = —% [;a,m:(s).fn:m(r, s, 7T)+

Eam m(8)Tnm (T, s, T) + Z Z 7{ds' o™ (5,8, T) i (T, 8, 7).
n’ m'
This equa.tlon is a radiation,transport—-type equation in which the scattering
kernel o™ (s, s/, 7) is given by

nn’ (S S T) nn' (K’ m's T)’ (6)
nn’ (& T) 20t + //(27(')2 < Vnn'(r+p/2,t1)me:(r—p/2,t2) > eiaap.

The function o, describes the rate at which the energy is lost from the
n-th acoustic norma.l mode due to coupling to the m-th mode, and it is
related to o™ (s, s, ) by

Onpm(s) = Z%ds'a,m, (s,s, 7 =0).

In the case of large-scale inhomogeneities, i.e., kl; > 1 and I3 > [,
where I, and ], are, respectively, the characteristic horizontal and vertical
correlation length, the matrix scattering cross section ann, (s,s) is sharply
peaked at x},.s ~ IC+, .s’. In what follows, where the forward scattering
is assumed to be essentxal we shall use the spatial coordinate system
r = (2, R) with the z-axis taken in the main direction of wave propagation,
and also put s = (s,,s.) where s, < 1and s = Vi-sd = 1- 1.
To eliminate the rapid phase variation in J,, we turn to slowly varying
cross-modal angular correlation functions Jp,, as follows

Tnm(ry8,7) = Tum(r,s, ) ei“;mm, (7
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where K., = Kn — Km. The resulting system of equations for Jnm then
pbecomes

2 . -
[(1_ )—+3J_3R ;n;msi]fnm(l‘,s.l.,"'):

Nli—l

[Za,m (@) T wrm(r, 51, 7) + Za,,, (@) Tnmi(,52,7)]+ (8)

+ Z /dsﬁ-a':tnrr?l (:l:; $1, sl_l_v T)_‘Tﬂ-"m'(r’ 81’ T)’

1
,m

where Tam(z) = Z f ds', T (2,8, , ¢, 7 = 0) with 327 (z;8,,4,7) =
(et — K,;f,m,, K81 — K308, T) expli(K i — Kom)Z)
and integration over ¢/, is extended from —oo to co.
In addition to (8), initial conditions in z must be imposed. These con-
ditions, dictated by the source, may be obtained by a matching procedure

to give _
Tum(z = 0,R,s1) = on(20) om(20) 6(R). ©)

1
87 /Knkm

In the small angle approximation Eq. (5) reduces to

Pam(r,p,7) = exp(ifc,fmp") / dsy Jum(r,s1, 7)exp(ictpis1),  (10)

—00

where p = (p“, p.). The functions T'y,(r, p, 7) depend on the variable Py
only through the trivial factor exp(in,fmp"). By taking it into account
we can set in Eq. (10) p, = O considering instead of nm(r,p,7) the
“transverse” coherence functions '}, defined as

oo

Tam(r, 0, 7)l, =0 =T},.(1,2)e iy /dsLJnm(r, si,7)exp(ik}pL81)

-0
(11)
Note that T} (1,2) correspond to slowly varymg forward propagatmg cross—
modal coherence functions, where r; = (z,y1) and r» = (z,y2). For
simplicity of notation we will henceforth drop the subscript “L”.
Equations (7)—(11) are the main equations in this section. If we approxi-
mate (1—s%/2) by 1 and take the Fourier transform of Eq. (8) with respect
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to s, then for '}, (1,2) we find

8 i & ik, 8.,
[55 " W 5908 T 3t 52| Lom12) =

[EA,.,, (L)) TE,(1,2) +ZA,,“,,.(2 2) rm,(l,z)}+ (12)
+ZZA1"L’ (1 2) Pn‘m’(liz)

n' m'
with

I‘i-m(liz)lz:o = <Pn(20) Pm (Zo) 6(p) 6(R), (12&)

1
4&,*{ En K
where Apnr(1,1) = ZA"m, (1,1) and

00
m:", (1’2) = [1'2(&" = ""‘)z] /day Bfm’ ('Cnm :’m” a‘!I)ezayp'
’fmm'cn m!
-00

Equation (12) is obviously equivalent to the second moment equation
derived from parabolic wave equation under the Markov approximation,
and the latter equation has been exclusively used by previous authors. With
regard to Eq. (12) the following point should be noted. If one is interested
in the long range propagation, then only nonoscillatory terms contribute
appreciably to the equation system (12). So, in the limit of large z Eq. (12)
reduces to

3 i 8 i K 0% i
et 2) =
[8:c — 390k T 2532 57| Lom(1)2)
1
= =5 | Ann(1,1) + Amm (2,2) | T Lo(1,2)+ Z AT (1,2) T (1,2), (13)
n',m/
where the symbol E;,’m, means the summation over all couples of modes
satisfying the synchronism condition
Kn — Km = Kt — Kmt. (14)

In these circumstances the diagonal elements of the matrix '\, decouple
from the off-diagonal elements, since at n = m the condition (14) will be
justified when n' = m’. Note also, that the behavior of the off-diagonal
elements T',,, (n # m) depends essentially on the type of an oceanic

42



waveguide. In particular, for waveguides having quasi—equidistant spectrum
of the wavenumbers ., the condition (14).can be satisfied for a large number
of modes n, m and n’, m/ such that n — m = n’ — m’. In the opposite case,
when the spectrum k,, is nonequidistant, the contribution to the double sum
gives only terms n = n’ and m = m'.

2 Quasi—classical derivation of
the cross—modal mutual coherence functions
from the matrix transport equation

The general solution of Eq. (_8) corzesponding to an arbitrary initial distri-
bution on the plane z = 0: Jom(r,s, T)L::O = J% (R, s) can be expressed
as

o0
Tam(r,8,7) =Y / / ds'dR'g™(z, R, s|0, R", 8") IRX(R",§'), (15)
LD, S

mA

where g2 (+|-) are the Green—matrix elements which obey the equation

1 8 8 :
(1= 3805 + 555 — 2hins?| 90N (e, Ry sl R) o) =

o0
= E /ds"ﬁ::? (=, 758, s")g,"'ﬁ:,)‘(z, R,s"z", R, s") (16)

1 1
nim’

with
G| —g = Env B 6(s — ') 6(R — R').

In writing (16) the parametrical dependence g™} on 7 has been omitted for
brevity and it has been put
T (2,739,8) == 2 | Smm @) +onmsFonom ()| 6(a =4 4572 (3, 9, 51, 7)
nn' U] 2 mm'Ynn nn'Um'm an' 1y Iy 7).
(17)
The set of coupled integrodifferential Eqs. (16) is very hard to solve
exactly and numerical simulations are needed. If M becomes too large, the
numerical integration of these equations becomes impractical. However, in
the quasi—classical approximation, when for ¢, (z) the WKB formulae are
valid, it is possible to construct the analytical solution for g™ and to obtain
an useful, approximate representation for the total MCF.
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The approach employed is based on the following basic assumptions that
reinforce each other:
(i) The first one concerns the structure of the coupling matrix elements

and consists in the possibility of presentating c™7 in the form:

o = f(n, myn—n',m-m'), (18)
where the function f tends rapidly to zero as the difference indices n — n',
m — m’' increase, and undergoes relatively slow variations of n and m (at
given n —n’, m — m'). The physical basis for this assumption is the fact
that by definition, Eq. (6), the cross—section matrix is proportional to the
product of the coupling elements V,,,,. But, in compliance with the well-
known Landau result {17], the matrix element of quantity u(z) calculated
in the WKB-approximation transforms to the Fourier components y,, _,, of
the series expansion of the function u(za(z)), where z,(z) is the classical
trajectory of motion (specified in (36)).

(ii) In addition to large mode numbers (M > 1), the theory is restricted
by the requirement that the coupling mechanism involves predominantly
near neighbors, so that the Green matrix elements g™ differ from zero
when n and v, m and ) are such that
il Y (19)

A

(iii) To simplify the problem we replace the factor (1 — s2/2) appearing
in the left-hand side of Eq. (16) by 1 and drop the term proportional to
82T m since 85 < 1.

Now, we turn to direct discussion of the procedure for theoretical
evaluation of the cross-modal MCF. In order to solve (16) it is convenient
to introduce a generating function F% that contains two new independent
variables « and 3:

F:f(a:,R,skc',R', §) = ZzgryA(x’R’slzl’Rr’ e i(n—v)a—i(m-2A)B

n
(20)
It follows from Eq. (20) that Ff‘f is a periodic function with period 27,

: 2af _ pa+42n B2
Le, F i’ = F |

n—v

<1 ,

and, therefore, the segment 0 < a, 8 < 27 may be
taken as the main region of the definition of F:ff over the variables a and 8.
The relation between g/} (+|-) and F2P(--) is given by the Fourier inversion

2x 27
=5 / dare i ">“0 apeitm = NOEL(). ()
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* Multiplying (16) by exp|i(n —v)a —i(m — A)B | and performing the double
summation over all n and m lead to the result

8 . .9\
(8 +s§1—2) Vf(:c,R,sI:c',R',s'): (22)

2® 2= oo

1 a 1t o'’
= ——(27‘.)2 /da/dﬂ/ ds"Kuflaﬁ (x, T;$, 3”)1’1”\‘3 (z’ R’ 3|w’,RI, S’),
0 0 -0

where

aﬁlaﬁ Z Z o —w(a —a)+iAB-F )f"" *Bp. (23)

mm”
nmn'm’

aa’ _ : 1t
F28 = explina —in'd’].

The specific presentation of the coupling matrix ,’,’,‘{,"' calculated in the

quasi—classical approximation, Eq. (18), together with conditions (19) allow
one to simplify the shape of the kernel K p]ap and to reduce Eq. (22) to

more convenient form. In view of the fact tha.t ,:',‘,’f‘l is a function mainly
of difference indices, we change the summation variables in (23) from =, »’
and m, m’ ton, m and ¢ =n'—n, p = m'— m. Owing to the properties
of the quasi—classical elements, the function U,""n'_';jp falls off rapidly as ¢
and p increase. It means that the quantities U/} +7 differ from zero only
if the labels ¢ and p do not exceed a definite number of effective interacting
modes aM_¢;. Hence, if

IU;nn'li;'P| ~0 atg,p> AMeff and AMeﬁ <M, (24)

then the summation over g and p can be extended to infinity with negligible
error. In these circumstances and when (19) is taken into account we can

expand the phase factor in f]_:,n,:',l in Taylor series in both differences n — n/,
m—m' and n—v, m— ) to give

wmm' dky, ' 1d? Kn "na
a'rgUnu' ——1![%(71 )+ 2 dn? ( n) - (25)
dkm n 1d%kp, N2
=Gy =) = g G =) ]
with
de, dkr, d%k, dkm dfc,\ d n,\
n = a Tzt s e (e
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Equation (25) is a good approximation of arglUnss provided that dk,/dn
and dk,,/dm vary slowly over the group of effective interacting modes
considered. Then, in accordance with (18), the quantities U, ,ﬂ:" are
smooth functions of n and m, so that we can use the following expansion

URIEP = UM [(n =)+ (m— N | ORI 4 (26)

If we retain only terms involving the fist—order derivatives with respect to v

and A in Eq. (25) and keep only the first term in Eq. (26), then for K, aﬂ lo’s’
we get

aﬁlaﬂ () = B3P ()am(a - o) Am(B —p)e~wla—o')+ir(B - g

where

. d . d
BO= 3w T - wb- R g
@Hp=—00

and

Du(9) = Zexp(zw 2:1‘:2//2; i(M +1)¢/2,

An approximate attempt to include the effects of higher order terms in (25)
is discussed in section 5.

The characteristic scale of the function H: f over the variables & and
B is ~ 1/aM.;ss, while the function (sin M@/2)/(sin$/2) has the scale
~1 / M. Since we have already used the fact that AM_g > M, therefore

H ,‘,’,\’5 change only shghtly over scales that are large compared to 1/M and

we can regard H as nearly constant. Then, the integration over o’ and
B’ in the nght—hand side of Eq. (22) can be carried out with the help of
the formula

x 27
do’ _iy(a— o) [48 iNB - B alp’ a
B0 mivle =) [P DB = B) pry(a— o) MaalB-B)VFF () = FELO)
0 0
which is easy to prove using the definitions of F°? and Am(4).

Thus, under the assumption made above the final version of Eq. (22) is

(aa +s—) (2, R, slz', R, ')—/d""H“”’(z s\ m)x  (28)

xF*8(z, R, 5"z, R', &').
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Later, in terms of the parameters characterizing the refractive and scat-
tering properties of the oceanic waveguide we shall establish the necessary
conditions allowing one to reduce the starting Eq. (22) to Eq. (28).

Equation (28) coincides formally with the equation governing the pro-
pagation of the MCF in free space. Such an analogy allows one to use
in analyzing (28) the well-known methods developed as applied to the
wave scattering theory in nonstratified media (see, e.g. [18]). This has the
advantage of offering the possibility of obtaining solutions in a closed form
for waveguides.

The equation for the generating function, (28), can be solved exactly
by the Fourier transform method or by the method of characteristics. The
result is

dp
(a; R, s|e', R, :)_ dP P eIk A(sp—sp)Faﬁ(z R,plz’, R’ p');
ﬁ;’f(l,zu',z') = G (1,21152) exp[ - T, (1,211'2)] (29)
with
- Toly K;v ucv,\(p p)(R R )
dpa(1,2(1,2") = - exp{ @-2) }

and

T:f(1,2|1',2') I/dffd&yﬂ':f(z, 'r;aey) exp{iay [p(f _(:,_) :';)'(a: - f)] }

This solution has the nature of a Green function solution of the radiation
transport equation in the absence of regular refraction and in such a form
it was first obtained by Dolin [19]. Equation (29) can be used to express
the “transverse” coherence function (11) in terms of £’ as

f(12) =25 /dp /dR' §mM 2,0, RI0, AR TR(AR)  (30)
with

2%
e~in—v)afggei(m —A)B fabqy 911 9),

o 1
g (1.211,2) = —
(2= ,

(31)
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Equations (29) — (31) constitute our central results. In conjugation
with (4), (11) they give explicit rules for calculating both the correlation
function and the wavefield intensity in a random oceanic waveguide. For
a point source situated at (0, zp) from (30) with I'%, (R, p) given by (12a),
we get '

2% 2
L12) = == [daeiln—¥)afggeilm = NBres(1 ) (32)
(27)? MO/ J 2
with
r28(1,2) = I%,(1,2) exp[ D3R (1,2)], (33)
and 1

v (20) ¥ (20) 99 (1,2]0,0);

IoA(1,2) =

4&3’1\ KK
55(1’2) = 2T:,\p(1’2|0s0)'

It is seen from (33) that the multiply scattering effects give rise to the
exponential term exp [—l D1, 2)] describing the loss of coherence. The
characteristic decorrelation sca.les depend somewhat on the inhomogeneity
spectrum parameters entering into D (1 2). Now we will focus our
attention at evaluating Dgf (1,2) in quasi—classical approximation and on
establishing the relationship between D:f (1,2) and the phase-structure
function calculated along two different equlhbrmm rays connecting the
source to the receiver. In order to obtain D? L) it is necessary to find a result
for the coupling matrix U™’
of H f , according to (27), that requires, on the other hand, the knowledge
of the matrix elements V,,+. In the WKB approximation for normal modes

whose elements appearing in the definition

4 1/4 .
en(2) = (::) [ 2(2) —a ] cosby,(z); 2P <z< 2z, (34)
2z
where a,, = &n/k, A, is the mode cycle distance, 8, (z) =k [ d2Tnd(z)—a2]/?
z'r:ﬁn
— x/4 is the phase integral, z,‘:‘i“ and z7** denote the turning points, the
universal formula for the quasi—classical matrix element may be obtained
[17] (see also [20] for detail). In our notation it has the form

Aes2
Vi (r, 8) = 22 / da'no[za (2')](x, 2a(2), 1) cos(—(n— %), (35)
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where z,(z) is the modal ray trajectory satisfying the equation

2 zn (2
L) - L2 ifen(e) (30

with |
dz;.a(:z) o —1/13(2) — a2 = tg xa(2) ; nol2a(z)] cos xn(z) = an,

and Xz (z) is the angle the modal ray makes with the horizontal at the point

z.
Applying (35) to (17) with subsequent performing the necessary

ca.lcula.tlons in (27) enable us to rewrite D), p V(1,2) as

o8(1,2) = / o' (452, 11, 1) + &z, 2021, 2) - 24550z, 112, 2)] (57)

aB ! oy 2 d&ydmz '
ds(z, 1|2, 2) = 27k dn//cosx,,(z')cosx,\(:c’) (ae,,,\(:c) 0,228 (= ))

!
X cos (aypz;) cos (a,{ff(z')) cos(S27).
Here, ®,(2e,(,z) is the local spectrum of the sound—speed fluctuations
taken at se = 222 (z), where the wave number 2% (z) has components
2[0(z) = (<05t x5 (2) + te xR (2)), 2, 22),
tgxS(z) = dzZ(z)/dz is the inclination of a modal ray with the path
7(z) =z,,(:c——aA /27), and  zZ2(z) = 0.5(22(z) + 25 () ; €2(z) =
= 22(z) — 22(z). The expressmn for D?2(1,2), Eq. (37), is immediately
recognized as the phase-structure functlon with the only difference that
the integral in (37) is taken along moda.l ray instead of usual geometric ray.
The combination d22(z, 1|z, 1)+ d5h (<, 2|, 2) — 2d25 (z, 1|2, 2) can now be
regarded as a density of the phase-structute functlon Note, that precisely
the same result for D° (1,2) can be obtained by using geometrical optics

to ‘compute the random phase of modal rays ¥,4(z,y,t) associated with
the path in the presence of fluctuations [21]

4

k2 [
\I’ua(‘c, Yy t) = a_ dm'no[z.?("")] u(zls y% ) Z,‘,’(Z’), t) (38)
0

and the quantity of interest can be expressed directly in terms of Pyalz, ¥y, )
s DR(1,2) =< (Vuall) - Tap(2))” >
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3 Limitations and validity

We examine the validity of the basic assumption made during the derivation
of Eq. (28). First, to obtain Eq. (28) the small angle approximation was
invoked. This requires that the scale size of the irregularities is much large
than the wavelength of the acoustic field, i.e., klL > 1.

Then, we assumed that the number of effective interacting modes aAM.g
must be significantly less than the number of propagating modes M. The
quantity aAM.g is the characteristic scale of the function a,’),’,\i';’ over the
index variables ¢ and p. With the help of (35) and using the definition (6),

it is easy to estimate that a mode with label v can effectively couple to

AMeff(V) = m

modes. Here, the overline denotes a weighted average over the spectrum.
Since aAM, g is independent of wg, while M ~ wq, there will be a lower limit
on acoustic frequency below which the criterion (24) will fail.

The other assumption implicit in Eq. (28) is that the second order
derivatives with respect to » and ) in the series expansion (25) as well
as the term proportional to s2J,, in the left-hand side of (16) are small
enough to justify neglect of them. The contribution of the higher order
derivatives to H:'f , Eq. (27), is easy shown to be

[>.¢]

()= Y NP fvalz, ) fip(=,p),

Hp=—©

where f,q(z,q) = explig(a— %’%ﬂz) - %qzd—;fv}z]. This correction in
conjugation with the term ~ s%J,,, in Eq. (16) modifies the result for
D:f leading to the appearance in d':f of an additional multiplicative factor
Q,‘ff(a:, z',22,, =,) of the form

| [k &ae’ (2 — ')

B . 2
Q:,\(zy 2',&,/,&,) —exp{_i'[ njf:c

+&Z (an (zlv v, a) - Qﬁu (1:’, AB ))] }7

where

za(z) ] 1/2

v
d a,dz
da,
m

N OEr:

27
opy (v, @) = tg x5 () [T

in
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can be interpreted as the modal analog of the vertical radius of the first
Fresnel zone [22]. Therefore, our consideration will be valid if

o}, (=) = e}, (& 0)| <1l ;5 o (2 ma)— g}, (=, 0 8)| <1, (39)

where g¢ (z,v) = /27 /k, = has the sense of the horizontal radius of the
Fresnel zone. It is important to emphasize that the conditions (39) are
much less rigorous in comparison with the traditional Fresnel conditions for
individual geometric ray provided that o < by op, <L

Finally, the assumed smoothness of the change of ,’,’;","' versus indices
n and m enabled us to truncate (26) keeping only the first term in this
series. Such approximation will be justified if

¢Wl'(:c)g.%" (:B, v, a) - Q/\ﬂ(z)Q;" (:l:, A ﬂ) < lﬁr (40)

where ®2_(z) =< ¥2_(z)> is the phase variance (38).

4 Asymptotic behavior of the total MCF.
Interpretation of the results

The evaluation of the total MCF requires a double summation and twofold
integration in (32) and subsequent double summation of the result obtained
according to (4). It is a very difficult computational task and in order
to make the problem manageable we shall assume, that for sufficiently
large propagation distances, the structure function D:f depends mainly on
difference argument ¢ = o — 5. As a result the Eq. (32) takes the form

2x
1 —i(n —
I";Em(li2) = Zl'- Z/d(pe z(n V)‘orfx(lvz) 6n—m;v—A~
vA g

Hence, under the assumption made above the diagonal elements of the
matrix ', (1,2) decouple from the off-diagonal elements, that agree exactly
with the discussion given at the end of Sec. 1. It should be emphasized
that the off-diagonal elements as we can see from DZ?(1,2), Eq. (37),
are exponentially decaying functions of range. Therefore, these terms will
be particularly important in describing the evolution of the total MCF at
relatively short propagating distances. With increasing range, the diagonal
elements T',,,, in (4) becomes increasingly important and exclusively these
terms play a dominant role in modeling the asymptotic behavior of the

MCF.
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The further simplification of the expression for the total MCF occurs
when we again use the WKB approximation for the normal modes. To see
the physical implication of this we rewrite Eq. (4) with the help of Eq. (32)
as

(rlizl’t1|r2v22$t2) - (2 )2 ZZ/ dadﬂr (1!2) :,\(zl)‘];ﬁ)‘(zz)’

n,muy, A
(41)
where
J2,(2) = pn(2) exp|iraz — i(n — v)a].
Then, we present the cosines in (34) in terms of exponentials
n(2) = o1 (2) + 07 (2),
where p ;
1/2 -1/4 .
3 (2) = (an/An) " [nd(2) — ] “exp (£iba(2))
and change the summation variables n, m and v, X in (41) to: v, X and
g =n—v,p=m— A Using the same analysis as given previously in
deriving at (28) we find
D(r1, 21, talrz, 22, t2) = Y [T (1L,2)e (21) @5 (22)4T55(1,2) 95 (21) 5 (22)]
v, A
(42)
where T',(1,2) = I'9,(1,2) exp[i(x, — x2) — 1DEE(1,2)], and

DE(1,2) = DP(1,2) at a = z—”z + $l=) (21) B=2Ts do:lf\zz).

The formula (42) has a direct physical interpretation: each term entering
(42) can be identified with the ray contribution to the total MCF propaga-
ting in a multipath oceanic channel.

5 Rough surface scattering effects on ocean
acoustic coherence

In certain circumstances, for example, when the propagation takes place
in an upper sound channel, surface interactions play a predominant role
in acoustic signal fluctuations. The formalism developed in the previous
sections may be extended to the analysis of acoustic coherence after long
range multiple surface scatterings. This can be done as follows.

52



In the presence of a soft boundary z = ((r,t), where { represents
the random displacements of the ocean surface, in addition to the wave
equation the following condition on the acoustic pressure field is imposed

p(r,{(r,t),t) = 0.

Concerning the statistics of {(r,?) we assume the usual hypothesis that
¢(r,t) is a Gaussian homogeneous and stationary field with zero mean and
is characterized by the spatial-temporal correlation function B,:

Be(py 1) =< {(r,t)¢(r + p,t+7)>.

For a small Rayleigh parameter the explicit boundary condition can be
expanded at the mean ocean surface z = 0 in powers of { to give
. Op(r,z
p(r,0) = ~¢(r, 1) 22
In the case comsidered, it is straightforward to derive that the normal
mode amplitudes pp(r,t) in the representation (1) formally obey the set
of stochastic equations (2) in which the coupling coefficients V,,,,, are now
defined according to [6]

Vam (r’ t) = SOL(O)(P:,, (O)C(l‘, t)v

where the prime denotes differentiation with respect to depth 2. Hence,
rough surface and volume scattering effects can be formally described in
the framework of united approach and the particular scattering mechanism
specifies the concrete form of the coupling elements V;,,,. Therefore, the
equations governing the propagation of the MCF in a waveguide with a

rough surface are thus the same as before except that the scattering kernel
mm'

z=0

omn? must be replaced by
nnmm’ ] _ T ' (0)o! (0)o (0} F + + '
Oan! (S,S )T) - 216;'; [‘pn( )son’( )‘pm( )‘pm’(o)] ((K'nms_nn’m’s’T)!
m

where F¢(ze,7) is the Fourier transform of the surface autocorrelation with
respect to p.

A considerable simplification occurs when we deal with long range
propagation. In this case, as was mentioned in Sec. 1, for the upper-sound
channel having a nonequidistant spectrum of the wavenumbers «,, the
Eq. (13) at n # m reduces to \ \

- e pn —a—] Tha(1,2) =
8z  kim OpOR = 2 k12 8p?

= [—%(A"n(l,l) + Amm(2,2)) + AT,I"(L?)} Tam(1,2).  (43)

Thus, as a consequence of (43) we obtain the following representation [23]:
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Tom(1,2) = ¥n(20) P (20) exp[—Rnm(1,2));

1
87\/Kn KT

where

Ram(1,2) = (Ann(1,1) + Amm(2:2))z — / d:c'A"""(p— 7).

For the diagonal elements I}, (1,2) a similar procedure as given in Sec. 2
leads to the expression [23]

Tha(1,2) = Z E}_ ZO)/d"‘ —i(n — m)a — 1 Dmq(1,2)
m=1

and

M T o0 ’
z' iqg -
Dpa(1,2) = E/ / ey Bryd (km=—fKq, @y, T )[l—cos(aeyp;)ez(q m)a]'

6 Evaluation of the intensity and acoustic
coherence from oceanic internal waves
and fully developed wind seas

To illustrate the effects of random volume and surface scattering on acoustic
transmission we consider the realistic deep ocean environments from the
North-West Pacific and assuming the Garret—Munk spectrum for B, and
the Pierson-Moskowitz spectrum for B;. The two sound-speed profiles
chosen for our calculations are shown in Fig. 1. They represent summer
and winter seasonal averages at latitude 45°N and buoyancy frequency. The
summer profile differs from the winter one in possessing an added surface
layer of warm water, strengthening the sound channel without greatly
changing its deeper regions.

We begin with observing the effect of internal wave scattering on the
wavefield intensity as a function of range and depth. The quantity of
interest is

I(r, 2) =< |p(r, 2z, ) > Zr Ko = Em)Z 6 (2)om (2).

For many purposes one is mterested only in the long range average intensity.
In this case as mentioned above the diagonal elements 'y, make the main
contribution to I(r, 2).
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Fig. 1: Sound-speed profiles (a) and buoyancy-frequency distribution (b)
from the North—West Pacific. The profiles are: 1 — summer; 2 ~ winter

Figure 2 shows the behavior of the function I(r, z) (in decibel notation)
for fixed r and variable z, or for fixed z and variable » with cylindrical
spreading factor removed.

Calculations have been carried out for summer profile, for source fre-
quency of 250 Hz and source depth of 50 m. It is seen from this figure
that multiply scattering effects are responsible for redistributing the initial
intensity distribution. Distinctly it is observed from Fig. 2a where the initial
major peaks at the source and reciprocal depths (r = 0) after long range
(r = 1000 km) become diminished.

In Fig. 3 we plot the normalized MCF in the case of time, transverse
horizontal and vertical separations. The theoretical curves in Fig. 3 have
been used the results of the work of Esswein and Flatte [24] for the phase—
structure density from internal waves.

Analogous graphs for wavefield intensity and correlation functions are
Presented in Figs. 4 and 5 for winter sound-speed profile assuming that
the fully developed wind seas are the dominant source of transmission
fluctuations.
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Fig. 2: Reduced intensity as a function of depth (a) and range (b), with
cylindrical spreading factor remeved, for summer profile. Source frequency
is 250 Hz, source depth is 50 m
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2-500km, 3 ~ 750 km, 4 — 1000 km. Source frequency is 250 Hz and source
depth is 100 m
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Fig. 5: The normalized MCF of time (a), horizontal position (b) and vertical
position (c) for winter sound-speed profile at » = 500 km and various surface
roughnesses: 1 — v = 10 m/s, 2 - v = 13 m/s, 3 — v = 15 m/s. Source
frequency is 250 Hz and source depth is 100 m
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7 Summary and conclusions

The mutual coherence function is of great importance in understanding
statistical behavior of ocean acoustic transmission. It has been shown in
this paper how to efficiently derive an asymptotic expression for the MCF
in terms of modal structure of the acoustic pressure field using the radiation
transport equation. The method for solving the corresponding matrix equa-
tion is based on combined use of the WKB approximation and generating
function technique. The procedure elaborated allows one to reduce the
problem of the wavefield coherence calculation in a refractive sound channel
with random volume inhomogeneities to the analogous problem in free space.
The validity conditions for the given formalism are formulated. The method
employed was also extended to include rough surface scattering effects. The
application is illustrated by numerical computation of the expected acoustic
coherence for realistic environments from the North—West Pacific under the
assumption that the random field of internal waves or fully developed seas
are the dominant source of transmission fluctuations.

Several conclusions may be drawn from the above analysis. First, the
volume and surface scattering serve to redistribute the initial intensity
distribution as a function of depth. After sufficiently long range, the initial
intensity peaks at depth corresponding to the source depth and reciprocal
depth become diminished. Rough surface scattering has been established to
cause the most significant effects on ocean acoustic coherence. In particular,
as observed in the resulis of Sec. 5, for a source of 250 Hz, at a range of
500 km and wind speed of 15 m/s, the characteristic horizontal coherence
length and coherence time have an order of magnitude of 50 m and of 2 s,
respectively. For comparison, the corresponding scales computed from the
Garrett—Munk spectrum and summer profile in Fig. 1 are of order 400 m
and 200 s.

It should be pointed out that the above calculational methods will be
useful in the design and analysis of experiments whose purpose is ocean
tomography.

Acknowledgments. This work was supported by the Russian Foundation
for Basic Research under Grant N2 94-02-04544-a. The author thanks
Victor Farfel’ and Nadezhda Vdovicheva for programming and graphics
support.

60



10.

11.

12.

13.

References

. Dashen R. Path integrals for waves in random media // J. Math. Phys.

1979. V. 20, N2 5. P. 894-920.

Flatte S.M., Dashen R., Munk W.H., Watson K.M., and Zachari-
asen F. Sound Transmission Through a Fluctuating Ocean, edited
by S.M. Flatte // (Cambridge U.P., New York, 1979).

Macaskill C.C., Uscinski B.J. Propagation in waveguides containing

random irregularities: the second moment equation // Proc. R. Soc.
Lond. 1981. A 377. P. 73-98.

. Beran M.J., Whitman A.M., and Frankenthal S. Scattering calcula-

tions using the characteristic rays of the coherence function // J.
Acoust. Soc. Amer. 1982, V. 71, N2 5, P. 1124-1130.

Wilson H.L., Tappert F.D. Acoustic propagation in random oceans
using the radiation transport equation // Ibid. 1979. V. 66, N 1.
P. 256-274.

. Bass F.G., Fuks I.M. Wave Scattering From Statistically Rough

Surface // (Pergamon, Oxford, U.K., 1979).

Kohler W.E., Papanicolau G.C. Wave propagation in a random-
inhomogeneous ocean // In: Lecture Notes in Physics. V. 70. Wave
Propagation and Underwater Acoustics, edited by J.B. Keller and
J.S. Papadakis (Springer—Verlag, Berlin, 1977).

Dozier L.B., Tappert F.D. Statistics of normal mode amplitudes in a
random ocean // J. Acoust. Soc. Amer. 1978. V. 64, N 1. P. 533-547.
Beilis A., Tappert F.D. Coupled mode analysis of multiply rough
surface // Ibid. 1979. V. 66, N2 3. P. 811-826.

Sutton G.R. Application of a stochastic wavegnide propagation model
to ocean acoustics // J. Math. Phys. 1981. V. 22, N2 12. P. 974-976.
Kryazhev F.I., Kudryashov B.M., and Petrov N.A. Propagation of low-
frequency sound waves in a waveguide with irregular boundaries // Sov.
Phys. Acoust. 1976. V. 22, N2 3. P. 21-24,

Dolin L.S., Nechaev A.G. Mode description of the acoustic field
interference structure in a waveguide with statistically rough wall //
Izv. VUZov. Radiofizika. 1981. V. 24, N2 11. P. 1337-1344 (in Russian).
Moiseev A.A. On the evaluation of field coherence function in a
randomly inhomogeneous waveguide // Dokl. Akad. Nauk USSR. 1984.
V. 279, N2 6. P. 1339-1344 (in Russian).

61



14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

62

Sazontov A.G., Farfel’ V.A. On the calculation of low-frequency
sound attenuation in the ocean due to scattering by internal waves
// Akusticheskii Zhurnal. 1986. V. 32, N2 4. P. 492498 (in Russian).
Artel’nyj V.V., Kukushkin V.D., Raevskij M.A. On energy and cor-
relation characteristics of low—frequency acoustic waves in underwater
sound channels // Ibid. 1986. V. 32, N2 4. P. 591-597 (in Russian).
Sazontov A.G. Calculation of the two—frequency mutual coherence
function and the time pulse moments in a random-inhomogeneous
ocean // Ibid. 1989. V. 35, N2 5. P. 908-916 (in Russian).

Landau L.D., Lifshitz E.M. Quantum Mechanics // (Nauka, Moscow,
1989) (in Russian).

Isimaru A. Wave Propagation and Scattering in Random Media //
(Academic Press, New York, 1978).

Dolin L.S. On the light scattering in a layer of turbid medium // Izv.
VUZov. Radiofizika. 1964. V. 7, N2 2. P. 61-68 (in Russian). v
Migdal A.B. Qualitative Methods in Quantum Theory // (Nauka,
Moscow, 1975) (in Russian).

Sholin D.V., Kosterin A.G. Analysis and calculation of statistical
characteristics of mode amplitudes in waveguides with volume random
inhomogeneities // Akusticheskii Zhurnal. 1991. V. 37, N2 5. P. 956—
964 (in Russian).

Virovlyanskij A.L., Kosterin A.G. Fresnel volumes in multimode
waveguides // Izv. VUZov. Radiofizika. 1989. V. 32, N2 4. P. 478-
486 (in Russian).

Sazontov A.G., Farfel’ V.A. Calculation of the coherence degree and
the shape of an acoustic pulsed signal in an oceanic waveguide with a
rough surface // Akusticheskii Zhurnal. 1995, V. 41, N2 1. P. 128-133
(in Russian).

Esswein R., Flatte S.M. Calculation of the phase-structure function
density from oceanic internal waves // J. Acoust. Soc. Amer. 1981.
V. 70, N2 5. P. 1387-1396.



SOUND SCATTERING BY SPATIAL-LOCALIZED
- INHOMOGENEITIES IN OCEANIC WAVEGUIDES:
CALCULATION AND MEASUREMENT METHODS

S.M.Gorsky, V.A.Zverev and A.I. Khil’ko

Diffraction of the acoustic fields by spatially localized inhomo-
geneities in oceanic waveguides is investigated by analytical methods
using numerical experiments on the basis of physical modelling and
by the way of field measurements. The possibilities of numerical
simulation and measurement under the conditions of physical mod-
elingl are discussed. It was shown that from the point of view of
studying the diffraction phenomena in the ocean, the significance of
these methods is due to the difficulties in performing hydroacoustic
experiments. Provisional calculations and measurements under the
model conditions can noticeably increase the efficiency of sophisti-
cated field observations. Besides using the results obtained by differ-
ent authors, a systematic concept of the structure of perturbed signals
in the waveguides and a brief analysis of the possibility of the formu-
lation and measurement of diffracted fields in layered waveguides are
proposed.

INTRODUCTION

Field diffracted by inhomogeneity in an oceanic waveguide is form-
ed by interference of normal waves. In this context, the field structure
can be much more complicated than the similar structures observed
in free space. In particular, the inhomogeneity - produced perturba-
tions can noticeably exceed the similar perturbations in free space,
owing to the field concentration by the waveguide with respect to
depth. Meanwhile, local attenuation of the acoustic field will be ob-
served because of the destructive interference. The problem consid-
ered is an internal boundary-value problem of diffraction for irregular
waveguides. When bodies have an arbitrary form or a complex in-
ternal structure, the numerical methods which allow solutions to be
found with finite accuracy are used for solving such problems. These
methods include the technique based on the Rayleigh hypothesis of
the diffraction field representation in the form of a set of divergent
waves !, the techniques using the solutions of integral equations %3,
the T-matrix procedure ¢ and other methods %67, All these meth-
ods can be used for solving the internal problem of diffraction for
Irregular waveguides. However, the problem becomes more compli-
cated since it is rather problematic to find an appropriate, coordinate
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system that can easily satisfy the boundary conditions on the per-
turbing body as well as at the boundaries of the waveguide. There
is a number of methods of solution of this problem based on the as-
sumption of smallness of the multiply, scattered fields as well as of
the weak variability of the waveguide properties to the inhomogeneity
scales %19 Besides that, the methods using either a long-wave or a
short-wave approximation of the diffraction due to inhomogeneities
are used for solving the internal problem of diffraction in irregular
waveguides %1% On the whole, it should be mentioned that the pa-
pers mentioned above have one feature in common. They all try to
divide the general problem into two separate problems of acoustic
wave propagation and scattering defining an algorithm in a certain
range of parameters (dimensions, frequency, etc.) for construction
of a general solution by using the well-known solutions for acoustic
fields in irregular waveguides and for acoustic wave scattering in frec
space. Such an approach makes it possible to use the results obtained
earlier to analyze the problem.

ANALYSIS OF THE METHODS OF SOLUTION

The internal boundary-value problem for irregular waveguides is
formulated as follows: the perturbed field, which represents a sum of
the unperturbed ¥, field and the diffracted ¥, field (where ¥ is the
displacement velocity potential) must satisfy the scalar wave equa-
tion, the initial conditions, the conditions of emission and the bound-
ary conditions at the boundaries of the waveguide and on the surface
of the perturbing body. All these conditions, together with the wave
equation (with variable coefficients in the case of irregular waveg-
uides), can be represented as a relation which includes the Green is
function. We thus arrive at an equivalent but a different formulation
of internal boundary-value problem

W) = 1= [1GR RIV.U(R) - W(R)V.GR Rldd+

+ [ HEIG(R, Ry)io, (1)
Vv

where S is the surface of the perturbing body, R, R,, ff,, are the
radius-vector is of the points of observation, of the surface of the

body and of the extended source p(R,), respectively (Fig.1). The
function G(R, R;) is the Green’s function. From Eq.(1) it follows that
knowledge of the field and its derivative normal to the perturbing
body surface is required to define the perturbed field. Equation (1!
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Fig. 1. The disposition of source, scatterer and receiving system.

includes the impedance of the body surface in implicit form, which
relates the field and its normal derivative. For closure of Eq.(1) we
must, in general, solve the body oscillation problem.

In a case, when perturbing body can be characterized by a local
impedance, the integral equation for the acoustic field and its deriva-
tive on the body surface, which follows from Eq.(1) when the point of
observation is dropped to the surface S, becomes re-defined and can
be reduced to the Fredholm integral equation of the first or second
kind. For solving the problem of diffraction in free space one generally
uses the methods reducing the integral equations to an infinite sys-
tem of algebraic equations 4. At the attempt to use these methods
for solving the internal problem of diffraction, besides the difficulties
due to the resonance phenomena, the difficulties associated with the
multiple scattering effects and with an adequate description of the
transformation of various modes in waveguides with elastic walls are
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added. Nevertheless, solution of Eq.(1) can be found by different
methods defining differently the Green’s function.

Appoximations of the waveguide Green’s function. The Green’s
function in a waveguide has rather a complex structure and the con-
tribution of its different components changes considerably when re-
ceding from the source. In particular, the traveling waveguide modes
contribute most when they are spaced well from the source. Rather
often, contributions from the leaky modes and the continuous spec-
trum modes can be neglected under the conditions of smallness of
the multiple scattering effects. For analysis of diffracted fields in the
waveguides at large distances from the source the waveguide Green’s
function is generally used in the form of a sum of undamped traveling
modes:

N
GUR, ) = 32 on Gon(an)e™ kol = 5D @)

where ¢,(z) and h,, are the eigenfunctions and the eigenvalues of the
Sturm-Louiville problem for an unperturbed waveguide, 7 = (z,y)
are the horizontal coordinates and N is a number of propagating
waveguide modes. Expression (2) defines G(E, R,) for horizontally
uniform waveguides of various types including a refraction waveguide.
Analytical solutions for ¢,(z) are found for some simple dependencies
of the refractive index. In particular, such solutions are found for
oceanic waveguides, such as an isovelocity waveguide in the liquid and
elastic half-spaces, a surface waveguide with a linear dependence of
sound velocity on depth, a bilinear waveguide and a waveguide with
parabolic profile. In many cases, however, the numerical methods
have to be used to find the eigenvalues. Note that the use of the
Green’s function in form (2) for solution (1) has become widespread
for solving the internal boundary-value problems of diffraction both
in electrodynamics and in acoustics %79, In these papers, G(R, R,)
in form (2) is used for solving the integral equation for bodies of
arbitrary form by reducing the integral equation to a set of linear
algebraic equations using the Krylov-Bogolyubov method (the piece-

constant approximation). Since the function G(R, R,) has algorithmic
singularity, the latter is at first singled out in explicit form when the
matrix elements of the set of equations are calculated and then the
solutions of these equations become stable.

We have discussed some methods for solving the internal bounda-
ry-value problem of diffraction for irregular waveguides of universal
nature, which permit a rigorous and consistent substantiation. Mean-
while, certain difficulties are encountered when using such methods.
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which are due to the estimation of accuracy and validity of the re-
sults obtained. All these methods are based on rather complicated
algorithms of calculations. In this relation, of much interest are
the investigations of the internal boundary-value problem of diffrac-
tion in waveguides based on the evristic methods. In particular, we
should mention the papers using the approximations of short-wave
5,79 diffraction. Characteristic of this approximate method is that
it can be used only in a limited range of parameters of the prob-
lem. However, practice shows that the approximate method possess
a higher efficiency, relative simplicity of the algorithms and physi-
cal clarity. These features have an importance in the analysis of this
problem applied to refraction oceanic waveguides where the structure
of unperturbed fields is rather complicated.

Short-wave approximation. A different approach was proposed 57
where the dimensions of the perturbing body were assumed to be
much more than the wave length. Assigning the boundary conditions
on the surface of the body and making use of the Kirchhoff approx-
imation in the small-angle approximation one can obtain a simple
expression for the scattering matrix of the waveguide modes S,,,,, >7:

Spm = ihn /E T(€)pm(€ + 22)pn(€ + 25)dE / Lp)ellMsr=+2 2= Ingy  (3)
n

where (¢, n) = T(€)L(n) is a function describing the form of the screen
limited by the shadow-forming line of the body; y,, and y,. are the
horizontal displacements of the source and the receiver from the hori-
zontal line normal to the screen and passing through the screen center;

S = (2% + yfo)llz, v = ((a—z5)’ + yf)l/z; zy and a are the distances
from the illumination field source to the body and the distance be-
tween the source and the point of observation respectively. Unlike
the scattering matrix, expression (3) (obtained in %) does not permit
to show explicitly the scattering diagram on the body, corresponding
to the scattering in free space, but S,,, in form (3) allows calcula-
tions to be performed when h, and ¢, change on scales less than the
dimensions of the body.

This approximate method mentioned above is based on the as-
sumptions that play an important role in physics and which were
proved many times in the experiments in an appropriate range of
parameters. In particular, the calculations of diffracted fields in a
hydroacoustic waveguide in the short-wave approximation were com-
pared with the experimental results. The comparison showed high ef-
ficiency and good accuracy of the calculations 5. Besides the method
of comparing the calculations with the measurements, there is an-
other method which compares the calculations based on the approxi-
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mate methods with the results obtained by using more rigorous meth-
ods and compares the results obtained by different methods if they
apply in the same range of parameters.

THE STRUCTURE OF PERTURBED ACOUSTIC FIELDS

Below we analyze the structure of perturbations by a localized
inhomogeneity in a waveguide of an oceanic type in the short-wave
approximation. First of all, we should note that when the hydroa-
coustic field perturbations far from the inhomogeneity (specifically a
perfect solid of arbitrary shape) are analyzed, the leaky modes and
the continuous spectrum modes can be assumed to be small. In this
case, the matrix elements S,,, (Eq. (3)) in the small-angle approx-
imation are the refractive indices of the waveguide modes. From
expression (3) it is seen that the integral over a plane, limited by
a shadow-forming line, can accurately be represented in the form of
a product of two integrals defining the diffraction along the respec-
tive coordinate for many configurations of perturbing bodies and it
can be represented like this approximately for other configurations.
Diffraction with respect to depth leads to transformation of the mode
spectrum, and the energy transformation from a mode with number
n into a mode with number m is defined by the matrix element:

Tom = [ T(€)om(z5 + Opa(zs +E)de ()
13

If the screen dimensions d are much less than the characteristic dimen-
sion of the function ¢,(z), then each incident mode will be uniforml;
transformed into all diffracted modes. As the vertical dimensions o'
the screen increase, the number of modes, into which effective energ:
rescattering will occur, will decrease. The conditions for (dpm g, 2%
under which 7,,,, takes the maximum value, was considered in pape:
7. In smoothly inhomogeneous waveguides Eq.(4) can be represented

as a mode filter: .

Tom = ¢§[?nim - Tn:}:m]y (5

where Tpim = & [% T(€)elmtim)de, g, is a vertical projection of
the wave vector for a mode with index m. Assigning the excitatior

coefficients of the incident modes a,, the diffracted modes can, i
view of (5) and (3), be described by a relation

N
am==2
n=0

[¢29% [j:n+m - Tn—m] an)

2ol

—
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which represents contraction of the mode spectrum with the fre-
quency response of the space filter. In approximate calculations,
where the mode spectrum has greatly nonequidistant frequencies and
the screen has large dimensions, one can retain only the term T}, _,,
in Eq.(6).

According to Eq.(6), the diffracted field represents a superposition
of horizontally diffracted structures L, (y,), having depth-dependent
complex coefficients defined by set of T,,,, and a,,. The integral L,,,
represents an analog to the expression defining diffraction on the
screen in free space, which is well known in radiophysics and in op-
tics 1*. Characteristic of this integral is the presence of an expression
—th,nyso(S')~! in the exponent and the dependence of the space fre-
quency hn,y(r')~! on the diffracted mode number. In the particular
case of normal incidence of the field, where y,, = 0 and L() =1 at
|n} < mo and 0 at |n| > no, the horizontal distribution in each of the
partial diffracted structures will be described by the relation:

. hm hm -1
Lnm ~ nosin(—Z4-m0)(—%10) (7)

as the intermode dispersion and the distance from the screen to the re-
ception domain increase, the differences in the scales of partial diffrac-
tion structures will grow. Deviation of the observation point from
the line normal to the screen and passing through the screen center
causes distortions due to the interference of mode partial diffraction
structures. The condition of intersection of space variation spectra
owing to the mode interference and the diffraction of each mode can
be written in the form:

(47:'7‘6Ah,.‘]-1)1/2 ~ rpm(< hij > 10) 7, (8)

where ro = a — zg, Ah;j is the difference of the horizontal projections
of the mode wave numbers, < h;; > is the mean value of the wave
numbers, and 7 is the horizontal dimension of the inhomogeneity.
Figure 2 shows qualitative dependencies of the perturbed field inten-
sity at different distances behind the screen. In the first case (Fig.
2a), the field variations due to the mode interference occur at the
lower frequencies while in the second case (Fig. 2b), at the higher
frequencies as compared to the diffraction-produces field variations.

When the horizontal dimensions of the screen are sufficiently large,
one can observe space division of the partial diffraction structures of
separate modes with the side illumination:

Ysomo(hi — hj)(27l'$2)_1 > 1. (9)
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Fig. 2. The field variations due to the mode diffraction and interference (varia-
tions without inhomogeneities is shown by dashed line).

In order to reconstruct the re-ultant spatial-temporal distribution
of the perturbed field in ocea:.ic-type waveguides one should sum-
mate the waveguide modes with the overexcitation coefficients a,,
(see Eq. (6)). Since oceanic waveguides are most often multimodal
ones, this summation has to be performed by a computer, which is
reasonable also because solving the waveguide eigenvalue problem of-
ten reduces to solving the higher-order transcendent equations. Fig-
ure 3 shows the numerical structure of perturbation for an oceanic
waveguide which represents a layer of liquid on a liquid half-space,
for a rectangular screen on the case when four modes were excited
in the layer of liquid (H = 130m, ¢; = 1500m/s, co = 1505m/s, 2n =
20X, d = 2.4X, a = 1.4710%), zx = 42103}, zo = 2, 25 = 10A). It is seen
that the variations developing along the horizontal coordinate y are
considerably smoother. Unlike the free space, where perturbations in
the far zone are close to the unperturbed field at the center of the
structure (y = 0) (the dashed line in Fig.3), in the waveguide, pertur-
bations can take both maximum and minimum values owing to the
interference nature of the waveguide field. Maximum perturbations
to depth occur in the region of either constructive or destructive in-
terference of modes. This is illustrated by Fig. 3b at z = 100m.
where a minimum was formed in the unperturbed field. If the il-
lumination field is incident on the screen at an angle, then partial
diffraction structures can be separated in space. Consider the mani-
festation of this effect in the frequency plane. If the screen is shifted
from the line connecting the source and the observation region, then
the receiver will fall into different parts of the direction pattern of
the diffracted wave when the illumination field frequency is scanned.
On the whole, this will be manifested as modulation of the diffracted
field along the frequency axis. Figure 4 shows the dependence of the
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normalized matrix element o,,, =< |P4|*> > / < |Pyl* >. showing how
many times the intensity of the diffracted field is less than the in-
tensity of the illumination signal for a receiving system having equal
coeflicients of excitation of the received mode m and the illumination
mode with number n (it’s supposed that one mode with number n
is incident out the body and one mode with number m is received ).
Figure 4a shows the dependencies o, (f) for different displacements
of the screen along the axis of frequencies f. Since frequency scan-
ning occurs at fixed values of the vertical angles of illumination and
observation, the numbers n and m depend on the frequency of the
illumination field. The screen is located at a fixed depth and, there-
fore, when scanning the frequency of the incident field, the screen
falls into the mode of the incident or diffracted mode for some fre-
quencies. This is manifested as a set of zeroes of the function ¢n,,
shown in Fig.4b (these features of the function o, are not exhibiters
in Fig.4a).

Up to a few hundred modes are excited in deep-water oceanic
channels. Deep shadow zones and convergence zone emerge as the
result of their constructive or destructive interference. If the dimen-
slons of the perturbing body are small, then the latter can fall entirely
Into the shadow region. On the other hand, if the body is located in
the focusing zone, it can be illuminated nonuniformly. Of course, if
conditions %7) are satisfied, the field variation spectra will intersect
and it will be problematic to isolate the diffracted field structure.
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OBSERVATIONS AND MEASUREMENTS OF DIFFRACTED
FIELDS IN WAVEGUIDES.

Measurement of diffracted hydroacoustic fields in a small-angle
approximation under field conditions is impeded by their relative
smallness and time dependence and by the inhomogeneity of the
hydroacoustic channels. A diffracted, relatively weak signal is ob-
served against the background of a large fluctuating illumination sig-
nal. Thus, the accuracy of measurement will be limited considerably
unless the measures are taken to lower the fluctuation level. A natu-
ral method of increasing the accuracy of measurement is the spatial-
temporal filtering including the use of spatially developed receiving
systems.

Vertically developed arrays. Papers %13 consider the possibili-

ties of isolating a diffracted signal by vertical receiving-transmitting
arrays in combination with quasiharmonic probing pulse of illumina-
tion (the differential method). The main principle of the differential
method of measuring diffracted fields in waveguides consists on the
use of the emitted mode with number n and the received mode with
number m. By way of temporal gating of signals one isolates those
diffracted in the layers of width Az, into which the whole path of
observation from the source to the observation region can be divided;
the spatial resolution is Az = v,v,T|vn — vm|~}, Where v, n, are the
group velocities of the modes, and T is the duration of the prob-
ing pulse. The higher the intermode dispersion is, the more efficient
the differential method is. Therefore, such a measurement technique
should be used in shallow-water areas or in surface channels with a
high sound velocity gradient in depth. The degree of mode selection
is also defined by the dimensions of the arrays. Taking into account
the technical difficulties in creating extended arrays one should use,
where possible, the natural zones of mode shadow %5 or use com-
plex pulses with their respective compression in the receiving system
as illumination pulses to facilitate the isolation of mode pulses *¢. (It
should borne in mind that such a method requires an a’priori value
and correction of intramode dispersion).

Spatial filtering of signals by a horizontal array. Another method
to single out a weak signal against the background of the fluctuation
field of direct illumination is to image the perturbing body, which re-
quires the use of a sufficiently large array for focusing 7. If the source
of the illumination field and the perturbing spatially localized inho-
mogeneity are spaced to a distance exceeding the spatial resolution
of the horizontal array in defocusing, then the level of the illumina-
tion field in the perturbing region image will be reduced considerably.
Obviously, for a further decrease of the direct illumination level it is
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needed to use the dark field method, developed in optics, which is
based on filtering the low-frequency part of the space spectrum form-
ing the illumination background. These method allow the accuracy
in measurement of diffracted signal to be increased by broadening
the dynamical range in which the signal is measured. It should be
noted that the fluctuations, the space scales of which coincide with
the spectrum of the perturbing inhomogeneity, cannot be completely
suppressed by space filtering, which uses a’priori information on the
location of the illumination source (the dark field method). In or-
der to suppress the noises of this kind, it is necessary to use also the
a’priori information on the expected structure of the diffracted signal.
However, matched of filtering impedes appreciably the measurements.

Temporal gating of signals. In the measurement of diffracted sig-
nals, an essential role is played by the possibility of detuning from the
noises due to reverberation from the structure elements. In oceanic
waveguides, such noises are caused by the reflection or scattering of
the illumination field from the bottom irregularities. A possible way
to isolate a useful signal can be the use of pulsed signals for illumina-
tion with a subsequent gating of required pulsed volumes. However,
the use of quasiharmonic pulses for noise selection in the measure-
ment of fields diffracted at small angles is not effective, since often
the noises are located in the same pulsed volume as the scatterer. For
higher efficiency of the temporal filtering of direct signal it is more
preferable to use complex pulses in combination with their matched
processing. Since the duration of an equivalent compressed pulse is
small, its pulsed volume reduces and the efficiency of temporal se-
lection increases !7. The use of complex pulses in the measurement
of fields diffracted by spatially localized inhomogeneities is connected
with some difficulties due to the deterioration the pulse structure be-
cause of the inter- and intramode dispersion. Hence either the mea-
surement conditions should be such that dispersion will not break
considerably the pulse structure or filters should be used for compen-
sation of the dispersion influence.

Synthesis of apertures. If the inhomogeneity in the waveguide is
immobile, or the characteristic time of its steady state is small, then
diffracted fields in the waveguides can be measured with the accuracy
required by means of synthesis of apertures 26. This method is based
on sequential measurements of signals with shifting the source and
or receiver relative to the localized inhomogeneity. This provides the
same accuracy in measurement as that achieved when larger arrays
are used by way of aposteriori joint processing of signals. Space
resolution that is achievable by synthesis of apertures is defined by the
dimensions of the synthesized aperture. It should be noted that the

74



© 20

1,dB
10
b Fig. 5. The dependence of
0 R ) ) the field intensity variation
93 113 133 153 173 when receding the point
x.om of observation.

source or receiver move at a finite velocity it is possible to isolate the
signals of separate modes by filtering the respective Doppler shifts 3,
but the latter are small in case of small-angle diffraction, which makes
it difficult to determine the contribution of modes to the diffracted
field.

The criterion of efficiency of the methods for calculation of the
diffracted field structure in oceanic-type waveguides is based on the
comparison of calculated and experimental data. Many works in elec-
trodynamics, optics, and microwave engineering for two-dimensional
bounded waveguides were devoted to such a comparison. However,
it is seen from the literature that measurements of diffracted fields
and comparison of experimental data with calculations, as applied to
oceanic waveguides having specific features, were performed only in
a few papers 1920,

Figures 5,6 and 7 show the measurements of the horizontal and
vertical structures of diffracted fields measured in an isovelocity layer
of liquid (¢; = 1478,3m/s, p1 = 1g/cm®) of thickness 3 cm, resting on
a rubber base (c, = 1700m/s, py = 1.13g/cm3, the tangent of the loss
angle 0,28). The measurements were made at a frequency 512 kHz
for the emitted pulse duration 100 ms. A steel cylinder of length 3,5
cm and a diameter 0,3 cm and 0,6 cm was used as a perturbing body.
Figure 5 shows the dependencies of the field intensity variation as the
point of observation recedes from the cylinder on the horizon 2,25cm
(a) and 0,75 cm (b) when the emitter was at a depth 1,5 cm and the

ody was at a depth 2,5 cm at a distance 93 cm from the source. Field
‘attenuation is observed directly behind the cylinder. This can be ex-
plained by the energy transformation to high-frequency modes as the
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result of diffraction and their subsequent damping in the absorbing
bottom. Figures 6 and 7 show the measurements of the transverse
and vertical distributions, respectively, at a depth 2,5 cm and 70 cm
from the cylinder (the dashed line in Figs. 5,6 and 7 shows the un-
perturbed fields). The field decay as the receiver is displaced from
the symmetry axis (Fig. 6) can be explained by the directive (the
width of the direction pattern in a horizontal direction is 4.2° ) of
the source field and partly by the interference of the lower modes
in the layer of liquid. Weak field variations under positive displace-
ments of the receiver is a consequence of the incident field scattering
due to local roughness of the bottom surface. Perturbations of the
field, when a body is introduced into it, are defined by the direc-
tivity of the diffracted field, to a smaller extent, by the interference
of modes. When receding from the cylinder, the field intensity at
the center of the pattern changes from the maximum to the mini-
mum with a quasiperiod, defined, as it must be, by the interference
of modes. The vertical structure of an unperturbed field is formed
mainly by the lower modes (shown by a dashed line in Fig.7), which
is manifested as a decrease of field roughness when receding from the
cylinder, where dissipation of higher modes in the bottom is stronger
(Fig.7a). Diffraction of the field on the cylinder enriches the mode
spectrum, which is seen as an increase of field roughness (shown by
a solid curve in Fig. 7). A simple waveguide model adopted in the
measurements allowed the measurements to be used for validation

on the calculations within the framework of the short-wave model of
16



I, dB I,dB I.dB
Fig. 7. The vertical field variations.

diffraction on bodies in waveguides !°. Figures 6 and 7a (curve ooo).
show the calculations for a numerical model describing the conditions
of measurements, in which the expressions obtained by Kronhausen-
Renier 2! are used to take dissipation into account; the losses due to
the excitation of transverse waves were taken into account by way of
an equivalent increase of dissipation in the liquid half-space. Compar-
ison of the measured and the calculated data shows good coincidence
of the results. The observed differences are first of all due to the lim-
itedness of the numerical model, owing to which the real conditions
of measurements are not taken into account in sufficient detail. In
-particular, the model of a liquid bottom with losses is inaccurate.

Control of all parameters of the problem in the measurements was
limited to a 5 percent accuracy on the average. It influences the
results of the comparison between theory and experiment.

The pulses diffracted on a vertically arranged cylinder of large
radius, with linear frequency modulation in an isovelocity waveguide
of depth 400), were measured 1718,

_ The measurements showed the possibility of dividing the diffracted
signal and the direct illumination signal, starting with certain angles
of observation and illumination. In those experiments, an 8 percent
frequency deviation was used and, therefore, the signals can be as-
sumed to be narrow-banded. In waveguides with low dispersion in
a small-angle approximation the effects due to the deterioration of
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the pulse shape because of the dispersion can be neglected. This fact
was clearly demonstrated in the experiments in which the pulse dete-
rioration due to the intermode dispersion was observed only at large
angles of observation. Paper ! offers the measurements of diffracted
fields on a plate with a sinusoidal relief in the waveguide modelling
the shelf zone (the wedge connecting the shallow-water and the deep-
water areas). These results show that a waveguide of such a structure
forms a natural mode shadow when the illumination source is located
in the shallow-water region. From the measurements given in 7 it
follows that under such conditions diffracted fields can be measured
against the background of the direct illumination field attenuated by
15 dB. Note that this is possible only for inhomogeneities broadening
considerably the mode spectrum. Although, besides the measure-
ments, investigation !7 also contains a theoretical calculations, only
their qualitative comparison is possible. This is because the theoret-
ical model is limited and does not take into account all details of the
experiment, in particular the complex transformation of the field in
the wedge.

CONCLUSION

This paper is an investigation of the diffraction of acoustic waves
by spatially localized inhomogeneities in oceanic-type waveguides us-
ing the methods of a numerical and physical model experiment. This
paper analyzes short-wave method of solving the internal boundary-
value problem of diffraction by spatially localized inhomogeneities (in
particular, by bodies) in oceanic-type waveguides. In our paper we
have analyzed the structure of the fields diffracted at small angles in
oceanic waveguides within t;he framework of a short-wave diffraction
model and for a waveguide of a simple form. The last fact permitted
us to compose the calculated and experimental data and, therefore,
show the efficiency of the calculation technique. Comparison of the

‘results of a numerical and a physical model experiment leads to the
conclusion of practical feasibility of the formation of diffracted acous-
tic fields by optimizing the excitation of the waveguide, the arrange-
ment of the receiving system and the choice of the signal processing
algorithm. :
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THE OCEAN TOMOGRAPHY AS
AN INVERSE PROBLEM

V.A. Burov, S.N. Sergeev

In this article the questions to be discussed are connected with large
ocean regions acoustical tomography hased on wave theory of sound prop-
agation and using of the vertical linear hydroacoustical antenna for data
gathering.

The acoustic tomography methods for ocean researches were developed
some later then, for example, X-ray diagnostics in medicine because the
work in the ocean has some specific conditions and it is necessary to have
deep water arrays as a tomographic investigations basic instrument with all
problems of their location and control.

From other methods of search and diagnostics of 3-D structures the to-
mography ones are distinguished by that the information from every part
of investigated object is obtained over and over again in different aspects
relative to object [1]. During tomographic reconstruction the investigated
object is illuminated from different directions and the measured character-
istics of radiation passed over the object layer are recorded, than the spatial
distribution of object’s quantitative characteristics is found with help of
computer.

It is not the only view on the tomography essence [2], but view that
has probably the historic character. Nowadays the term ”tomography”
often means any method of volume structure reconstruction including as a
component the solution of propagation and scattering inverse problems that
allow to use the already devcloped inverse problems technics [3-4]. At the
same time the 2-D one layer at a time representation of final results justify
the using of the term.

The practical researches on the ocean tomography were begun after
W. Munk and C. Wunch works [5-6], in which the sound speed reconstruc-
tion schemes were applied to the ocean and proceeded as a rule by using
the rays methods [7].

In general case the tomographic scheme can be reduced to the solution
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of the parametric manifold of Fredholm integral equations of 1 kind

/ Pa(r,v')g())dr’ = f(x]o), (1)

Here r and r’ - the spatial coordinates, P(r',r) - integral transformation
core, f(r) - measured characteristics, g(r’) -reconstructed image.

The physical sense of equation (1) is the following: the measured char-
acteristics f(r) are defined by the distribution g(r’ along the whole way of
exploring wave propagation. The information of the geometry of primary
radiation is contained in the core structure P(r’,r). If P(r/,r) undepends
on g(r) the problem is linear.

The tomographic problem (1) is ill-posed. It is so because in real condi-
tions only approximate values for functions f and P are known and for them
the exact solution may not exist, and if it exists it may be unstable to small
measure errors. So the solution of the equation (1) is built with using of
some regularization methods that were developed for ill-posed problems [8].

For fixed source and receiver-location the parameters contained in equa-
tion (1) have the following sense: P(r',r) determines the exploring ray
trajectory, f(r) — fi = tx - time delay of signal propagation on k-th ray,
g(r) = 1/e¢(r) - reverse sound speed distribution. The ray trajectory itself
is a function of ¢(r), so the tomographic problem in this case is nonlinear
that is also peculiar to the inverse wave’s problems of strong inhomogeneity
reconstruction. The problem is roughly linearized relative to the pertur-
bations éc¢(r) which have been determed by means of the choice of zero
approximation of sound speed co(r) closely spaced to the true one:

=[50

s

where [ is the ray trajectory of k-th ray calculated for unperturbated sound
speed profile. In this approach it is assumed that the single ray trajectories
could be resolved (it takes place, for example, in the case with deep sound
channel).

An opposite approach is the mode tomography that consists in the recon-
struction of the characteristics of the propagating modes (for example, their
phase velocities), from which the information about ocean inhomogeneities
conld be obtained. The question about relationship between rays and modes
in the sense of production of information about sound speed profile pertur-
bations in the ocean was studied in [9]. Different rays coming to receiver are
corresponding to the interference maximum of mode groups that have close
numbers. As a distance between source and observer’s point increases the
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number of constructive interfering modes in every group decreases and from
definite distance even neighboring modes cease to constructively interfere.
In this case the mode description of sound field should be preferable rather
then ray description.

The use of mode description is most justified in the case of adiabatic
approximation validity [10].

Let’s assume that the region under investigation is surround with S
radiating and R receiving vertical antennae, the number of them is approx-
imately equals to each other (S = R) and S x R > M where M is the
quantity of covered region under study spatial elements to be resolved (or
number of parameters characterized this region). Account of radiating ele-
ments in each antenna can be small (1-3) because in definite depth locations
even one element can excite all accounting modes in the wavequide.

If vertical receiving antennae make available separation of all accounting
modes then for every mode number independent inverse problem is formed
for reconstruction of phase speed ”map” in investigated region, it’s solution
can be found by using general methods that have been developed for such
tasks [3,11-12]. If the inhomogeneity under study is enough smooth so the
maximum lateral size of ray tubes between any pairs of emitter-receiver
systems less than spatial cell the next simplification can be done due to
using of combined presentation of type ”vertical modes, horizon rays” [13].
So the transition from wave to ray tomography takes place in horizon plane.

In the tasks in question such aspects as influence of scatter’s force to the
technique for solving of inverse tomographic problems, uniqueness of the
solution, etc. have specific features.

A linearized Born approximation is valid when the perturbation to be
determined is very small so that it’s action changes receiving mode’s phase
to little quantity that doesn’t act on the ray path. In this case the solution
of the inverse problem can be done in monochrome regime. Manyfrequen-
cy measurements result to solution accuracy improvement due to the data

_redundancy increase but they are not necessary condition of uniqueness.

The use of monochrome regime is possible also in the case of receiving
mode phase change in limits +7. This case is analogous with "medium
force” scattering case [3]. For it the ray path distortion is essential and a
correction of this path in the iteration cycle of solution: rays — receiving
modes phase distortion — estimation of the perturbation — rays correction.
The role of data redundancy be obtained in manyfrequency experiments
now is more substantial because it results to the iteration speed increase
and convergence region extendance.

Further scatterer force increase resulting to phase distortion of receiving
modes more than 27 makes the estimated perturbation to be ”strong” be-
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cause field’s distortion inside investigated region surpasses the original field
in norm that results in ”few revolutions” of phase. The ambiguity in the
solution that arises in this case has evident form of phase ambiguity. A
manyfrequency regime restores the uniqueness. Especially clear it is exhib-
ited in pulse tomography where in the elementary case the group delay of
modes propagation is measured. The time delay of n-th mode propagating
time on the i-th trajectory equals to

bt = —/ bonz.1)
vi(e,y)
.
where v, is the group velocity, év, - it’s perturbation caused by sound speed
perturbation éc.

In a case of big frequency dispersion (in frequencies close to critical one)
a blurring of receiving packet demands more complete data measuring in a
form of more detailed frequency or time description estimation.

At the end of such many frequency measurements the obtained disperse
data for the whole receiving mode set allow to reconstruct the hydrology
profile by using the method similar to the one has been described in [14] for
the internal waves.

Such sequence of reconstruction operations (measurement data — modes
separation — hydrology reconstruction) is not absolutly necessary: the
modes separation of the receiving signals can be excluded and the con-
nection ”hydrology perturbation — signal perturbation” can be used at
once although mode representation retains useful for the correspondence
operator construction.

The exclusion of modes structure reconstruction operation is necessary
in case where the number of receiving hydrophones is less then the number
of modes participating in sound field forming.

If a limit transition to the groups of neighboring modes on enough high
frequencies can be done that is the transition to rays representation in a
vertical plane and this returns us to the initial pulse-rays ocean tomography.

The obtained data can be used only if the space locations of each an-
tenna elements are exactly known. So in the case of vertical antenna arrays
employment it is assumed that they maintain straight line, but the real dec-
lination of antenna elements from vertical line can reach hundreds meters
(Fig. 1). The data plotted in the picture were obtained during numeric
calculations based on the hydrodynamic relationships for vertical hydroa-
coustic antenna by length 1 km that has been constructed as a rope by
diameter 2 mm and buoyancy 0.5 N/m, loaded at the end by the ball with
mass 40, 30 and 20 kg in a flow with constant velocity 0.2 m/s. The calcu-
lated declinations of such antenna from vertical are equal to the hundreds

84



-200

-400

-600 |

Depth, m

-800

-1000

0 60 120 180 240
Declination, m
Figure 1: The profile of vertical antenna by length 1 km and diameter 2

mm in isospeed flow with velocity 0.2 m/s with cargo at the end by mass
m=40(1), 30(2) and 20(3) kg

- meters that is corresponds in order to the value in published data [15].
Standard methods for improvement of this disadvantage are the using of
“engineering ways for the antenna to straighten (bringing an antenna to an
anchor, suspension of a big cargo etc. [16-17] that results into the whole
" installation weight increase and complication of its deployment. Another
-solving of this problem - the estimation of distorted antenna true profile.
So, in the experiment that was conducted by the research group of Oceanol-
ogy Institute (Russia) 18] the antenna units location was fixed with help
of three receiver-radiator modules that have formed a triangle with side ap-
proximately equal to ship length on the depth 15-20 m. The principals of
work are based on the measurement of propagation time intervals for ev-
ery module and every antenna element. Than calculation of every receiver
" location was done in coordinate system connected with reference triangle
so the antenna profile was defined. As a fundamentally new approach to
‘the problem we have proposed ”4-frequency” algorithm which allowed to
compensate the unknown antenna distortions [19-20]. The essence of the
method is following. :

. The deflection of k-th antenna element with unknown value Az re-
r8ults to the appearance of additional phase of I-th. mode x;ézi, where &; -
horizontal wave number. If the value of deflection is smaller then the dis-
tant resolution ability (which is defined for any frequency by the difference
between reverse phase velocities of lowest and highest modes) than for this
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distortion the difference of phase velocities of separate modes can be ignored
and the phase factor is equal to

exp (i (kiAzr)) ~ exp (iwAzxy /c),

where c is the some average phase velocity of the accounted modes. In this
case the additional phase will be compensated by the combination of receiv-
ing fields magnitudes into the product of 4-th order for the 4 frequencies:
M = lek Utzzk Uc:;,k Uwuu
where 3 frequencies are chosen arbitrary and the fourth is defined by the
rule
w1 +ws = w2 +ws,

where k is the vertical number of hydrophone..

The results are represented in Fig. 2 to illustrate the 4-frequency algo-
rithm work for waveguide with depth 1 km and symmetric parabola sound
speed profile wich has been chosen as a model (Fig. 3). The product of 4-th
order that was built by the use of described method was compared with
reference product My, calculated by the same way for some set of estimated
parameters. The comparison was done by the correlation formula

1/2
5 e | / (Zle'2Z|Mko|2> ,
k k k

the closeness of this expression to the maximum value is the criterion of the
correspondence of the estimated parameters to the trie ones. The curves
that are represented on Fig. 2a are corresponded to the frequency set 17,
20, 20, 23 Hz (1); 27, 30, 30, 33 Hz (2); 77, 80, 80, 83 Hz (3); 157, 160,
160, 163 Hz (4); 197, 200, 200, 203 Hz (5) and sound source location at
the distance of 10 km from antenna. It is clear from the picture that as
the chosen frequencies increas the result is less depends on the declination
less then 0.5 km so the antenna distortions that result to its nodes shifts
to hundreds meters (to be expected in practice, see Fiq. 1) don’t cause the
deterioration. But the averaged product is sensitive to the large distance
mismatch, it can be seen from Fig. 2b where the dependence R having been
averaged over pointed frequency set upon the distance is represented. The
peak corresponding to the source location at a distance 10 km from antenna
is well distinguished. This property of 4-th order product allows to use it
for tomography task solving with reasonable precession of space resolution.

Analogous caleulations demonstrate the good capacity for work of the
algorithm during depth coordinate estimation.
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Figure 4: The profile of sound speed: 1-arctic, 2-subarctic, 3-subtropics,
_4-tropic, 5—equator type
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Figure 5: The profile of sound speed of shallow sea

In order to study the opportunity of practical use of 4-th order prod-
uct the ambiguity function was calculated for base types of sound speed
“stratification in the ocean (Fig. 4) and shallow sea (Fig. 5). This function
is the response to the source distance and depth mismatch (Fig. 6). The
discrepancy in the distance from -5 to +5 km was plotted along axis X and
the one in the depth from -0.25 to 4+2 km (from -50 to 200 m in the case of
shallow water) along axis Y. The source was located in the point (0,0).

The analysis of obtained functions results to the conclusion that there
is no principal differences between them that means that it is not necessary
to adopt the algorithm to the specific conditions of experiment realization
.and about it’s enough universality. It is important so that the main peak
50 is unique at least on the depth of practical interest because there arenr't.
maximums higher than 0.5 of main one, moreover the ambiguity function is
decreasing in general as the both distance and depth discrepancy is increas-
ing. But the peak width becomes narrow along both coordinates in the case
of shallow sea (Fig. 6f).

In order to construct the full scheme of ocean tomography first discuss
the standard computer tomography scheme [21].

If in the cross section of the object under investigation its ability to
attenuate the penetrating radiation is characterized by the 2-dimensional
distribution p(z, y) than the intensity of radiation passed through the object
‘under the angle ® along ray AB (Fig. 7) can be written in the kind
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Figure 7: The scheme of the 2-D computer tomography of the scalar object
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Ig(z') = Ig(z")exp | - / (@, y) dy) :
AB
The function of separate projection of the object under angle ® is

Iq>(.¢’)
IO

Ao(z') = —log // p(z,y)é(z cos ® — ysin® — z') dedy

(the line AB is mind by the equation 2’ = £ cos ® + ysin ®).

The problem of image reconstruction consists in the reversal of this rela-
tionship that is in reconstruction p(z,y) using set Ag(z’). For convenience
let’s see the projection under angle ® = 0. It’s Fourier transform (FT)

Aof€) = / Mo(z) exp(~2n¢e) da = / / iz, v)exp(Ce +ny)|  dedy.

n=0
—o0

So the 1-D FT of projection Ag is determed by the values of 2-D FT
Mo({, ) that are values u(z, y) along the mind line. This line is the central
cross section that is oriented along the direction & = 0. This statement
in the arbitrary oriented coordinate system makes up the content of the
central projection theorem:

As(C) = Ma(C,m).

For image reconstruction some methods were developed, the most num-
ber of them are based on the central projection theorem. For example the
essence of often quoted method of convolution and reverse projection re-
duces to the fact that every projection n Ag(z') is convolved (filtered) with
some function p(z’) that is determed by using equipment and every filtered
projection is reversibly projected to the space (z,y) such that all single
projections are used for obtaining the image pu(z, y).

The development of the convenient scheme in purposes of wave ocean
tomography realization has a number of features, the main feature consists
in an influence of hydrology over the whole ocean depth upon the sound
speed propagation character that makes the problem 3-D in principal i.e.
the task can be treated as a hydrology "map” reconstruction. In the other
words in a difference from the traditional tomography of the plane section
of a scalar object the ocean tomography is a vector-parametric problem.

Let’s devide the investigated region of the ocean on vertical bars-cells
and examine the sound field transformation during passing throw one bar.
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Figure 8: The scheme of the 3-D ocean tomography

If the bar contains only basic environment than the fields in its "exit” and
“entrance” are connected by by means of propagation operator A°:

Uzg,r+ Ar) = Uy = AgiU(zi,r).

The summing by repeat indexes is implied.
The hydrology perturbation é¢(z;) causes the operator’s perturbation:

5Ak,~ = ————"— . 6C(Zj) = Bk,'j - 5Cj

" Let the signal to pass throw P bars between radiating and receiving antenna.
In this case the main field transformation is

P
U = [H.AO"
p=1

The perturbation presence results to observable profile distortion that in
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the linearized case is

|
U= |ITA° Y fécf U; =
i pEP |t#p J ki
=Y | D, B 5@] Ui = (2)
1 PEPI ] ki
= ¥ UL DB Ui = % LI,
pEP § i ki pEP j

where the sense of introduced designations is seen from the transformation
sequence, D in the adiabatic approximation and mode representation is the
diagonal operator and P; describes the I-th ray trajectory. In this equation
the summing signs are represented in the evident form.

This expression - formula for tomographic ocean investigation and it is
analogous to formula (1) in this sense. But in this formula the particulari-
ties of ocean tomography are reflected. The main one is ” volumness” that
means the necessity of account and reconstruction of vertical hydrology for
description of each ocean cross section, that gives the second sum on the
depth coordinate which appears in formula (2). That property is contrast to
the convenient schemes of computer tomography to be used in medicine and
other practical realizations because in the pointed cases the reconstruction
of plane section of scalar object takes place by using results of penetrating
of that section (Fig. 7).

The situation becomes simpler in the case of the adiabatic approximation
in modes representation. The consideration analogous to having been done
above gives the next relationship for the vector of complex amplitudes:

R IDIY M LA L I

peP i J

i.e. the every vertical bar in such case introduces the equal contribution
to the every ray wich passing throw it. This relation generalizes the scalar
tomography case, where every cell contributes equally to the all passing
rays, to the vector-parameter case.

The next important question touches the source of penetrating radia-
tion. For the simulation and in practics we should use the finite and dis-
crete modes representation. Due to the operator A is diagonal in the case
of adiabatic approximation the B and D so become diagonal and it allows
to get separate tomographic problem for phase velocity of each mode by use
only one depth of source location such ‘that all modes of investigated waveg-
uide are excited. In general case the question is about the nonsingularity of
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operator F but this is not guaranteed. It is possible to raise its due to data
redundancy by using different radiator depth.

‘ So the question i1s important about the choice of work frequencies in
the case where the reconstruction is done with using mode representa-
tion. It is so because for one work frequency it is possible to reconstruct
the map of mode’s phase velocities but it is not possible to reconstruct
the profile ¢(2) because the perturbation in phase velocity of n-th mode
bv ~ [ 6c(2)¥2(z) dz but the set {12} doesn’t form the full system on one
frequency. So the reconstruction of éc(z) is possible only by use of data
recieved on several frequencies.

In general case for solving the direct problem and constructing the op-
erator of correspondence (the matrix of translation from measured data to
the hydrology characteristics) which is the base of inverse problem solving it
is possible to employ the mode approach with use of first (linear) members
of perturbation theory expansion. For this purpose it should be regarded
the equation

[ (2) + K2 (2)%i(2) = K{thi(2), (3)
-where «? is the [-th eigenvalue (square of horizontal wave number), 1; -
the corresponding to it eigenfunction (mode) and k(z) = w/c(#), ¢(2) - the
sound speed profile. The field in the homogeneous waveguide on depth z
and distance r from the source has been located on depth zg is represented
in form

Ur,z)= > /%ru},(zo)w,(z) exp (i(kir — m/4)). (4)

The immediate calculation of sound speed by using this formula is difficult
and the often situation is that the exact representation of eigenfunctions
#1(z) is unknown because of only in limited number of occasions the equa-
“tion (3) has the exact solution. For the fields to be calculated it is necessary
to use the approximate methods. One of them that has the wide application
‘in different branches of wave phisics is the perturbation theory method that
is used when the square of wavenumber k(z) is represented in the form:

¥(2) = KE(2) + k(2.

The profile of nonperturbated wavenumber ko(z) choosed so that the non-
perturbated wave equation

W(2) + k()P (2) = ¥ 9P(2)

has the known (analytical or had been obtained before by numeric calcula-
tions) solution and perturbation k%(2) would give some corrections to the
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solution of nonperturbated equation. The consistent calculation of these
corrections results to the expansion into a series on some formal parameter
A. The first (linear) approximation of perturbation theory gives the next
corrections to the eigenvalues and eigenfunctions:

H
o= [ EE e,

z
he= T S [T @) i
m;‘:l
It is worth while to introduce the expansion with finite measure represen-

tation of values involving in the formulae by use of the sampling theorem
or other functional basis:

N
K (2) =) k3.6;(2),
i=1

where N is the number of accounted members of series. By introducing the
designation

H
]0 $0(2)0;(2)% () dz = Big

these formulae are transformed to the kind

N

2 _ 2

K1, = Dk, Buj,
i=1

N
¢}=Zk Z 1/1m(z) B,m]

ji=1 m#l

The small perturbation of wavenumber profile k;(2) results to the approxi-
mately proportional to it perturbation of sound field {22]:

N
AU(r,ze) =Y k2. Q;(r, =), (5)

i=1

where @Q;(r, z) is the matrix which calculated by use of perturbation theory
formulae.

The formula. (5) sets up the linearized relationship between given on such
horizons perturbations of wavenumber and perturbations of mode wavenum-
bers and perturbation of acoustical field with using the elements of matrix
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@ as translation coeflicients that allows to solve inverse reflection problem
immediately {23]: from measured sound fields to obtain the change of pro-
file of stratified hydrology. Such formulation corresponds to the simplest
tomographyc scheme for the volume consisting of one elementary bar.

It is necessary to point that nowadays the modification of perturbation
theory has been developed that allows to exclude some disadvantages of
standard form of theory such as necessarity to now all spectrum of nonper-
turbated operator for calculation of corrections to the every mode and the
decision of question about rule for summing the series. The exclusion of
these disadvantages is made by ”delinearization” by the reduction equation
(3) to the nonlinear first order equation

Y~y =k~

doing by means of substitution y; = —¢/¥y = —(In¥;)’ into the primary
squation. This approach called by "nonlinear perturbation theory” or ”de-
linearization method” for hydroacoustical problems is described in detail
in works [24-25]. The expansion upon the formal parameter A results to
the correction formulae every of which demands the knowledge only that
nonperturbated eigenfunctions and eigenvalues to which the corrections are
searched. Moreover, the result is represented in quadratures that makes the
method be suitable for computer calculations.

Account only first linear corrections also results to the lineariezed rela-
tionship (5) with that difference that now the matrix @ is calculated with
use of formulae of nonlinear perturbation theory. The solution of this lin-
eariezed system gives the corrections to the local values of eigenvalues which
are added to the values of choose as an initial profile of wavenumber k¢(z)
which corresponds to the cins1(2) on the frequency w. Such process can be
repeated iterationly with the founded profile k(z) taken as the new initial
one. So the gradually precisive approximation to the right solution is built.

For modeling the described algorithm the program of numeric calcu-
lation was created. At the first step of program’s work the initial data
are assumed - the known parameters of the waveguide (depth, boundary
conditions, the initial approximation of wavenumber kq(z) profile), the co-
ordinates of source and antenna receiver elements. At the second step we
have chosen the basis functions 8;(z) as sinz/z and the discrete profile of
hydrology is expanded upon them. At the third step the field that has to be
"measured” by the vertical array is calculated. The simulation of measuring
process carries out with assignment of true hydrology profile and calculat-
ing of corresponding field that means the solving of the direct problem.
Then the iteration account begins. At the first stage of every iteration the
solution of the direct problem for the initial eigenvalue profile was found
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with the corrections had been found at the previous iterations. The Hunkel
functions asymptotic values were determed, the initial field was formed. At
the next stage the calculations and forming the matrix ) were made. Then
system of linear equations (5) was solved, the corrections «; in the points
of hydrophones location were founded and the refined hydrology is rebuilt.
The program begines the next iteration. The process of the convergence to
the true profile was controlled by the discrepancy — sum of the squares of
the reconstructed profile values declination from the true one:

S= E Czter - czrnt)
i=1

Here N is the number of points where the field .is " measured”.

The results of the program processing for the model of ocean with depth
1 km, monochrome (50 rad/s) source located at the depth 250 m are present
in the tab where profile values were taken during every 100 m.

Vertical profile of sound speed, km/s

True profile | Init. profile 1 iteration 2 iteration 3 iteration
1.50327 1.50523 1.50419 1.50365 1.50330
1.48505° 1.48655 1.48560 1.48518 1.48510
1.47141 1.47250 1.47187 1.47149 1.47144
1.46199 1.46270 1.46242 1.46207 1.46202
1.45657 1.45691 1.45667 1.45665 1.45660
1.45502 1.45500 1.45503 1.45502 1.45501
1.45729 1.45691 1.45706 1.45705 1.45719
1.46344 1.46270 1.46304 1.46321 1.46331
1.47363 1.47250 1.47309 1.47356 1.47357
1.48810 1.48655 1.48746 1.48802 1.48806
1.50723 1.50523 1.50653 1.50715 1.50720
Discre-
pancy 1.6271 1075 | 2.9596 -10~% | 3.0870 -10~7 | 3.9200 -10~%

The convergence of the algorithm to the true value of hydrology during
iterations account confirms normal operation of described gradient method
based on the nonlinear perturbation theory.

Process including distorted antenna and use the 4-frequencies algorithm
reduces the inverse refraction problem in the simplest form to the equation
system

zZ

AMy(r, z) Zkl (r, zx)
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where A is the matrix determed by the matrix Q at chosen frequencies [20].

At the conclusion let’s describe the complete scheme of ocean tomogra-
phy with use the set of vertical antenna distorted by the ocean flows.

For this purpose determine at every cell of investigated region the hydrol-
ogy profile ¢g(7, k, 7). The presence of the inhomogeneous éc(z, k, 7) leads
to the field perturbation at the ”exit” .of every bar which is calculated with
help of perturbation theory:

N
Uik, ) = Z 6Ic,2,(i, k)Qn(i, k,j)=
n=1
N
~ =2 Y kEQn(i k, j)4,
n=1

where n = 1,..., N —index of functional basis, for example, the basis of sam-
pling theorem. If there are P vertical bars with coordinates (i, k) between
radiating and receiving antenna then the passed field has the perturbation

P N kp2 '
Up=Yy |-2-Y_ e AOLLIONE

p=1 n=1

This formula represents by itself the analog of linearized computer tomog-
raphy formula where field perturbation on P-th ray éU, plays the role of
single point in single cross section and 6cP(j) - of reconstructed image.

This perturbation throw the Pj-ray trajection passes present the com-
plete perturbation of 4-th order product along the ray. Radiating the re-
gion under investigation by intersecting rays results in these approach to
the algebra equation system, the solution of which allows to reconstruct the
inhomogeity. But it is only first step of iteration procedure. The next one
begins from a new value ¢§(z) — ¢§(2) + dei(2).

It 1s necessary to note that the idea of acoustical monitoring surely will
be developed at the nearest future at a number of directions of tomographic
methods which nowadays represent possibly the unique class of methods
of detailed investigation of large ocean regions, and the development to
the ocean purposes the methods which have been extended initially for
medicine aims is a reasonable way for solution of arising problems. Their
main advantage is the quick increase of data information as the number of
new sources and receivers are added into the net of sound ways intersecting
trajectories. This property allows to investigate large regions with the help
of relatively small number of devices.

A necessity of reconstruction of underwater flaws velocity map doesn’t
been involved in this discussion but note that the use of the ”unreciprocity”
theorem for moved mediums allows to reconstruct it.
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FORMATION OF MULTI-VIEW IMAGES
IN OCEANIC WAVEGUIDES
BY DARK FIELD METHOD

E.L. Borodina, N.V. Gorskaya, S.M. Gorsky, V.A. Zverev,
G.N. Nikolaev, A.I. Khil’ko, V.N. Shirokov

INTRODUCTION

The problem of visualization of primary and secondary sources
of acoustic fields, i.e. forming the spatial light intensity distribu-
tion pattern, has independently arisen in a large number of practical
fields, such as underwater engineering, ecologic monitoring of exten-
sive oceanic region state, navigation. It allows to obtain the acousti-
cal information by visual channels of perception using imaging men-
tation mechanisms. There is no necessity to prove the efficiency of
the method, well known in various fields of technical acoustics (from
medicine and nondestructive testing of samples to vibroscopy of the
Earth). This method is known as ”the acoustic vision” [1,2]. Here
the spatial distribution of acoustic fields is screened on a monitor in
a form of a brightness pattern.

Usually the acoustic images are obtained using numerical or simi-
lar methods (including scanning and reconstruction into the observa-
tion area). Such images are essentially informative, that allows suc-
cessive interpretation of observation data. However, one can not ex-
pect a direct analogy between acoustic and cptic images because these
fields have the different physical nature. That makes acoustic images
unusual for perception, for example, some internal peculiarities of an
acoustically transparent object can be visible [3]. The interference
structure of a secondary source field also can cause the significant
singularities of sonovision images (for example, the speckle-noise) [4].

In this paper we propose to transfer the sonovision methodology
to geophysical waveguide conditions (it is assumed, that the distances
of observation are large enough, such that the waveguiding conditions
of the sound propagation are fully shown). It should be mentioned,
firstly, that the oceanic medium in common is inhomogeneous (if
one can avoid rough and complex boundaries, a water layer can be
described using smoothly-inhomogeneous layered waveguide model).
These circumstances complicate the process of a local inhomogeneity
inverse reconstruction, because such medium is not isoplanar and
does not "transmit” images [5].

Secondly, the oceanic medium is unsteady and randomly inhomo-
geneous. It results in illuminating source fluctuations, that prevents
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the use of sonovision methods, developed for homogeneous media.
And, thirdly, usually observed objects have large wave dimensions
(for example, an intrathermocline lens), so that the most part of
scattered field energy is concentrated in a small angle around the il-
lumination direction. It is important both because of a noise and a
signal decrease due to a signal propagation in natural conditions, and
difficulties of design of a power illuminating source field.

The previous consideration lets us suppose that the scheme in
which the observed inhomogeneities are situated between the source
and the receiving array (or distributed scanning system) is an optimal
hydroacoustic vision scheme (this proposition has a theoretical and
experimental proof). This scheme is analogous to optical schemes of
spatial filtration. But in the acoustic scheme the spatially-distributed
receiving system (the array consisting of remote hydrophones or the
antenna of synthesized aperture) plays a role of an image forming lens
in coupling with the system of reconstruction forming optical images
and displaying them as brightness pattern.

The described circumstances significantly complicate the process
of hydroacoustic image reconstruction concerning the free space imag-
ing, thus it is necessary to take into account waveguiding conditions
in a reconstruction algorithm. Moreover the important part of the
algorithm is the dark field method, that provides a filtration of a
strong illumination source field [6].

In previous papers [7,8] we showed, that under the above condi-
tions oceanic inhomogeneity images can be reconstructed in a way
similar to "shadow” images, which contain information of only one
projection of inhomogeneities. In this paper we study the possibilities
of the common processing of a number of inhomogeneity projections
to get more complete information on the inhomogeneity spatial dis-
tribution in a vision area of a hydroacoustic system. In addition
to analytic and numerical results the experimental data on physical
modeling in the ultrasonic range are given.

ANALYSIS OF THE ONE-VIEW FRESNEL IMAGES
RECONSTRUCTION IN THE OCEAN

In a large number of papers devoted to the tomography inhomo-
geneity reconstruction algorithms are described usmg a combination
of projections [9], the broad concept of "projection” is determined

ere as one field distribution on an array aperture for one fixed po-
Sition of a source and a receiver (it is assumed here that a received
Source wave is plane, and an amplitude or phase or propagation time
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of a scattered plane wave vary [10]). In this case the inhomogeneity
considered is weak and large-scale 11,12%.

In, diffraction tomography for each illuminating source position
there is a number of projections of diffracted signal [13]. And we can
conditionally consider this combination characterizing the scattered
fields at one angle of illumination as one projection. This concept of
projection is especially convenient for inhomogeneities of large wave
dimensions, when a scattered signal spectrum is in a small intervs!
of scattering angles, and the small array aperture is enough for mea.
surements. In this case we assume that Fresnel approximation fc:
the aperture dimensions is realized, i.e. the array aperture contain:
few Fresnel zones for the observed inhomogeneities. Here we also ob
tain only one projection, and although aperture dimensions allow t:.
reconstruct two-dimensional inhomogeneity distribution by focusing
of a measured signal, the longitudinal resolution is small [14]. Th:
obtained pseudo-image is a "shadow” image, and it is similar to -
single projection in the tomographic method (at the same time this
image contains information on a longitudinal structure of an inhoma-
geneity). Below we will call it the one-view image. In our previou.
paper [14] the properties of such images were investigated and, in par-
ticular, certain methods of spatial filtration of a direct illuminating
source signal were developed.

For more complete reconstruction of two-dimensional horizonte!
distribution of inhomogeneities the common processing of projectious
or pseudo-images is required. It allows to obtain more complete re-
construction of an inhomogeneity shape even for a few projections
for example, for two ones.

It should be mentioned that this scheme is similar to the huma:
eyesight, i.e. to the binocular system consisting of two lenses at =
small angle to each other. The multi-view image reconstruction wili
be considered in the next section. Here we analyze the one-view image
taking into account the influence of the waveguiding conditions on the
formation of acoustic images in the ocean.

We use the analogy of the image formation by the lens and the
antenna in the Fresnel zone. In addition to that we assume, that the
observed rigid inclusion of horizontal and vertical dimensions Lj and
L,, respectively, is situated in the waveguide between the source and
the receiving system (i.e. horizontally and vertically stretched array
of hydrophones), see Fig. 1.

The common velocity potential u(E) in the region of observation
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Fig. 1. Basic scheme of the hydroacoustical vision system and the measurement
geometry

R(z,y,2) is determined from the Helmholtz-Kirchhoff equation [15]:

uo(R) + %f

S

du(R,)
an

8G(R,, R)
on

G(R,, R) + u(R,)

dR, = u(R) (1)

where uo(R) - is the velocity potential of the direct illumination field,
‘n - is the outer normal of an inhomogeneity surface S, G(R,, K) - is
the Green function of the undisturbed medium. The problem consists
in the reconstruction of an inhomogeneity location and shape (by a

spatial distribution of secondary sources M“a%l and u(R,)) from fields

u(R,) measured on an array aperture M(y,z). The measurements are
carried out in the presence of noise.

As follows from (1) the problem of hydroacoustic vision is the in-
verse problem of scattering (IPS), because the integral equation with
the known right-hand side is solved with respect to spatial distribu-
tion of secondary sources on the surface S of unknown shape. From
this point of view the problem of vision is the particular problem of
IPS, that is more general and complete problem of the reconstruction
of both an internal structure and physical characteristics of inhomo-
Beneities. But the aim of vision is to restore images of investigated
objects convenient for visual observation.

For the further analysis of imaging in oceanic waveguides some
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approximations are necessary. It is assumed that the inhomogeneity
is remote far from waveguide surfaces, so that the multiple scattering
can be neglected [16]. In addition to that we assume: 1) the horizon-
tal wave dimension of the inhomogeneity is large L, > A (A - is the
wavelength of the illuminating source); 2) the small angle approxima-
tion is realized; 3) distances between the source, the inhomogeneity
and the receiver are large concerning the wavegulde thickness. In this
case the equation (1) given in a simplified form is [17]:

uo(R) — — / / (€, n) 0(5 0uellsm) 5. Ry dn = u(F) (2)

where o(€,n) - is a part of plane limited by a line dividing light and
dark sides of the inhomogeneity situated at a distance zy from the
source and a — ¢ from the receiver (see Fig. 1). Further we use the
mode approach of the acoustic field in the oceanic waveguide [15].
Thus, we get the expression for the incident field and Green function:

w5 = 3 Ao ()22 E(hh),; 2l L] ®

N
G(6,1,0,2,9,2) = Y om(®)pm(M)hnla — z5)]/* x

m=1

: .4y . ynhm
exp [z(a —zx)hm + 12(a L (a " 4] (4)

where N - is a number of propagated waveguide modes, h,, and ¢, -
are eigenvalues and eigenfunctions of the waveguide, respectively, the
distances are represented by Taylor decomposition including square
components because we take into account the spherical character of
incident and scattered fields, Ay = const.

Combining (3), (4) and ( ), we obtain the integral equation with
respect to the location and shape of an inhomogeneity. For the arbi-
trary shape o the vertical and horizontal coordinates (¢,7) in (2) are
interrelated, that complicates the analysis. Thus it is convenient to
investigate these dependencies separately, because they contain the
different physical information. In the vertical direction at large dis-
tances only waveguide modes take part in the scattering, in which a
transformation of a spectrum occurs [18]. In the horizontal direction
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the diffraction of each mode on the inhomogeneity is analogous to
the diffraction in the free space.

For the simplification of our investigations we assume that for
the observed inclusion shape o(€,7) = L(n) x T(¢). Then the integral
equation (2) discounting (3) and (4) is shown by the relationship:

exp |i(rohn — 7
u(a,y,ZA)ZAor;(Pn(zA)Son(zi) ([Tohn)llz )] -

Z Som(zA)ZSDm(Z,)( zh Tom X

exp[ (h Ty + hm (“_x2)+hm2(_azb>:)—%)]
(hnhmr's')H?

[ wmesn [ (Sha + L) n]an )

X

0
where ro ~a + 22, ~a—2z5+ 2(7%, s =y + JL_ and the matrix
element T,,,, is equal:
o0
T = [ T©palé + 0)0in(€ + 20)dE (6)

It is evident that the first component of the sum (5) represents the
incident field in the observed region in mode presentation. The second
component corresponds to the scattered field. Examine at first the
possibilities of inhomogeneity vertical distribution reconstruction. As
follows from (5), the scattering in vertical direction is described by
mode spectrum transformation and is defined by matrix component
(6). If the vertical inhomogeneity dimensions are small, so that the
characteristic scale of the field fluctuations is much more than L.,
for the isovelocity waveguides the expression takes place: ¢,(z) =
sin(qnz) = (exp(zqn ) — exp(—ign2))/(2¢). Then defining the function

Thim = 5= f_ T(€) exp(i€(gn = gm))dé we obtain the expression for the
matrix Tnm,:

™
Tnm = :F_[Tn:i:m - an:m] (7)

The spatial filtration of wavegulde modes is described (as in free
space) by the convolution of an ”input” discrete mode spectrum and
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the mode filter T, (6):

N
m(z) = — Z

where Lum = ihn [5° L(n)exp [—i (Y hn + %hm) n]dn If the waveguide
surfaces are remote to the infinity, the expression (8) transforms into
the convolution integral corresponding to the spatial filtration in a
free space [19]. As seen from 88), the estimation of the inhomogene-
ity vertical structure is possible if we solve (8) by the deconvolution
method [20]; however a prior information on an incident field mode
spectrum and a measured mode spectrum of the field is required.
From the physical point of view the situation is illustrated by the
example, where the inclusion is illuminated by a single mode of the
acoustic field, the scattered field consists of many modes, and each
scattered mode is measured. In this case the envelop curve of the
mode spectrum represents the scattering pattern, which allows to
estimate the vertical dimension of the inhomogeneity by an inverse
Fourier transform. However, this way of reconstruction requires a
waveguide mode selection that demands the use of vertical arrays,
time gating, etc. All of the required methods are connected both
with technical difficulties and a complication of processing algorithms
21,22].

[ We] do not discuss this problem and consider in detail the re-
construction of inhomogeneity horizontal distribution. As it follows
from (5), for the given indexes n,m the field distribution along the
receiving aperture is presented by Fourier transform of an unknown
function, which determines an inhomogeneity shape in a horizontal
plane in transfer direction, where the distance between the object
and the observation region includes a square item. The multi-mode
structure is displayed in a complementary field modulation within the
observed region (in the form of mode summation). In papers [17,18]
the conditions are obtained when the interference modulation spatial
spectrum and the spatial spectrum of the inhomogeneity variations

substantially differ:
4mry 3 roT
(Ahi,) ~ (hij)L )

where ro = a — z3, 6h;; - is the difference of horizontal projections of
mode wave vectors, < h;; > - is the average value. For fixed parame-
ters of a waveguide and inhomogeneities the distance of observation
7o plays an important role: for ro > ry (where ry satisfies the con-
dition (9)) the frequency of an interference modulation is more, and
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for ro « 7y - it is less then the "useful” variations, that allows easy
filtration of each item. However, when (9) is satisfied, the interfer-
ing modulation may be filtered only using prior information both
on waveguide parameters and on inhomogeneities, so that the image
reconstruction without taking into account the mode structure may
be significantly altered. At middle distances (see (9)) images cor-
responding to different modes overlap each other, that often makes
the summary image interpretation impossible. At large distances re-
stored images are multiplied.

Observe now one mode imaging in detail, where n = m. To this
end we assume that the mode selection is carried out, or one mode
is differentiated due to the dissipation loss in a waveguiding propa-
gation, or the mode interference component is filtered in the imaging
process [7]. In one-mode approximation (5) is equivalent to:

. y2 : 2 o0 .
w(a,y, 24) = SoeHhe _ 8, T / LimeCH+3hngy  (10)
-0

where
m

Dl

A . _
Sn = 22 0a(za)en(z:) (=i T (20 )7

S8 = Aopn(24)¢n(zi)(rohn) " * expli(ahn —

exp[i(hnzs + hn(a — z3) — g)] .
Assumption y = 0 yields the expression for the second component in
equation (10):

oo X n y2
Sn /_m L(n) exp [l (‘hnﬁy+ h"M)] o

The exponential factors in Fresnel integral represent the complete
orthonormal basis [23]. To solve the integral equation (10) concern-
ing L(n), it is necessary to multiply both parts of the equation by
expli(h,ysina — hyy?/R)] (where a, R - are polar coordinates of the
point (z,y)) and to integrate the expression over the whole range of
definition of Fresnel functions. Than in the right-hand side of (10)
we obtain the Fresnel transform of the field measured on the infinite
aperture. The left-hand side contains two images of a point illumi-
nating source: at a® = 0, and R® = 2a (the first item) and image
determined by L(ar') when R = 2(a — z5). However, it is a formal
solution, because we did not take into account the finiteness of the
measuring aperture. Denoting this aperture as the function M(ya),
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Fig. 2. Fresnel image of point sources distributed in a horizontal plane from

one projection. Sources are situated at different angles and distances (a — zg =

D, D = 30))

we multiply both sides of (10) by M (ya)ezpli(hnyasina — h,,L;;i ] and
integrate it within infinite limits. Than in the right-hand side we
obtain the function ®,(ca, R), determining the image reconstruction
algorithm using the measured data. Two components in the left-hand
side of (10) can be written as:

a,(1/(2a) — 1/R)" 5/ L(n)Fa(a “Ndn  (11)

where ¢ = 1/(2(a — zg)) — 1/R - is the parameter of vision system
focusing, sina ~ «, and F, - is the pulse-transient characteristic of
the reconstructing system (that is the image of primary or secondary
point source):

&wm=/ M (ya)ethnlGr-vatevilgy, (12)

As known from the image reconstructing systems theory (for ex-
ample, optical systems), a quality of imaging is characterized by the
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pulse- transient function [19]. In many cases this characteristic ap-
pears to be independent on a point source position within a vision
area. However, in the observed case it does not occur because an
image of a discrete point object essentially depends on a source lo-
cation. As seen from (12), this dependence is vividly displayed at
large distances between the observation point and the measurement
1, |yal < D/2
0, lyal>D/2
at ¢ = 0 (for the focused image) F,(a,a—zs) = DSinc(h,aD), and the
transverse dimension (on r axis) is described as Az = (Ma—=zx))/(2D).

The point source image is much wider in the longitudinal direc-
tion: Ay~ (5...10)Az (it can be estimated by Fresnel integral). As
an observed object moves from the array, the separate elements of res-
olution increase along y-axis. As follows from (11), the structure of
point source images determines the number of independent elements
in the object image resolution. In Fig. 2 the images of sources situ-
ated at different angles and distances are shown. The image of a far
remote source is displayed in the observation area as a quasi-uniform
background. It is caused by finiteness of the antenna aperture and,
therefore, a weak focusing of these source fields.

It should be noted, that the number of independent image ele-
ments is determined not only by the size of the point source image,
but also by limitness of a vision area. This circumstance is explained
by an inapplicability of the Fresnel approximation near the antenna
and the resolution decrease at large distances and large displacements
on x-axis. As seen from (11), the receiving system registers both the
scattered field from the observed inhomogeneities and the direct il-
lumination field. The first term in (11) defines the source image.
Again, if the source is far remote from the receiver, its image oc-
cupies in common the whole vision area. As mentioned, the strong
direct signal fluctuations overlap inhomogeneity images. In addition
to that the strong direct signal decreases the dynamic range of signal
registration.

To overcome these difficulties the general dark field method of
source field suppression was developed [6-8,14]. This method is based
on a selection of scattered and direct signal spectra, corresponding
the sources differently remote from an array. In the first realization
of the dark field method the signals of two neighboring receivers are
subtracted and resulting spatial components of masked source sig-
nal are filtered [7]. This operation realizes a spatial mask in a focal
plane matched according to prior information of the source location.
Another way is based on spatial filtration of Fresnel images by two-
dimensional filters adjusted to a source image [7,8]. Both methods

area. For the rectangular aperture when M,(ya) = {
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require prior information on the source location, however, the sec-
ond way may be readily used in complex-structure media, when a
filter is constructed using the empirical data in the absence of in-
homogeneities. An example of diffracted signal differentiation from
high background (when the direct signal is by 15 dB larger than
the diffracted signal) is given in Fig. 3. Fig. 3b shows the scat-
terer image obtained using a two-dimensional spatial spectrum filter

0(éz,&y) = |FO(¢,,€,)|” ", where FO(¢;,&,) - is a source spectrum, &, §,
- are spatial frequencies. In the considered example the aperture
dimension is about 10 Fresne! zones for the source.

In paper [7] this method was applied to image reconstruction of the
vertical steel rod in the water layer. The interference of waveguide
modes in these experiments resulted in a strong distortion of the
source image, that led to almost complete masking of the cylinder
image. The spatial filter obtained by inversion of the source spectrum
amplitude component (including a mode interference) was used to
localize the cylinder. As seen from analysis of various kinds of one-
view images, for complicated spatial distributions a significant part
of information may be lost, that leads to some uncertainty of the
observed objects shape and location definition. To illustrate this fact
the images of the letter II and a rectangle (situated in a transverse
plane (z,y)) of the same dimensions on y-axis are given in Fig. 4.

As seen from the numerical simulation, an adequate interpretation
of various objects by one-view images is difficult. By the recent time
tomographic methods [10] providing more complete reconstruction
of the spatial distribution by the combined processing of projections
fixed at different angles are developed. However, a consequent mea-
surements of signals in the ocean at numerous angles is long-time
process, that is unsuitable for nonstationary inhomogeneity observa-
tions. The creation of simultaneous schemes is very expensive and
also unacceptable. Apparently, a possible way to be adopted is an
application of scanty-view schemes, which allow to solve this prob-
lem, although, not to the full. In addition to that, taking into ac-
count technical and other difficulties arising in far sonovision scheme
creation (when waveguide peculiarities become significant), it is im-
portant to organize a location of each source according to natural
conditions. Thus, it appears impossible to make large horizontal an-
tennas of continuous aperture including many Fresnel zones. The
more acceptable way is to construct an array of sparse hydroacoustic
receivers.

Some realizations of sonovision schemes by means of sparse trans-
ducer arrays and also the scheme of reconstruction from two projec-
tions ("binocular scheme”) are discussed in the next section. And pre-
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Fig. 4. Images of the sign II (a) and the transverse rectangle (b) reconstructed
from one projection. Direct illumination field is suppressed
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viously it is necessary to pay attention to the influence of waveguidin
conditions on the depth distribution of receivers. In papers [13,21] the
differential diagnostics methods are proposed for a reconstruction of
an inhomogeneity spatial structure reconstruction between the source
and the receiving system using vertical radiating and receiving arrays.
In this way the arrangement of receivers providing matched radiation
and reception of waveguide modes far remote in a mode spectrum is
optimal. Generally, the problem of optimization of source and re-
ceiver situation in the hydroacoustic vision scheme is considered in
[23,24], where translation characteristics of inhomogeneities are in-
troduced and special optimization algorithms are derived.

BINOCULAR SCHEME OF ACOUSTIC VISION

Return to scanty-view schemes using stated above one mode ap-
proximation. However, we assume now that measurements are car-
ried out by a finite set of far remote receivers. Before the analysis
of the binocular scheme consisting of two far remote arrays we con-
sider briefly one view reconstruction by discrete array. The aperture
function M(ya) for a finite number of receivers can be written as:

N
M(ya) = Acb(nd — ya)ll,, (13)
L, ]yAI < D/2

,d=D/N, N -is a number
0. lual>Dy2> =P/

where Ag = const, I, = {

of hydrophones.

As it is known, the fewness of an array results in the multiplication
of images [7]. Fig. 5a shows the resulting multiplied images of the
point scatterer and the source in the scatterer plane.

The received signal is processed to focus the source image, leaving
the scatterer image unfocused. Combining (12)and (13) for r = 2a we
obtain the focused image of the illuminating source S? sin[Nkyd/(2a)]
sin~!{kyd/(2a)], where k = 27/A.

For the direct signal suppression a filter enclosing main and two
neighboring maxima of each source image is used, and the obtained
signal is focused into each point of vision area (Fig. 5b). Besides that
more successive filtration is possible, when a matched filter multiplier
is 6 = sin(%.%). Taking off the spectral components of number N we
obtain a pure scatterer signal (Fig. 5c). It should be mentioned for
image reconstruction by rarefied antennas, that the fewness of an ar-
ray limits the vision area and makes it possible to fix an inhomogene-
ity situation within a multiplication period. In the considered case
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Fig. 5. Reconstruction of point source image in a scatterer plane before (a)
and after filtration by the meander mask (b) and the sinusoidal mask (c) using
16-element array
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Fig. 6. Binocular image reconstruction by two 8-element arrays of length 20\
separated by 800\ before (a) and after (b) the filtration

the number of individual elements of the image in transverse direc-
tion along y-axis is of order £. Apparently these simplified schemes
are useful for observations of small objects. For definition of the
real object location using the same receiving array a set of images at
different frequencies, not multiple, is required. A true image in ob-
tained patterns stays on its place, and we obtain the desired source
image as a result of summation. The resolution in the longitudinal
direction is limited both by dimensions of the region of measurement
(as for the continuous aperture) and by a multiplication effect. As it
was mentioned in the section 1, to increase the spatial resolution in
the longitudinal direction (on z-axis) it is necessary to increase the
receiving aperture dimensions, that is difficult to realize in practice.
However, one can avoid these difficulties by using the registration
system of two remote antennas. Then the vision is realized as if it
is carried out in two directions, that can provide some advantages,
for example, the increase of the longitudinal resolution. According to
(11) and taking into account (12) and (13) the character of images re-
constructed by each array is similar to those shown in Fig. 5, and the
resulting image can be obtained by coherent or incoherent summa-
tion of these images. As a result of coherent summation the obtained
signal is modulated by the interference component (characterized by
different spatial periods for different distances from the antenna). In
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Fig. 7. Filtered image of the transverse rectangle reconstructed from two pro-
jections

particular, the spatial frequency of modulation decreases as the source
moves from the array. Moreover, the modulation frequency increases
with the angle displacement augmentation. Such spatial modulation
allows in certain cases to define the distance from the scattering inho-
mogeneity, but it requires either observations at several frequencies
or an inspection of an inhomogeneity transference.

Examine closely the incoherent summation of images. Such kind
of processing can be used when the signals in each reception region
are incoherent. If the distance between the receiving antennas is large
enough (more than the interval of coherence depending on randomly
distributed inhomogeneities of the oceanic medium), the interference
modulation does not enter the images. As it is shown in Fig. 6a, the
unfiltered source signal masks the image of the point scatterer almost
completely, and after the filtration the scatterer is clearly seen (Fig.
6b). Only one of multiplied images of a small spatial resolution is
shown in Fig. 6, because small arrays ~ 10\ were used.

However, each separate array does not allow to determine a dis-
tance from the inhomogeneity and its configuration in the certain
vision area. For this purpose the system of two arrays is used, be-
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cause the accuracy of distance definition depends rather on the in-
terval between antennas then on the antenna length. In this case
the spatial resolution is determined by vertical and horizontal pro-
jections of direction pattern lobes in a certain region of the vision
area. The spectral filtration can cause the image distortion, because
low frequencies in the inhomogeneity spectrum are suppressed. Fig.
7 shows the binocular image of the rectangle extended in a transverse
direction as a result of such filtration.

Here the original contouring takes place, i.e. only ends of the rect-
angle are visible (because these regions are formed by high-frequency
components of the spatial signal, which was not filtered).

As stated above, the reconstruction of the spatial distribution us-
ing rarefied arrays at few observation angles can be carried out within
certain limits.

Apparently, it is possible to observe spatially-localized inhomo-
geneities moving in the vision area. The reconstruction of complex
shaped objects or a distribution of a number of objects requires regis-
tration of larger amount of data. So that, consider possibilities of the
hydroacoustic imaging by means of common processing of few images
at various observation angles.

MULTI-VIEW IMAGES

Contrary to the binocular scheme of reconstruction using only
one illuminating source, further we consider schemes where the angle
of illuinination and the receiving array location angle shift at the
same pitch in opposite directions. In an observation of stationary
distributions the sequence of partial images at each view may be
fixed in succession, in the opposite case simultaneous measurements
are required. As mentioned, the resulting image can be obtained
both by coherent and incoherent summation of separate projections.
The coherent summation is connected with interference effects, which
can essentially distort the observed object image [25]. At the same
'time this way of processing allows the summation with correcting
complex weight multipliers, that improves the image characteristics.
For randomly distributed inhomogeneities it is convenient to carry
out an incoherent summation to decrease the speckle-noise. Fig. 8
shows a multi-view image of a rectangle as a result of coherent (a) and
incoherent (b) summation of twelve images reconstructed at various
angles uniformly spaced within the interval 0°...90°.

In the coherent image, firstly, the significant interference struc-
ture masks the rectangle. (Such structure is stipulated by the cir-
cumstance, that two of all images are salient by theirs brightness.
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Fig. 8. Reconstruction of the horizontal rectangle of length 7\ and width 1) as
a result of coherent (a) and incoherent (b) summation of 12 projections after the
illumination field suppression
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And these two images, corresponding to the observation from longer
sides of the rectangle, interfere as in binocular scheme.) Secondly, the
spatial interference of the summary image is caused by the complex
structure of each item. And, finally, the interference from numerous
separate image details of apprommately equal brightness produces
the speckle-noise [4] well known not only in acoustics, but in opti-
cal reconstruction in laser light [19]. These phenomena can be used
in special methods of sonovision, in particular, in ultrasonic medical
diagnostics. However, in certain cases, when the estimation of av-
erage inhomogeneity distribution is required, or partial images are
incoherent due to random inhomogeneities, the incoherent summa-
tion is carried out. In this case interference component is absent and
an image looks more smooth. However, one loses the opportunity of
coherent signal processing.

Observe now the characteristics usually used for the description
of an image quality, namely, the spatial resolution and the vision
area. As seen from (11)-(13), the Fresnel images are nonisoplanar,
i.e. the spatial resolution significantly depends on the position in the
vision area. In the multi-view imaging the best resolution appears
in the area center (Fig. 9a), because all partial images are identical.
With the displacement from center an individual element of resolution
becomes more indistinct and decreases in its amplitude (Fig. 9b).

It occurs, because for several angles where the object is farther
from antenna, its image is extended in the corresponding direction.
Thus, the resulting image becomes illegible. Numerical estimations
show that the best multi-view reconstruction in Fresnel zone, appar-
ently, is obtained in the circle of the diameter 0.75¢ and the center

0.5a,(s). The images of the letter II are given in Fig. 10 for coherent
EFig. 10a) and incoherent (Fig. 10b) summation of images at 32
angles of observation uniformly spaced within the interval 0°...180°.

The illuminating object is considered in the given example, that
allows to obtain the Fresnel images do not taking into account the
problem of source field suppression. It is seen, that the restoration
of source spatial distribution is more adequate using the incoherent
summation. In the opposite case one of lines forming the letter is
weakly visible. This suppression is evidently caused by the interfer-
ence of partial projections, because this effect disappears with the
transfer of the object. A comparison of these two images shows, that
in the case of incoherent summation the noise is displayed in the form
of some averaged “halo”, which can be removed by a low frequency
filter. In another case, when partial images are summed in a co-
herent way an interference speckle-noise appears whose wide spatial
spectrum hinders the filtration.
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Fig. 9. Image of the point source reconstructed from 12 projections when the
source was situated in the centre (a) and near edge (b) of the vision area
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EXPERIMENTAL RECONSTRUCTION
OF SCANTY-VIEW IMAGES

For the verification of hydroacoustic image reconstruction algo-
rithms the ultrasonic experimental set modeling the propagation and
scattering of hydroacoustic signals in oceanic waveguides was de-
signed. The measurement system includes a homogeneous water layer
with a thickness 3 cm and a sound velocity 1485 m/s on a rubber
bottom. A piezoceramic source has a direction pattern specially ar-
ranged in a horizontal plane, that allows to avoid the reflection from
basin walls. We realized the conditions of scanty mode propagation
for the pulse signals 300 mcs in duration at frequencies 140 Hz and
512 Hz. Waveguide modes were weakened due to losses in the rub-
ber layer (a tangent of a loss angle in the rubber was 0.28). Signals
were recorded by two quadrature channels for a latter processing and
image reconstruction using the computer system (Fig. 11).

Fig. 12a shows the image of the vertical steel cylinder 0.25 e¢m
in diameter reconstructed from one projection. Evidently, the image
mainly presents the illuminating source, here the waveguide mode
interference is clearly depicted as vertical strips fully masking the
image of the cylinder. The scatterer image after the spatial filtration
is given in Fig. 12b.

The filter was formed inversely to the amplitude spectrum of the
source 7 cm in length accounting the mode interference. Such filter
was obtained from the experimental data in the absence of the cylin-
der. This allows to define only the object position (dimensions of the
cylinder are less then the wavelength, that makes the reconstruction
of inhomogeneity shape practically impossible).

Observe now possibilities of the multi-view reconstruction. In the
experiment we assumed the equality of the situations when: 1) the
source and receiving array rotate ground the inhomogeneity situated
in the center and 2) the inhomogeneity turns in the opposite direc-
tion. Three scattering vertical cylinders with diameters 1 cm, 2 cin
and 3 cm were mounted on a mechanical rotatable frame, so that
the distances between them were 9 cm, 5 cm, 6 cm. The length of
the antenna synthesized by moving at the depth 24 = 0.3 cm receiver
was 36.5 cm. The depth of the source was 1.7 cm. The results of
reconstruction of the inhomogeneity spatial distribution from 32 pro-
jections are given in Fig. 13 (note, that in these experiments the
inhomogeneity was located not in the middle of the acoustic track.
where zy = 2, but closer to the antenna at a—zg = 25 cm, a = 152 cm,
that was taken into account in summation of partial images).

As it is seen from the shown images, significant distortions appear
in the reconstruction process (among them an interference in spatial
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Fig. 11. Basic scheme of the experimental set (1 - a pulse source, 2 - the object
of observation, 3 - moving receiver, 4 - an amplifier, 5 - a filter, 6 - a computer).
Observation region is limited by dashed line

frequency range comprising the useful signal). It does not allow to
suppress the interference by simple methods.

CONCLUSION

In this work the possibilities of image reconstruction of oceanic
large-scale inhomogeneities by scanty-view systems (when an incident
field and scattered field were registered in limited range of angles)
were investigated. The peculiarities of the hydroacoustic imaging
in Fresnel zone were analyzed in waveguiding conditions. From the
practical point of view the particular attention was paid to vision
systems consisting of a few sparse hydrophones (a binocular system
among them). Then, the schemes using multi-view observations were
investigated. These schemes were analyzed both in theory (analyti-
cally and numerically) and in experiment by physical modeling.

The observed particular problem is one in more general field of
inverse problems of scattering (including tomographic methods). In
this paper we investigated only the problem of vision, i.e. the recon-
struction of secondary source spatial distribution on an inhomogene-
ity surface without reconstruction of its physical structure. Thus,
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only the information on inhomogeneity localization in the observa-
tion area and its shape can be obtained.

Now sum up the results:

- it was shown, that for measurements by a horizontal antenna
(the length of which is more than a few Fresnel zones for observed
inclusions) the inhomogeneity distribution reconstruction is possible
by consecutive angle scanning and focusing into each point of a vision
field. The spatial resolution and vision field limits were estimated.

- it was shown, that the dark field method is required tc improve
image characteristics (in particular, in the form of a posterior spatial
two-dimensional filtration of the resulting image).

- it was found, that an application of the binocular observation
scheme (consisting of two receiving arrays) leads to the improvement
of image spatial resolution in the longitudinal direction.

- limitations of the spatial resolution and vision field dimensions
were estimated for receiving arrays consisting of a few scanty hy-
drophones.

- limits of the resolution of spatial inhomogeneity distribution were
estimated for coherent and incoherent summation of 32 images at
different angles, and also for the elimination of the source image by
the dark field method.

The efficiency of image reconstruction methods was examined
by the experimental image reconstruction. The experimental re-
sults confirmed, firstly, the efficiency of the used methods and al-
gorithms and, secondly, allowed to estimate their applicability limi-
tations. Thus, distortions of the complex scatterer image (three steel
cylinders) appear, apparently, due to the diffraction on ”strong” scat-
terers (according to the classification used in [12]), for which multiple
scattering effects are significant. The reconstruction of such inhomo-
geneities becomes substantially complicated and requires the use, for
example, of iteration algorithms {12]. Another important cause of
distortions is the interference, arising from the scattering on random
inhomogeneities in the medium and basin walls and also from waveg-
uide mode interference. The weakening of random inhomogeneities
influence can be attained by an averaging of random data (if their
spatial spectra do not intersect). For weakening of other disturbances
in a signal processing the priory information on oceanic waveguide
construction and observed inhomogeneities is necessary.

The analysis of possibilities of spatial inhomogeneity distribution
reconstruction is of peculiar scientific interest. For an illumination by
low frequency sources (when a few modes approximation is realized),
the reconstruction in a vertical direction is practically impossible. In
the case of high frequency illumination (when numerous waveguide
modes propagate) the vertical distribution can be reconstructed, but
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Fig. 13. Image of three cylinders reconstructed from experimental data as a

result of coherent (a) and incoherent (b) summation after illumination source
suppression
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it requires special methods of matched filtration using both vertical
arrays and vertical illuminating systems. Such methods of angle selec-
tion and weight sorting by vertical radiating and receiving antennas
are developed in [21,24].

This work was supported by International Soros Foundation under
the research grant NOOO0O.
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TOMOGRAPHICAL PROBING OF BOTTOM
STRUCTURE
BY DOPPLER METHOD

M. M. Slavinsky, Yu. V. Petukhov, and 1. B. Burlakova

This paper investigates the method of Doppler tomography of the
ocean bottom, developed and tested under natural conditions, com-
bines the aperture synthesis and the Doppler effects. This method
makes it possible to determine the angular dependencies of the reflec-
tivity, the effective values of sound velocity C and p density, as well
as the scattering indicatrix of bottom sediments in the low frequency
range. The method is based on the analysis, on the frequency-range
plane, of the spectral dependencies (dopplerograms) of the spectral
power density of bottom - reflected and scattered acoustic signals,
separated by Doppler shift, when a high-stability tone source of emis-
sion is towed along the path. By the spectral power densities along
the trajectories of bottom reflections of different multiplicity, nor-
malized to the geometric divergence, it is possible to find the spa-
tial (angular) dependencies of the reflectivity modules and the ef-
fective values of p and C in the soil. The scattering characteristics
are measured by making spectral cuts of the dopplerograms on given
distances with averaging over the space region. The angular coordi-
nates of the scattering indicatrix are identified using the calculated
dependencies of the Doppler shifts corresponding to the rays, inci-
dent to the bottom at definite angles. The proposed technique was
successfully used in measuring the acoustic characteristics of the soil
in the frequency range 100-400 Hz in the deep-water regions of the
Indian ocean with a smooth and strongly cut bottom relief on acous-
tic paths up to 80 km. The experimental results on defining the
scattering characteristic, as well as the sound velocity and density of
bottom sediments agree with the known geophysical data.

The class of tomographic systems differing from those described
in '? includes the system which is based majorly on the works of
the author !* and combines the principles of reconstruction tomog-
raphy with Doppler effects '*. The method of Doppler tomography
developed in !* and know now as the method of the synthesized
radar aperture '3, was used for the first time to map the Moon re-
flectance 1%, and later, in ultrasound techniques; of late this method
has been w1dely used in ocean acoustics ®~715-17,

The present paper demonstrates the potentla.ls of Doppler tomog-
raphy for determination of, first, angular dependence of the reflec-
tion coeflicient for the even bottom, which yields the sound speed
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and sediment density; and, second, angular dependence of acoustic
signals scattered by the uneven bottom; the authors have made some
use of the results obtained in 3-7.

To illustrate our method, we consider first the simplest waveguide,
i. e. , a uniform layer of fluid with depth H, density po, and sound
velocity in it, co. It lies on the uniform fluid half-space with corre-
sponding acoustic characteristics ¢ and p. If a tonal source with radia-
tion frequency fo = wo/2m moves in a well-defined horizontal direction
r =t (t > 0) at the depth z, with speed v (v/co < 1), dependence of
pressure perturbation P(t) on time t(r) at a stationary receiver placed
at the depth z, is defined by the signals propagating along a pair of
"water” rays and fours of rays with various multiplicities m =1,2--.
of bottom reflections; correspondingly, signal frequencies depend on r
(see >©). Since further we will consider bottom reflections only, then
in the case of z,/H <« 1 and 2,/H < 1 being most convenient for their
separation by frequency Doppler shifts, each reflection will be formed
by fours of rays with the same multiplicity m. Hence, after ”current”

t4T
spectral analysis of the signal S(w,r) = 1 [ P(7)exp (iwr)dr and av-

1
eraging T with respect to time, we find, unlike 13-2° the following
equation for spectral density of the power current |S(™)(w, r)|? within
the approximation of the false source pattern (see 2):

1S (@, )| = RE|Sim(@)V ™ (O1m)e™" '™ / Rim

— Som (W) Vi (©2m )€™ [ Ry, — Sam (w)V™ (O3 )e™t*™ /R3n (1)
+S4m(W)Vm(64m)eiwt""/R4m'2,
where

tim = Rim/o, Ojm = arcsin(r/Rjm),  Rjm = /v + (2mH + hj)?,

i= [1)4]x hy = -—(Z, - zr); hy = —(z, - Zr),
hs = —h,, hy = —hy,
v r

1 W= w;j 2
im = l— ———), Sim = ¢ - 1
wim =woll = ij) VTR { ( Qjm ) }

pcos(Qjm) — y/n? — sinz(ij)

V(©jm) = 2)
’ pcos(Qjm) + 4/n? — sin®(Q;m) (
n=co/ec, B = p/po.
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Here S;m(w) is spectrum of the signal at a small distance R,, and
Qm 1s parameter characterizing the spectrum width of the signal
propagating along the correspondin% ray. When a signal is emitted or
received near free surface ((h;/2mH)* < 1), Eq.(2) yields the following
dependencies for the parameters:

" 2 h;
tjm’itmz‘}l‘ 1+ mHh; ) Rjm =~ Ry = /12 + (2mH)?,
Co R,Zn
Ojm = Om = arcsin(r/Ry), Wim & Wm = wo(l — iL), (3)
Co Rm

1 W= w2
QJm’_‘iQm, Sjm(W)’:_‘Sm(w):Wexp{_( q ) }’

Using them we find an apparent dependence for |S(™)(w, r)|?:

2
150 (w, r)[? = 4 (%) 1S ()P V(O™ x

wm 4mH z, Wy 4mH 2,
1—cos|— : —cos | — + 4
{1 e [ ] - e S22 g
+1 cos W 4mHh, + 1 Wm d4mHhy
Co Rm €g Rm '

) ) Ccos

Two points should be emphasized here. First, to separate frequencies
of neighboring reflections m and m + 1 by frequency Doppler shifts

one needs synthesize aperture D = oT > L = o fmBmi1  yhoge
for Rm+l_Rm’

size should be considerably large at large distance (2mH/r)? <« 1
since parameter L =~ m—ﬂfj_—lm (—I’;)2 grows rapidly as r increases. Sec-
ond, when deriving Eq.(4), variations of frequency Doppler shifts in
fours of signals characteristic for every m (see Eq.(3)) have been ne-
glected because, when z,/H « 1 and 2,/H <« 1 separation of the
fim = wim/27 (j = [1,4]) 1s rather complicated for the whole region
0 < r < oco. This separations is possible only when the following con-
ditions are met: o1 = |6f;jm/Af] > 1 and o2 = |6fjm/Um| > 1; (here
6fim =~ —fo-gs4zjmH stands for variations of frequency Doppler
shifts in fours of signal, Af = — foc"—o%@ml&()2 is range of averaging
with respect to frequency Doppler shift when aperture D is synthe-
sized; z1 = 2, 22 = zr, 23 = |ho|, 24 = h4q). Assuming Q,, = Q = const
and D ~ L, we evaluate o; and o, as follows:

fon' 7'2 Rm+1 - Rm v Wo 4erzj
= 3 03 = —— 3 ) (5)
ComH Rm+1Rm Co Q Rm
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These formulas easily yield simple dependencies for two boundary
cases:

foz; 2 ( r )2 vwo T2 ( T )2
~ ~ —— : 1;
N mAi\TmE) 0 P ama? \amE) €
(6)
fozj 2(2m + 1) H v wo 4mH z; ( T )2
n 205 AT )T ~ 20 1.
. co m r’ 7z co 2 r2 7’ 2mH >

It follows from Eq. (5),(6) that separation with respect to Doppler
shifts A fim = fjm— fo with m = const is possible only for high frequen-
cies fozj/co > 1 and in the intermediate region of distances r ~ 2mH.

Taking these considerations into account, let as go back to analyz-
ing Eq.(4). It can be previously simplified for the case of z; = z, = 2:

S w, ) = 16 (R%) Sm@PIV(@n)Pmsint [22 2] )

2
As follows from Eq.(7), dependence of Ji(w,r) = (%z:_) 1S(M)(w, )2

on r a function oscillating with a period which increases as the dis-
tance grows; maxima of the function correspond to the spatial (an-
gular) dependence of the reflection coefficient modulus in the degree
equal to doubled reflection multiplicity. Comparing Eqs.(4) and (7),
it is obvious that the latter is more convenient to determine the an-
gular dependence |V(0,,)|?™, since all the interference maxima char-
acterized by the last multiplier in Eq.(7) have the same amplitude,
unlike in Eq.(4).

Thus, having obtained the experimental dependence J,,(wm,r) we
can find its maxima and, consequently, develop a corresponding an-
gular dependence |V(0,,)*™, whose accuracy for given H grows with
increase of the emission frequency, depth of corresponding points,
and bottom reflection multiplicity; that is , their increase causes the
oscillation period Jp,(wm,r) to decrease with respect to r, and angular
dependence of the reflection coefficient is defined in more detail. Us-
ing |V(0,,)|>™ to determine the angle full internal reflection ©, and
Wo =1—V(0,, =0) we find the looked for parameters:

n = sin O, u=(2—-Wyn/Ws.

Taking into account stratification of sound velocity ¢(z) with re-
spect to depth z in a water layer has little effect on the proposed
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method of determining n and p. Within the geometric-acoustic ap-
proximation of field presentation as multiple scattering similar to
Eq.(1), we obtain the following expression:

m m W
1S (@, )| = RE|Sum(@)V ™ (O1m) exp(i—p1m) /243
~Sam @)V (O2m) exp(i=pam) /LG5~
—Sam (@)Y ™ (Qam) exp(i=pam) /S5 +

+ Sam(@)V (Oam) exp(i=pam) /S5 (®)

where

Tim = \/nz(zs) — sin? @g-?,z n2(z) — sin® 95-(2
8rjm

Jsin @52,)1 ) )
rim = 2mD(H) — r;, r1 = D(z) + D(zr),

ra = D(z;) — D(z,), r3 = —Ta, T4 = —T1;

X (sin G)g-?r)l/rjm

goijQmJ(H)+sin@§»?7)lr—zj, 1 = J(25) + J(2),

zo = J(2,) — J(25), T3 = —2o, Ty = —2q;

sin @;2 dz

D) = [ ,
0 \/nz(z) — sin? @52,),

- Vol
Wim = Wo [1 — asm Gjm] .

J(z) = / \/n2(2) — sin20(dz,
0

Here n(z) = c¢(z,)/c(z) - is refraction coeflicient for acoustic waves,
es = c(zs), @g»?,i < arcsin[n(H)] - is angle at which the corresponding
ray leaves the source (it can be called ”outlet angle and is the solution
of the equation for the point of stationary phase rjm(eg.‘,’,{) =7);Ojm =
arcsin[sin eg?,i/n(H)]. When z; = 2, = z, Eq.(8) yields the following
formula similar to Eq.(7):

w

2
S, = 1688 5 )PV O st | 227()], 9
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where

Orm

Jsin G)g?,)‘

S = \/12(z,) — sin? 0D4/n2(z) — sin20Y/ (sin O /rm

)

rm = 2mD(H), and outlet angle 0 is a solution of the equation
rm = r. Comparison of Egs.(7) and (9) shows that sound speed
stratification in a water layer does not change the algorithm for de-
termination of angular dependencies |V(0,,)*™.

Taking into account stratified structure of bottom sediments
makes the analysis more complicated, of course; for example, if we
assume multilayer sediment structure, the expression for |S(™)(w, r)|?
is not that simple (see Eq.(1),since behavior of this value for given m
is the characterized by interference of a considerable number of rays
(maz{j} > 4) with complex combinations of reflection coefficient from
media interfaces, corresponding to each ray. If the sediment layer
thickness h is small comparison with the ocean depth (h/H <« 1) it is
possible to use in the equations for |S(™)(w, r)|? the plane wave reflec-
tion coefficients, and this way is demonstrated in °. However, it does
not simplify determination of sound speed and density stratification
in sediments.

Nevertheless, for the majority of practically important cases, ac-
count of stratified bottom structure is reduced to consideration of
one layer with thickness A, sharp lower boundary of media interface
and the depth-depending sound speed in it 1°. It makes determi-
nation of acoustic properties of sediments much easier blending the
method proposed in !! and in the present paper. It is evident that
Doppler frequency shift separation of signals reflected by lower and
upper boundaries of a comparatively thin layer (h/H < 1) is com-
plicated if 2,/H « 1 and 2,/H < 1 due to the same reason as for
the signals reflected from one of these boundaries only (see earlier
Eq.(5),(6)); it can be realized only if a bottom receiver z, — H picks
up signals not reflected from ocean free surface and z; — H, but the
last condition is hardly realized in practice. Hence, determination
of angular dependencies of reflection coefficient from the upper and
lower boundaries of the layer is possible only using comparison of
theoretical and experimental dependencies J,, (‘w, r) with respect to r.
This method is similar to one proposed in !!; within that method

M
one needs to compare dependencies of | ¥ S(™)(w,r)|? on the depth
m=1
of corresponding points at various distances r; (here M = maz{m} is
number of reflections taken into account when making calculations).
For practice a simpler but ”inaccurate” approach is possible; it
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consists in introducing some effective uniform liquid bottom with
certain acoustic characteristics ¢.; and p.;. The advantages of the
method are that |V(©,)[*", c; and p.; can be determined using
also conclusions yielded by Eq. (7) and (9), i.e., by maxima of the
dependence Jp,(wm,r). Of course, when obtaining experimental de-
pendencies J,(wm,7) it is necessary to average
wm+Aw/2
Jm(w,r) = (Aw)™ [ Jn(w,r)dw with respect to a certain fre-
Wm—Aw/2
quency band Aw > éf;m2r including Doppler frequency shifts for the
four signals with the corresponding reflection multiplicity.

Now we will consider experiment testing of the proposed method
for determining V(©) and ground parameters c.; and pes. Simi-
lar to 3~7, experimental investigations were made in a deep-water
(H = 3500 m) region of the Indian Ocean (Arabic Sea) with typical de-
pendence of sound speed c(z) on depth z (see Fig.1a) and even bottom
whose upper sediment layer consists of silt and sand. The source emit-
ted low - (fo = 146 Hz) and high - (fo = 392 Hz) frequency signals and
was towed with velocity v ~ 3.5 —4 m/s at depth z, = 70~ 80 m along
two paths in turn. Azimutal angles of the paths differed by »/2, and
the distance between the initial points was ~ 10 km. Acoustic signals
were received at the depth z, = 100 m. When experimental dependen-
cies on the distance of Doppler frequency shifts A f, = wy /27— fo and
corresponding to them J,;,(wm,r) = Jm(r) were determined for bottom
reflection of various multiplicities m = 1,2 .-, the received signal p(t)
was recorded in parallel to the reference one, heterodyned over inter-
mediate frequency f, = 1 Hz and filtered within the frequency band
Af; = 2 Hz. The treated signal p(t) was digitized and entered into
the computer; frequency digitization was fy = 5 Hz. Spectral anal-
ysis was made with no weight processing and with duration of each
realization T = 100 s and time step AT = 25 s.

2

t+T .
Dependence W(Af,r) = |% [ Ps(t)e'A«'dt| shown in Fig.2 only
t

at high frequency fo = 392 Hz - for the sake of ease of interpretation
yields the following: in the plane Af — r (Doppler frequency shift -
distance) trajectories Afo(r), Afi(r), and Afy(r) are identified; the
trajectories correspond to signals propagating along ”purely” water
rays (m = 0) and bottom reflections with various multiplicities m = 1
and m = 2.

Dependence J;(w;,r) and Ja(wz,r) on r found after integration
along corresponding trajectories Afi(r) and Afy(r) for both frequen-
cies in two paths, are presented in Fig.3,4. Maxima of the dependen-
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Fig. 1. Typical dependence of sound speed ¢(z) on depth z in the regions of
experimental investigations - {a) and variations of water layer depth H(r) with
distance 7 in the region with uneven bottom - (b).
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Distance, km

Fig. 3. Experimental dependence on distance r of the spectral density of power
flow of the first bottom reflection signal J;(r), averaged with respect to A fy, and
normalized over geometric divergence - curve 1: a) - fo = 146 Hz, 6 f = 0.015 Hz,
b) - fo = 392 Hz, 6f = 0.05 Hz at the first path; c) - fo = 146 Hz, 6f =
0.015Hz,d)-fo = 392 Hz, 6 f = 0.05 Hz at the second path. Curve 2 corresponds
to approximation dependence 101g|V(6)|?; curve 3 - to Ni(r) = sin ©.
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Fig. 4. Experimental dependence on distance 7 of the spectral density of power
flow of the second bottom reflection signal Jo(r), averaged with respect to Afm
and normalized over geometric divergence - curve 1: a} fo = 146 Hz, 6f =
0.015 Hz, b) - fo = 392 Hz, 6f = 0.05 Hz at the first path; c) - fo = 146 Hz,
6f = 0.015 Hz,d) - fo = 392 Hz, 6f = 0.05 Hz at the second path. Curve 2
corresponds to approximation dependence 101g ]V(@g)lz; curve 3 - to Na(r) =
sin ©.
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cies shown in those figures have been used to approximate the angular
dependencies |V(0,,)]*™ to be found. We determined the following
acoustic parameters of the bottom : p.s/po >~ 1.66, co/cc; ~ 0.89 at
low frequency and pes/po ~ 1.6, co/ces ~ 0.95 at high frequency. They
are in good agreement for m = 1 and m = 2 and seem to be sufficiently
close to reality for both paths in this region of the ocean. The ration
pes/po and ces/co considerably decrease with increasing frequency; ev-
idently, it is caused by the influence on reflection of higher-frequency
sound of less deep layers of sediment thickness, on the average, with
smaller c.; and p.; (see 2!). Presented theoretical and experimental
results are a proof for successful use of Doppler tomography com-
bining aperture synthesis with Doppler effects, for determination of
angular dependence of the bottom reflection cozilicient, as well as of
sound speed and density in sediments of deep-water ocean regions.

Now we proceed to demonstrate the possibility of applying the
Doppler tomography method for investigation of patterns of angu-
lar dependence for acoustic signals scattered by an uneven bottom
at various distances between corresponding points. We immediately
pass to the analysis of the experimental data also obtained in a deep-
water region of the Indian ocean with similar (see Fig.1a) dependence
of the sound speed c(z) on depth z (other experimental conditions are
also identically) but with a considerably uneven bottom (see Fig.1b).
Fig.5 shows the results of spectral analysis of the heterodined and fil-
tered signal. The spectral density of signal power W(Af, r) presented
by brightness form on the plane (Af — r); it is seen from the analy-
sis that only two lines Afo(r) and Af(r) are noticeably prominent.
They correspond to "purely” water signals and the mirror component
of the first bottom reflection easily discernible in the background of
scattered components Af,(r) on its both sides. Due to pronounced
bottom roughness the analogous of Afi(r) line corresponding to the
signal of the second bottom reflection is hardly discernible in the dis-
tance range r > 10 km, being slightly higher than Afi(r). Hence, one
can expect the scattered field to be determined majorly by signals
only once reflected by the ocean bottom.

Of the data presented in Fig.5, particularly interesting is consid-
erable asymmetry in location of the components Af,(r) in relation
to Afi(r). The range of their values is noticeably extended to the
region Afi(r) < Af(r) < |Afi(r)] up to distances r; ~ 18 — 20 km:.
To explain the revealed asymmetry in the behavior of dopplerograms
W(Af,r) (of signals Af,(r) scattered by the ocean bottom) we use
easy representations of the ray theory. According to it,

Af, = —foﬁsine,
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«H s;" 0 is the angle at which signals come to the

bottom, depending on the profile of sound speed c¢(z), water layer
depth H and outlet angle ©(°), which is positive when corresponding
rays are directed into the backward (in relation to the emitter motion)
hemisphere, and negative when they are directed into the forward
hemisphere. For present values of ¢(z), H ~ 3500 m, z, and z, the
bottom region insonified by the signals propagating along ”purely”
water rays is 0 < r < D(z,,2,)/2 ~ 16 km, i. e., half of the maximum
length on the ray cycle D(z, z-). Scattered signals propagating along
"purely” water rays at outlet angles —% < o{® < % from secondary
sources placed at height h = 2—200 m over the average bottom depth
H = 3500 m, come directly to the receiver if the distance to it is
up to r = D(H — h,z)/2 = 18 — 20 km. Therefore, in the region
0 < r < D(H - h,z) the range “c(:)T)fO < Afs < Afi(r) becomes
narrower with increasing r and if r = D(H - h,2.)/2, its width is
only 10% of its initial value when r = 0 (see Fig.6). Of course, the
range Afi(r) < Af;, < 0 becomes wider in the distance region 0 <
r < D(H — h,2.)/2. If the range of positive 0 < Af, < stayfosin Ou(r)
when 0 < r < D(H — h,2,)/2 (here ©,(r) is the boundary angle at
which signals come to the bottom, depending on the distance) is
taken into consideration, then asymmetry in the location of Af,(r)
on the both sides of the mirror component Deltaf;(r) must be more
discernible in the distance region 4 km ~ [D(H — h, z,) — D(zs, 2,)]/2 <
r < D(H — h,z)/2 ~ 20 km. It follows from the calculation results
(see Fig.6) and is in good agreement with the experimental data (see
Fig.5).

To obtain angular dependence of bottom-scattered signals it is
quite sufficient to make spectral ”sections” in the plane Af — r at
certain values of r (see Fig.5). By this, to exclude possible non-
informative fluctuations of the spectrum analysis results, it is of use

where © = arcsin

_ r+R
to average W(Af,r) = R™' [ W(Af,r)dr with respect to a certain

region of distances R. At it follows from the results shown in Fig.7,
asymmetry in the spectra of scattered signals is discernible only when
r < 20 km. Besides, in the spectra of scattered signals, along with the
absolute maximum Af(r) = Afi(r) which corresponds to the mirror
component of the first bottom reflection, a relative maximum is easily
discernible at the opposite in sing frequency Doppler shift Af(r) =
|Afi(r)| when r > 20. Calculation show (see Fig.6) that this maximum
corresponds to the backward-scattered signals produced when the
signals of the first bottom reflection come to an uneven bottom at the
angles close to © ~ arcsin{|A fi(r)|/[vfo/c(H)]} and again reflected by
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Fig. 6. Theoretical dependencies on distance  of So = Af(r)c(H)/fov =
— sin © characterizing the angle © at which signals come to the bottom. Curves
1 and 2 correspond to mirror components of signals of the first (m = 1) and sec-
ond (m = 2) bottom reflection; curves 1’ and 2’ - to components of corresponding
backward-scattered signals; curve 3 shows the (left) boundary of observation re-
gion of scattered signals formed after the first bottom reflection and propagating
towards the receiver along ”purely” water rays with no secondary bottom reflec-
tions.
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the bottom. Since, the maximum of W(Af,r), when Af = |Af,(r)] is
30-35 dB lower than the basic maximum, i.e., when Af = Af,(r), the
corresponding line in Fig.5 is not visible due to the narrow dynamic
range of visualization; calculations show (see Fig.6) that in the region
0 < r <12 km the signals with Af = |Afi(r)| must be hidden by
straight scattered signals propagating along ”purely” water rays with
no additional bottom reflection.

To obtain spatial (angula,rf dependence for the bottom-scattered
signals produced when initial pressure waves come to the bottom
at certain angle © = — arcsin[Afe(h)/fov], it is sufficient to make a
horizontal section of the dopplerogram in the plane Af —r (see Fig.5)
for the given Af. However, the dependencies W(Af,r) on r obtained
for various Af give no new information and are not presented here.

Thus, it was shown that the method of Doppler tomography allows
us to study also angular dependence of an acoustic field scattered at
a rough bottom. Besides, using this method we managed to reveal
the effects which are of great interest to us. These effects are: at first,
asymmetry in angular dependence of signals scattered at the bottom
in a definite region of distances; this asymmetry can be explained by
stratification of sound velocity affecting the wave propagation in a
water layer. At second, existence of a maximum in the spectrum of
a scattered field; this maximum corresponds to a backward-scattered
signal.
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ON CHOOSING PARAMETERS OF ACOUSTICAL
IMAGING SYSTEMS IN INHOMOGENEOUS MEDIA

A.I. Khil’ko, I.P. Smirnov, A.Yu. Zorin

The direction of energetic coupling the source with the receiver in
a homogeneous medium and the signal propagation time in this case
are easily foretold. However, the energy propagates along the curve
trajectories (rays) in smoothly inhomogeneous that, and, therefore,
such predicting becomes more difficult. This fact is demonstrated by
rays, forming coupling channels with the complex structure in natural
waveguides (such as the ocean and the atmosphere). The complicate
of the spatial structure of energy propagation channels display itself
also in temporal characteristics of signals. The set of pulses is re-
ceived after propagating through an inhomogeneous medium instead
of the single one. It results from the difference of lengths of trajec-
tories. Such pulses can be both selected and mixed, thus received
signals, having the complex temporal distribution, are formed. Men-
tioned phenomena play a great role, if reconstructing parameters of
inhomogeneities is,dealt with. That is carried out, for instance, by to-
mogrphical monitoring systems in atmospherical and oceanic waveg-
uides. The disposition of sources and receivers is determined by the
comfort and the monitoring system embodiability. The problem of
choosing this position becomes more difficult in weakly inhomoge-
neous medium of refractional type. The coupling channels have the
complicated structure in this case, and positions of sources and re-
ceivers, viewing the given region, must be chosen with taking this fact
in account. The shadow regions (both for the source and for the re-
ceiver), existing in the ocean really, give the good example,confirming
this conclusion. The localized inhomogeneities, situated in such re-
gions don’t disturb received signals. Thus one can suppose, the field
of view of an imaging system is nonuniform. Knowing the propaga-
tion path loss, characterizing atmospherical and oceanic waveguides
permit to estimate the form of the field of view [6,7]. At the same
time, the distribution of such loss, calculated for the source and for
the receiver, must be combined, to receive the detailed information
about that [8]. However, the difficulty of such estimation grows with
increasing the number of devices, that takes place with developing
tomographical viewing systems in atmospherical and oceanic waveg-
uides {9-11]. Tt is still more difficult to describe the interconnection
between the spatial structure of the field of view and the temporal
structure of received signals [12,13].

The "differential” tomography, rejecting the disturbances, coming
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into being due to non-stationarity and existence of random inhomo-
geneities, and "dark field” method for oceanic waveguides [14,16] use
such estimations and co-processing responses of a few receivers and
sources.

Discussing the development of acoustical imaging systems helps to
word the problem of optimal choosing parameters of the ones. The
smoothly-inhomogeneous waveguides are, for example, the geophysi-
cal, the planar ones, being dealt with in microwave technique. Note,
the synthesis and the analysis of the field structure in the waveguide
are equivalent to designing optimal configurations of emitting and
receiving systems, focusing the energy at given region of the medium
and picking out the algorithm of processing. It provides the good
spatial resolution in the range of spatial parameters [17,18]. Such in-
vestigations are applied to viewing and tomographical systems, gen-
erally. It is profitable, to carry out viewing along the direction of
transmitting, if the wave size of the inhomogeneities, situated in the
refractional waveguide, is great. It is necessary to solve the internal
diffraction problem for such inhomogeneity, placed in the inhomoge-
neous layered waveguide, in order to estimate possibilities of systems
[21]. The best disposition of sources and receivers is searched, basing
on received results.

Methods of optimal choosing parameters of acoustical imaging sys-
tems in refractional layered waveguides are suggested in this paper.
In particular, some optimization problems are worded and classified.
Solving the problem of scattering fields by inhomogeneities is dis-
cussed. The transferal characteristics of the inhomogeneous medium
are defined and computing their spatial distributions is analyzed. The
ones can be used as the prior information. The method and results of
optimizing the model of the imaging system are presented. The lim-
itations, the possible applications and the improvement of suggested
methods are discussed in the conclusion.

1. SOLVING THE FIELD SCATTERING PROBLEM IN
SMOOTHLY -INHOMOGENEOUS LAYERED WAVEGUIDES.

As it is noted above, the sensibility of the coupling channel struc-
ture concerning to variations of inhomogeneity parameters and the
location should be estimated in order to analyze the efficiency of
the acoustical imaging system. The spatial distribution of transferal
characteristics can be used in this case. Different regions of the field
of view are "tested” by means of the touch-body. The field calcula-
Eion] is made, basing on the geometrical theory of diffraction (GTD)
1-3].

Note briefly, that developed methods can be applied also with the
mode approximation [3].
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Let the point source S, the point receiver R and the hard localized
inhomogeneity P (its size is less than the scale of the field variation)
be placed in a smoothly-inhomogeneous medium. The total received
field can be expressed in the follow way:

u= 3 An, e kY et 4 (Y L = wo w4+ (1)

The first group of addenda u, describes the field as in the geomet-
rical optics (A, is the amplitude, S, is the phase and k is the wave
index). This group includes both the ordinary waves, propagating
along the curve trajectories and the waves, reflected from the inho-
mogeneity. The second, u; describes diffractional amendments of the
first degree concerning to k=! . There are two subgroup in this group.
The 1st describes the diffractional effects in the ordinary wave (the
transverse amplitude diffusion, the diffraction at the bounds of the
waveguide etc.). The 2nd is associated with the diffraction on the
localized inhomogeneity and includes diffractional waves of different
types [1-3].

1.1 The problem of aiming .

It is necessary to trace curve trajectories (rays) in order to calcu-
late fields, mentioned above. Looking over all rays can be made, but
this method is often unfit because it requires the great amount of the
calculation for small inhomogeneity. Approximate estimations (con-
firmed by the practice) show, it grows proportionally to z/R where z
is the length of the propagation route, R is the scale of the inhomo-
geneity.

Special methods of aiming are more effective in the case of small
inhomogeneities. The one of these methods is described below. Out-
side of the inhomogeneity the ray submits to rules of geometrical
optics (Fermat’s principle). Thus the problem of aiming consists in
selecting the pairs of rays, coupling points S and R with the point of
the scatterer surface. These pairs must satisfy to conjugation condi-
tions at given point of the surface. The ones are determined by the
ray type.

The conjugation condition for the wave I (see Fig.1), reflected
from the inhomogeneity surface is:

({5 + t_.n)

N=- —Z
V2 (14 <is,r >)

, (2)

153



Fig. 1. The disposition of the source S, the receiver R and
the scatterer P. Rays, corresponding to reflected (I), refracted
(1), diffractional (III, IV) and sliding (V) waves are shown.
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where t5 g are ray orts, drawn at the point of reflection, N is the
external normal at this point, < .,. > is the scalar product of vectors.

One-time refracted by the inhomogeneity wave is characterized by
means of following set of conditions:

- Al T o nal2— T2
n n

Ny = e Ny = 22—y (3)
e A

where N, ; are external normals of the surface, n; , are ratios of
refractive indexes, calculated at the ray exit point.

And the ones for the wave III, coming into being at the edge L,
are

<a{5>+<€,{ﬂ>=<afs+{3>=0 (4)

where € is the edge orth, drawn at the ray touching point.

Lastly, such conditions for the sliding wave IV, concerned with
the diffraction on the surface of the smooth body, are expressed as
follows:

<N,#is>=0< N,in>>0< N,is,igr>=0

where N is the external normal of the surface at the point of
sliding, < ., .,. > is the mixed product of vectors. The normal is
easily found from this formula:

—{5 < t_‘s,t-.R > +fR
|| lEs. 2R1 ||

One can draw the normal at the point of touching and limit the
set of points of the surface, where the given wave can appear. It is
possible, if ray orts ¢tg g are known. In the case of the refracted wave

II the normals N,; can be found from equations (3) after exclud-
ing unknown vectors 7, , . However, the supplementary information
about the internal inhomogeneity structure is needed. The equation
(4) limits the set of permissible edge orts € and, therefore, the set
of points, where the wave III can be discovered. Analogously, the
”sharp” points of the surface, where conjugation conditions are right,
can be easily selected. Solving the problem can be accelerated essen-
tially by means of confining the set of points, where the given wave
appears. It is enough to aim at the suspicious point and check the
necessary conditions for given pair of rays.

N =
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However, there is no universal algorithm of drawing orts of {5 g at
the point of touching for arbitrary inhomogeneous media and local-
ized inhomogeneities. None the less, these orts can be approximated
by the ones f’g g of rays, connecting points S and R with fixed point
P* of the inhomogeneity. It is possible if the size of the inhomogeneity
is essentially less, than the scale of variations of the field, produced
by sources, placed to points S and R, near the inhomogeneity. (It is
right for inhomogeneities, placed far from caustic surfaces and waveg-
uide bounds) The details, concerned with limits of the application of
mentioned approximation, are analyzed in [1,22]. However, the gen-
eral way of reasoning doesn’t change with taking these especialities
in account. The procedure of aiming at the inhomogeneity can be
summarized as follows: 1) tracing rays, coupling points S, R with P*
; 2) drawing ray orts {3 p at this point; 3) searching the approximated
normal or &* at the touching point, basing on Pé,m 4) selecting points
of the surface with found normals; 5) aiming at selected points and
checking necessary conditions for each pair of rays. The parameters
of rays become the next approximation, if these conditions are done.

Aiming at points of the surface of the small ellipsoid is discussed
below. It is supposed, the interior of that is acoustically homogeneous
n; = ny = n, 7} = —73. The central point of the ellipsoid, called P*, is
the zero of the cartesian coordinate system. Coordinates of a point
of the ellipsoid are expressed by means of components of the normal
N, drawn at this point:

-1
2

F=g (1\7) = (a®Nei + 62N, T + S N,E)(a? N2 + b2N? + c2N2)

)

where 7, ],k are the orts of cartesian coordinate system, a,b,c are
the half-sizes of the ellipsoid. The orts of rays, reaching the point
P* are called &5 5 . One can find the point of the surface, where the
reflected wave come into being, using the formula (2):

(5 + )
V2 0+ < 8,5 >)
The sliding point of diffractional wave is (from (5)):

W o Rty <t it
7,3:,9(__12"'3< 3x11>)

1.‘.025 -

NGB
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The point, corresponding to the refracted wave, is located, if the
expression (3) is supplemented by the follow equation:

i) i (%) _ (%1, 52)
I () -3 ()]
This equation shows, the orth 7 of the vector, connecting points of

the surface, depends on normals Ny, N,. Finally, we have the system
of equations:

-
T =

M %{g—ﬁ(ﬁl,ﬁz) :%{g—ﬁ(ﬁl,ﬁz)
No || 25— F (), K2) l:%{}{—ﬁ(ﬁl,ﬁg)

and can locate the ray exit points 72~ ¢ (Nl,z

The numerical experiments were made for bilinear waveguide.
They display the practical fit of discussed algorithm. The iterrative
process converges with geometrical speed, if the searched ray exists.
The algorithm becomes circular, if there is no solution. This fact is
easily noted. The time gain of aiming is inversely proportional to the
ellipsoid size.

1.2 Calculating field amplitudes.

The next stage of calculating the scattered field is searching am-
plitudes of waves, propagating along rays [24]. In accordance with
GTD [1,2] these amplitudes can be found from formulae:

Ag = AordS ({S,[R) L
VI

where A4 Is the amplitude of the ordinary wave, J is the Jacobi’s
determinant of the transform, that is proportional to the area of the
transverse section of the beam, bringing the field from the point of
falling to the receiver, S(.) is the diffractive index. The fields of
reflected and refracted waves are expressed analogously.

Let’s consider, for example, the smooth curve surface, placed in
horizontally stratified inhomogeneous waveguide (Fig. 2) and cal-
culate the intensity of the wave, reflected from this surface. It is
supposed, the source S is situated at the zero of coordinate system.
The ray coordinates are the azimuthal ¢ and polar 6 angles of the ray

157



Fig. 2. Towards the calculation of fields, scattered by the curve surface.

orth and natural parameter ! , being equal to the length, counted out
along the ray to the current point {8, ¢,!). This coordinate system
is conformed with the form of the beam, but not with that of the

surface. The function R(M,7,1) = (X,Y,Z) , called the ray function,
describes the trajectory, going out from the point M (X,Y,Z) along
the direction 7 = (cos 3 cos¥, cos Bsinv, sinB). The derivative of this
function must be calculated, to trace the beam:

Y o o - 5200
! /I _ - _
R=rf R,_(k tt‘)( - 1)
(6)
_ - 8:(0) .
k:(k—-t,{) 6—2, Rf.,:pe.,

where p = {/z2 + y? is the ray orth at the current point, e, =
1 (=Y, X,0) is the vector, being orthogonal to the ray plane, 2(P) is the

vertical coordinate of the point of ray, being on the surface p = const.
Then the set of reflected rays is given by the formula:
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7(6,6,1) = R(0,4) + R(P(8,4),7(8,8),1—1(6,6)) (7)

where R'(G,qﬁ) = R(O,P,l(&,qﬂ)) is the radius-vector of the point
P(8,¢) of the ray reflection from the surface.

Let the wave I be reflected from the surface and reach the receiver.
Then the intensity of this wave is (W means th power of the point
source):

2th _<7 3o
= 0P e 0 = (7o 7o 1) (®)

where T is the Fresnel’s coefficient at the reflection point . The
expression of Jacobi’s determinant follows from (7), (8) and has the
form of the mixed product of vectors:

D= <r'9,r’¢,r’1>

- ﬂa(p) R 5z(p1) (p2) 5z(p2) ;’G,E
=7 k[fu (& 1)+—‘}9ﬁ—< -H)],

o6 Oz T
T p,é:y>
+paey -
- - E §z(r2) ] 82(p2) <7:7¢; E) - <7:;4>: é"y)
1‘¢—Plf2+ f2zP1( 92 - )+-—6ﬁ— L +p267_—‘r-_:——
- (9)
7"1 =T

where
h—k——tb—%—¢t

are tangential orts of lines of the intersection of coordinate pla.nes
¢=C1,0=0C and the surface, drawn at the reflection point, t, 7 =
t—2n, 1 are orts of the ordinary ray and the reflected ray, accordmgly
Basing on Weingarten’s derivation formulae, one receives:

on * D * Pl £ £ * 22(r1) T
=5 = kD Ry + k1,Ry = ki fi + kiafo, by = ku'ﬁ"’ k12 = kippr
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on * D * Dt Py . * az(pl) *
5= k3 Ry + k3o Ry = ka1 fr + ka2 fa, ko1 = k’mwy k22 = k331

Parameters k}, - k3, are expressed by means of coefficients of 1st
and 2nd quadratic forms of the surface. Thus the derivatives, used
in (9), are:

- a (¢ i 2 . .
Ty 5 (— - flt (ln C) z(%, ) (f1 - fltT) = 2 (k11 -+ k12ma) ,

(10)
. . R . o=\ d. - .
Ty =1, (fz - fth) + p1fa (fuT - fl) 5, InC = 2 (ka1 + ka27iis)

where My = nyfi + f1fl , Mo = nefo + fudi.

The needed intensity at the point of receiving can be found after
inserting (10) to (8) and (9).

The general expression has the unwieldy form, that is why only
the simplest examples are discussed below. a) Scattering by the
azimuthally symmetrical surface (thorum) This surface is given by

the equations: F(p,z) = 0, vectors 7,i,7 T are at the ray plane
¢ = const, if reflecting from such surface takes place. Thus, vectors
f1, f» are oriented along main surface curvature directions, £}, = —k;,
ki, = k3, =0, k3, = —ky = ny p ', k; is the curvature of the normal
surfacé section, made by the ray plane. Then, after inserting this
expression in (8), that takes the following form:

W t8 1
I=MP =t p=
| I 47rT_L laz(ﬂ)lx p=p1+p2
a6 |
One can foretell this fact, taking the symmetry in account. On

the other hand, there is the asymptotical with k; — oo expression for
the ray, having small sliding angle:

W 1 1
I=]|r I2 S hff——— (11)
TL p1p2 p k1|
where
Fi= P g o
dz(r1) 82(p2)
30 a0
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are factors of vertical focusing of rays, reaching the reflection point
from points S and R. The intensity of the wave, falling on the surface,

equals to %%. The Jacobi’s determinant of the transform equals to

%i— for the beam, connecting points R and P. (11) is presented as
follows:

1
I=1,45%—
0
where the multiplier
1 r, 1
S?2=-IrPl—_ 12
3T T (p7 4 p3 ") 1kl (12)

is analogous to the diffractive index for the reflected wave (it is
called the coefficient of the reflection from the curve surface).
b) Scattering by an arbitrary inhomogeneity in a homogeneous

medium. One has in this case: ‘9’6(;’2) =1 aza(;’x) =&
4
%’;) = fTi Then (8) can be written:
44 1
=I5 (13)

I |+ 1) + 201t (1 + 1) (5 + kara ) + 4823k

ki is the curvature of the normal surface section, made by plane,
containing vectors ¢, 7. kq is that of the section, made by the orthog-
onal plane, K is the Gaussian curvature of the surface, calculated
at the reflection point. [; ; are lengths of segments [SP] and [RP],
accordingly. The intensity of the falling field equals to %% and the

4#7{
Jacobi’s determinant J equals to 2. Then the coefficient of the re-
flection is:

-1

k
S* = TP\ + 15 + 20 + 157 (;l + kzrn) + 4k (14)

Note, that the formula (13) was written in the first time by Fock
[1] for the intensity of the wave, reflected from the curve surface.

¢) Reflecting from the surface, having the great curvature. There
is asymptotical expression for the intensity of the received wave in

a stratified medium with & — oo. The approximate equation follows
from (8) and (10):
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Fig. 3. The dependence of the intensity of the field, scattered by the ellipsoid,
on the orientation of that. The source and the receiver are fixed. The bilinear
waveguide is dealt with.

W FiF; 1
I~ =52 — 15
M e S (19)
It shows, the asymptotical formula
2
2 T
~ 16
] (16)

is right for the coefficient of the reflection. The same expressions
take place also for refracted waves {3,23]. Fig. 3 shows the depen-
dence of the intensity of the scattered field on the orientation of the
ellipsoid, placed into bilinear waveguide. (It is supposed, the source
and the receiver are fixed). This figure illustrate the capacity for the
work of suggested method.

The methods of calculating signals, scattered by touch-body are
developed above for layered waveguides of refractional type. However,
some details haven’t been dealt with because of the limited size of the
paper. They are, for instance, scattering by the body, placed near
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to the waveguide bound, accurate calculating the field near caustics
etc. But general conclusions don’t change in this case. Received
expressions optimize imaging systems with using transferal maps,
computed on the basis of calculating fields, scattered by isotropical
touch-bodies.

2. WORDING AND ANALYZING SOME PROBLEMS OF
OPTIMAL CHOOSING I;ARAMETERS OF IMAGING
SYSTEMS.

This section is devoted to the consideration of some optimiza-
tion problems of acoustical imaging. Solving these problems, uses
the maps of spatial distribution of transferal characteristics of the
medium, such as EC and AC (see below). It should be noted, general
wording, given below, doesn’t exhaust all conceivable situations. The
problems, concerned with temporal characteristics of signals, aren’t
dealt with in the matter, for example. Such temporal parameters are,
for instance, mean time of reaching the receiver (MTR), the proba-
bility of ”ordinary reaching” the receiver (POR), the probability of
distinguishing the ordinary and scattered signals (PD) [8,12].

2.1 The total intensity of the reflected wave.

The total intensity of the wave, reflected from the localized inho-
mogeneity is expressed as follow:

(Do p(2)
I(P,S,R) = __WZ B 'Sik
i 47 r (p(})p(?))z

* 17 P

where incoherent summing the field over all rays, reaching the receiver
after the reflection from the surface of the inhomogeneity is made. S;;
is the coefficient of the reflection, calculated at according point.

If the inhomogeneity has a small size, then pf;) ~ p1, pg) ~ p,y.
Besides of that, the set of all rays, coupling the source S with the
body surface, can be divided into a few classes of rays, not intersect-
ing with each other. The class includes rays, differing unsignificantly.
It comes into being as the result of splitting the ray, connecting S
with the central point P* of the body. The analogous dividing can
be carried out for the receiver rays, Then, factors of focusing are:

Fi(jl) ~ Fi(l), F,-(jz) o Fi(z). Fi(z), Fi(2) are parameters of ”central” rays.
Let the fixed coordinate system X'Y’'Z’ be fastened with the body.
n}, nf, ny are coordinates of the orth of this system. The function

(17)
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S(R) = S(n},n},ni) characterizes the scattering surface. Its argu-
ments are mentioned coordinates. (If there are a few points of the
surface, where the normal equals to 7, then this function results from
summing coefficients of the reflection over all such points). Inserting
this function in (1), one can express the intensity (17) (|Iy;|=1). U
is the unitary matrix of the transform the medium coordinate system
XYZ to X'Y'Z'. Then

Lo t—(jz)

20 (7))
!

iﬁl), t_§~2) are ray orts, drawn at the point of the reflection. Finally,
the expression of the total intensity of the reflected wave is:

w1

=———5 Y FaS(Ufia), 1
I 47rp%p%¥FS(Un) (18)

Sij = S(Uniyj), fig; =

where o = (i, 5), Fo = FVF?
The intensity, determined by means of this formula, is the function
of problem parameters:

I=1 (1%5, Rg, Bp, S0), U) ,

ﬁs, r p are radius-vectors of the source, the receiver, and the inho-
mogeneity, accordingly. S(.) is the function, describing the orientation
of the reflector. Let’s consider some problems of optimal choosing
mentioned parameters. It provides the maximality of the received
intensity. The goals of the consideration are mathematical wording,
classifying and analyzing these problems. The greatest attention is
paid to factors, influencing on the solution essentially.

2.2 Choosing the optimal scatterer form.

It is supposed here, all parameters except the function S(.) are
given and fixed.

I=1(5()) — estrs,

Obviously, the function S(7) is easily expressed by means of that
f(U~'7). Thus the problem is equivalent to the following:

Z Fof (fla) — extry()er
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Here {F,, 7i,} is the given set of parameters, F is the class, con-
taining functions, being permissible as solutions. This class should
have quite many elements, to provide the existence of the solution,
on other hand it should be hardly limited, to provide the physical
realizability of the one. It should be also in accordance with limits,
given by problem wording. The approximation (16) can be used to
give wording of the problem. The one can be summarized as follows:

it is needed to find the smooth, convex, closed surface 7 = 7(u,v)
, Mmaximizing the sum

Y FolKao|™

K, is the total curvature of the surface, calculated at the point
where the external normal equals to 7,. It is supposed, the surface
area is constant and ots curvature satisfies to the two-sided limita-
tions: 0 < §; < Ko < 83, 61,2 are given values. This is the nonclassical
problem of the calculus of variations (the optimal control problem).
There is no prior information about points of the surface, where the
reflection takes place. This especiality makes solving more difficult.
General wording of the problem (for a plane) is:

/

pPL= P2

§_ —
o= p1+ 207 05 — (03 +03) %P7 '
27
/ i+ pidg =1
0

p1cos ¢ — pasing — (p} + p3) cos pnl) = 0, ¢ = ¢,
pacos¢ — pysing — (o + p3) singnl? = 0, ¢ = 4a
p1(0) = p1 (27}, p2 (0) = p2 (27)
Z Fou! (¢a) — extr
0<da<2m a=1.a9,0< 6 <u< 6,0<¢<27

p = p1(¢) is the equation, giving the scatterer bound (polar co-

ordinates are used), {ﬁf,l), ﬁg)} is the set of normals, ! is the bound
length.
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2.3 Optimal controlling the scatterer orientation.

This problem consists in choosing the unitary matrix U, that de-
termines the orientation of the scatterer

I= I(U) — exlr(yy

This is the problem of mathematical programming. The orien-
tation can be described by means of two scalar parameters t;, t;
(Euller’s angles, for instance). The follow system of equations gives
the necessary conditions of the extremum:

% =3 (U}, VS, Fafia) = 0
1 a

g = (U3,VS, Fafig) = 0
2 [24

U2 = $2- and * means the transposing operation. Note, if the
absolute value of the vector Y F,fi, is small, (with given scatterer
o

location), the gradient of the function

(VI)t = E(U;,VS, Faﬁa) = <Ui*1VS*1ZFaﬁ(!> A 0) Z= 1:2

[+4

is also'small. (VS* is the value of that, calculated at an interme-
diate point). It means, the intensity (18) depends on the scatterer
orientation. unsignificantly. In the opposite case, if the value of the
3. Foiig is great, the absolute value of the gradient depends on the
24

orientation essentially, therefore, relative variations of the intensity
are great with changing the scatterer one. Thus, the scalar parameter

Y. Fafte
T Fa

taking its values from segment [0,1], can be a measure depending of
the intensity on the scatterer orientation. The more §, the harder this
dependence. The parameter §, called the ” Anisotropy Coefficient”
(AC) (3] is determined by medium properties and not by the ones of

the scatterer. It characterizes the nonuniformity of illuminating the
reflector from different sides.
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Let’s consider choosing the parameter, defined above, more con-
cretely. The spherical surface is illuminated from directions, giving
by means of 7,73, ..,7;. The intensity of the flow, falling along the
direction ii; is proportional to F;. The illuminativity of the point
is: @ 'E Fox(< fla, §>)', here § is the external normal, drawn at this

o .
point, |x(u)| < |u| is given function. Therefore, ® < Y F, and the rel-
ative illuminativity of the point of sphere S can be defined as follows:

2(3) |prex((n5)

5® (s) =7 = ST

Ay, Ag, ..., N are direction of illuminating. The nonuniformity of
the illuminativity is defined analogously: '

6 = mazz6® (§) — mingé® (S-') (20)

Then AC (19) follows from this expression with x(u) = —u. But it
is more naturally to suppose, that x(u) = —ul(u), where 1(u) is the in-
dicative function of the negative half-axes. So, AC (19) equals to 0, if
the sphere is illuminated from all sides and the flow intensity doesn’t
depend on the ones. However, (20) shows, § decreases monotonously,
if N — oo. This expression is in better accordance with realizing the
nonuniformity of the iluminativity. The parameter (19) describes the
situation rightly and is the most simple for calculation. Preliminary
computing the distributions of transferal characteristics (such as AC)
should be made before solving practical optimization problems. It is
useful, for example, with optimizing the imaging systems in inhomo-
geneous media, and provides, in the first, the visible presentation of
the properties of the waveguide. In the second, the maps of these
distributions give the prior information for such salving.

Fig. 4 shows the spatial distribution of AC, computed for prac-
tically important case of the bilinear waveguide. The one has the
follow profile of the sound vVelocity (z[km.]/c[km.p.s.]): (0.0/1.500),
(-0.2/1.470), (-3.0/1.550). The source 1s situated at the depth of 200
m. the receiver- at the depth 200 m (fig. 4a, 4c), 2850 m (fig. 4b,
4d). The distance between the source and the receiver is 100 km.
The maps have 16 grades of the brightness. The more AC value,
the darker this point in the map. (The details of the structure of
distributions of transferal characteristics for different inhomogeneous
waveguides are analyzed in [3,12]).
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Fig. 4. The spatial distributions of the Anisotropy Coefficient at the vertical
c) and the horizontal (b, d) plane. The bilinear waveguide is dealt with.
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Fig. 5. The spatial distributions of Energetic Coupling.
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2.4 Optimal disposing the reflector.

The problem is choosing the position of the scatterer in the region
Q:

I=1 (Rp) — eTirp ecq

If thee coefficient of the reflection is limited: , then the intensity
is estimated:

w 1
1< —5— F
| ST P

The pararﬁeter V(P)

1
V(P):ﬁZFa; (21)
PiPY 7

is determined by the medium properties. It characterizes the ca-
pacity of points of the region to transfer the energy, reflected from
the inhomogeneity, placed at the one. The less V, the less this ability.
This coefficient is called ”Energetic Coupling” (EC) of points S and
R ”by means of” the point P, EC is proportional to the intensity of
the wave, reflected from the sphere:

w1 LW
S=S5p,1= EW;FQS(U%)_ 5oV

Therefore, EC informs about the optimal position of symmetri-
cal scatterer. However, if the scatterer isn’t symmetrical, the great
value of V doesn’t provide the one of the received intensity. The
supplementary guarantee is given by the uniformity of illuminating
the reflector from different sides. It is characterized by §, defined
above. That is why, the scalar parameter ¥ = V(1 — §) gives more
detail information.

The coefficients 6, V and vy don’t take the reflector properties in
account. However, they can be used with solving an optimization
problem. That is why, calculating the parameters §, V of the medium
is the desirable stage of this procedure.

Fig. 5 shows the maps of spatial distribution of EC for the same
conditions, which take place for AC in fig. 4.
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3. OPTIMIZING THE ACOUSTICAL IMAGING SYSTEM.

The model of the imaging system, dealt with in this section, con-
sists of arrays of sources S;, i = 1..n and receivers R;, j = 1..m of acous-
tical waves, viewing the given region of the inhomogeneous medium.

The quality of viewing, carried out by the pair P;; = (S, R;), can
be characterized by the scalar parameter a;; > 0. Meaning of that is
determined by the system functions. So, if the goal is locating the
inhomogeneities, appearing in this region, the natural measure of the
quality of viewing is the averaged coupling of points S;, R; of medium
”by means of” the ones of given region

aj; = / V(P)dP
Q

where V(P) is EC, calculated at the point P of the region.
The better characteristic of the quality is the parameter

Q

if the goal is locating the inhomogeneities, changing their orienta-
tion fastly. Here D(P) is the ” Anisotropy Coefficient”.

The quality of viewing can be defined also on the basis of tempo-
ral parameters (the ”"Probability of Distinguishing the ordinary and
the reflected pulse” (PD), the ”Probability of Ordinary Reaching the
receiver” (POR), etc.), if pulsed probing the medium is dealt with.

Besides of a;; > 0, giving the estimation of the qua,hty of viewing,
other parameters, characterlzmg sets of sources and receivers, should
be used with problem wording. More concretely, let §; > 0 be the cost
of placing the source S; at its position, v; > 0 be that for the receiver
R;. Let &7,,(li— |+ 1j—j'| > 0) be the cost of the noise immunity
of the pair P;;, concerning to other pairs Py;.

Then the quality of imaging system is determined by follow:

Q Eau Zﬂl 271 ZZ&i,J”(h —ZI+|] —J|>0)

1,j i’

One can deal with forming the system, having the maximal quality.

Some supplementary limitations are also conceivable. For exam-
ple, the number of pairs can be limited and fixed, or the set of device
positions can be confined. Therefore, the subsystem, having the max-
imal quality, must be chosen.
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This is the problem of discrete mathematical programming. It has
a solution (possibly, not single). That can be found by means looking
over (sorting) all variants. But the number of the ones grows propor-
tionally to 2"*™ with growing n and m. This fact makes the ordinary
sorting unfit. Let’s consider some methods of accelerated sorting.
The ones require less amount of the calculation. Two algorithms,
realizing alternative strategies, are suggested. They are "Excluding
Groups” (EG) and ”Sorting Groups” (SG). The co-operation of these
algorithms is possible and gives quite good results. EG begins work-
ing and confines the set of permissible subsystems. If the solution is
not reached, SG continues approaching to that. It is supposed below,

sources and receivers don’t interact with each other and 5::;2, =
Suggested methods of optimizing imaging systems and achieved re-

sults are discussed below.
3.1 EG algorithm.

Here a;; > 0,8, > 0,7, >0,i=1..n, j = 1..m are given values. The
problem is to maximize the follow function Q. Its domain is the set II
of all non-empty subsegments I, J of segments 1..n, 1..m, accordingly.

QU= > aj=> B-Y v, Icln JClm
J

i€l jeJ i

In other words, the goal is to select the subgroup of rows (from n
first, the last is included without fail) and the subgroup of columns
(from m first, the last is included without fail) of the follow matrix:

a1y a12...01m — B

12 022 ... 02m — P

1) o12...00m — B
Yt —Y2--— Ym ¥

The sum of selected elements of submatrix must be maximal. Let
I* and J* be optimal subsegments. Discussed method is based on the
simple conclusion: the sum of elements of ith row is positive for any
i € I, if I* includes more than 1 row. All rows, which don’t satisfy to
this rule, can be excluded from the original matrix. This procedure
results in increasing the criterion function f. Obviously, the analogous
conclusion is right for the subset of column numbers. Thus, the first
stage of this algorithm can be summarized as follows: the input is
the original matrix of maximal size. All rows, having the negative

172



Beginning [0, (L (1.2 @ D22 .. End:

The EG algorithm scheme.

sum of elements, are excluded, because they aren’t contained in the
solution. This procedure is called "step (1,0)” or ”(1,0)” briefly. After
that, all columns, having the negative sum of elements, are excluded.
This is "step (0,1). If the last results in coming into being of the
"negative” rows , the algorithm returns to step %1,0). This stage is
repeated, while the "negative” rows and columns appear. The next
stage is called "step (1,1)”. In this case one row and one column,
having the negative common sum, are struck off simultaneously. The
solution doesn’t contain such combinations. Really, the common sum
is negative, therefore, this row and this column must be excluded from
the matrix. However, the own sum of the row is positive, because
it was kept at previous stages. It means, the sum of the column
without the element, belonging to this row, is negative, therefore,
these elements must be excluded too. After this stage the "negative”
rows and columns can come into being, the algorithm must return to
step (1,0). The combinations ”one row-two columns”, "two rows- one
column”,”two rows- two columns”, etc. are deleted at next stages.

Thus suggested algorithm is the sequence of stages (as it is shown
below). .

Returning to step (1,0) takes place, if excluding rows and columns
at the current step (k,{),k > 0,1 > 1 is completed. The work is
ended, if there are no striking off at any stage right up (n,,m;), where
ni+1, m; +1 are achieved sizes of matrix (numbers of kept rows and
columns). It is this submatrix, that is the solution of the problem.
The needed number of operations depends hardly on the difference
of the original matrix and the solution. The most unfavorable case
is that of coinciding the ones. Then the amount of calculation of
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EG algorithm equals to that of ordinary looking over. However, the
number of operations becomes times as less with each excluding a
row or a column. This fact results in essential increasing the speed
of computation.

3.2 The SG method.

Here the alternative algorithm, called ”Sorting Groups”, is con-
sidered briefly . The process includes a kind of gradiental drawing
near the solution. That increases the speed of computation essen-
tially. The essence of the algorithm is summarized briefly below. At
first the easier problem is dealt with. Let’s fix the subset of rows
I = {i1,1s,..ix} of original matrix and consider submatrixes, formed
by that and all possible subsets of columns J = {j1, ja, ..j1} (the sub-
row —f;,i € I and the subcolumn —v;,Jj € J are taken into consider-
ation, certainly). Then the submatrix, having the maximal quality,
amongst described above, should be found. The columns, forming
that, is united in subset J*. Obviously, the quality of considered
subsystems is written as follow:

QU,I) =" ai; - Z&—ZY]’:Z(Z%'-“U)—Z&

i€l jeJ €] j€J Jj€J \i€l i€l

And, defining

s ()

Qo(I) = Z,B,- = const > 0
iel
one can receive:
QUL J) =3 6(I1) ~ Qo(D)
JjeJ
Searching the solution is based on the theorem, formulated below.
Let I ={i,43,..,u}, k€ l.n, I C Iy, Iy = 1..n be the fixed subset of
rows, determining considered matrixes. Then the set of columns J*
of submatrlx having the maximal quality contains:
a) all columns, having positive value of é;(I) and only the ones, if

such columns exist.
That is:

If j* € Jo,Jo = 1.m : 6;-(I) > 0, then J* = {ji, 5,..33} : 6:(1) >
0,6;(I) < 0,Vj € Jo — J*.
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b) the single column, having the maximal value of §;(I), if the
demand of the paragraph (a) is not fulfilled.

That is:

If Vj € Jo: 6;(I) <0, then J* = {j*} : 6;+(1) > 6;(I),Vi € J

Then the solution of the original problem can be found in the
follow way: the subsystem, having the maximal quality is searched
for each possible subset I of rows, and "globally maximal” subsystem
is picked out from these subsystems.

Estimating the speed of the computation (confirmed by practice)
shows, that only nm2™ machine’s operations are needed in this case.
If the FLOP duration is 20 ps (this value is real for i287 co-processor,
for example) and n=m=10, then the computation time is easily eval-
uated. It is about 2-4 s. Note, that the ordinary looking over requires
3-4 min.

Co-operating of considered algorithms is desirable.The EG algo-
rithm carries out fast decreasing the size of the matrix. It operates
successfully, if the one contains the negative combinations of rows and
columns. However, the SG algorithm is more effective, if there are
no such combinations in the achieved matrix. Co-operating is carried
out in the follow way: EG begins working. Let the negative com-
binations be absent at ith stage. The jump function f(¢, Thest, TsG)
is calculated in this situation. Here 1,.,: is the summary duration
of a few next stages of EG algorithm, Tss is the time of processing
achieved matrix by means of SG algorithm. The jump to SG takes
place, if the function f is positive or zero: f > 0. The jump function
can be, probably, defined in the follow way:

f(i; Tnext, TSG) = (Tnext - TSG) +o (7'a 10) ((TSG - Tnext) + f) ,€>0

U(i,io):O, 1< iy
O'(i,io): 1, 1210

where i is the bound step number, calculated with comparing
productivities of algorithms.

Operating of optimizing algorithms and the computation of posi-
tions of 5 sources and 5 receivers for the bilinear waveguide with para-
meters, given above, and for the follow receiving region (zo, z1, 20, 21):(35
km., 38 km., -2.46 km.,-2.67 km.) are shown.

Fig. 6 shows the original sets (positions) of sources and receivers
and the optimal sets of the ones. It is visible, the intensity of trans-
feral coefficients is maximal in given region for the optimal configu-
ration of system.
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Fig. 6. The results of optimizing the hydroacoustical imaging system. Arrays
consist of 5 sources and 5 receivers.
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4. DISCUSSION AND CONCLUSIONS.

The principles of optimal choosing parameters of imaging systems
are investigated. In particular, the transferal characteristics of the
medium such as EC and AC have been defined and analyzed. These
parameters were defined in the first time in the papers {3, 8, 12], the
applying the ones for solving practical problems (forming acoustical
imaging systems in inhomogeneous media, for example) were recom-
mended. In this paper the maps of mentioned coefficients have been
used for solving problem of optimizing the number and positions of
elements of imaging systems. That provides the maximal sensitivity
of the system. Note, that accurate defining the cost and analyzing
limitations of these systems aren’t dealt with.

The general scheme of wording, analyzing and solving the simplest
problems was rather interesting for authors. This fact is concerned
both with the weak masterativity of discussed problems and with the
great amount of the computation, needed for solving the ones.

Some limitations of applying of methods, developed here, are:

1) The geometrical optics is used to calculate the transferal charac-
teristics. This fact limits the field of applications of suggested meth-
ods. Only high frequency approximation is dealt with. However,
both the mode approximation and the parabolic approximation can
be used. The approximation is determined, certainly, by the comfort
of calculating. Analyzing shows, the distributions of EC and AC be-
come simpler in the case of the fields, having only a few modes, in
the low frequency approximation [3].

2) Besides of transferal characteristics (EC and AC), considered
above, other parameters (concerned with the temporal signal struc-
ture, in particular) should be put to the foundation of optimizing
imaging systems in inhomogeneous media. Such coefficients ("Mean
Time of Reaching the receiver” (MTR), the ”Probability of Ordinary
Reaching the receiver” (POR), the ”Probability of Distinguishing the
ordinary signal and the reflected one” (PD), etc.) were investigated
in papers [8, 12]. First of all, basing on temporal characteristics is
preferable with monitoring non-stationary objects or media. On the
other hand, the problems of noise rejection becomes solvable with
using such parameters. This noise can come into being due to fluctu-
ations of the ordinary illuminating signal (the "dark field” method,
developed for the inhomogeneous medium [9, 12]). One deals with
optimizing acoustical imaging in this case, but the non-stationarity
should be taken into consideration [25,26]. Note, that the geometri-
cal dispersion has influence over temporal parameters (unlike EC and
AC) at the low frequency approximation, that results in destroying
the temporal pulse structure [27] and in being the optimal periods,

177



when viewing is the best.

3) The problem of acoustical imaging (like the problem of tomo-
graphical monitoring) is the inverse scattering problem. It is known,
regularizing, basing on a prior information, can be needed for solving
such problem. Optimizing positions of elements of the imaging sys-
tern is on its essence the such procedure, because it excludes unsteady
solutions. Analyzing these conclusions is interesting for authors and
will be carried out in the future.

4) Incoherent summing fields was made. That permit us to avoid
constdering effects, concerning with the fine interferrential structure
of the field in smoothly-inhomogeneous media. The possibility to ap-
ply this approximation depends on properties of real inhomogeneous
media, such as atmospherical and oceanic waveguides. There are
spatially distributed random inhomoogeneities in such waveguides.
Therefore, it should be supposed the fields, propagating in the ones,
are partially-coherent. The coherency is determined both the spa-
tial and temporal spectra of random medium variations and the scale
of the ones of smooth inhomogeneities [28]. Limitations of scale of
the inhomogeneity are declared at this paper. Basing on this dec-
laration and on results of experiments and computations, incoherent
summing was suggested. It make the problem simpler. Mention must
be made, coherent or partially-coherent summing doesn’t change the
general way of solving.

5) Let’s consider briefly the problem, concerned with the matter.
The viewed region (the resolution element of the field of view) was
fixed with optimizing positions of sources and receivers. Thus, the
optimal aperture for viewing given element of the field of view, was
estimated. The optimal set of devices and the optimal aperture are
changed with varying the region. Thus, the set of optimal apertures,
corresponding to the set of elements of the field of view can be re-
ceived after solving a few problems of optimizing. This set is a kind
of generalized basis and permit to carry out spatial scanning the in-
homogeneous medium. Each solution is the tomogrphical projection,
like to that, being dealt with at differential monitoring [10].

6) Possible applications of received results can be briefly summa-
rized as follows. First of all, they can be used with electromagnetic
wave probing the atmosphere. The same problems are solved in seis-
mic prospecting, in nondestructive monitoring, and tomography, in
medicine.
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THE NEAR~FIELD ACOUSTIC MEASUREMENTS
L.Sh.Fiks, V.I.Turchin

1. Introduction

The technique of the near-field measurements is used widthly
nowadays for the testing and control the microwave antennas. Since
70—-th years the methods of the far-field and aperture field determin-
ing from electromagnetic field measured near the antenna have been
developed and the detail analysis of method’s possibilities and errors
has been executed [1-3]. Last time the near-field technique was used
in the acoustic measurements [4-9], in which its advantages (a possi-
bility to measure with small values of radiated power, a decreasing of
reverberation influence) are more important than in the microwave
measurements.

The main area of the near-field method applications may be offer
in the diagnostics of the moving broad-band sound sources: trans-
port, ships, etc. The final purpose of the diagnostics is the far-field
reconstruction for the correct sound levels determining and the re-
construction of elementary sources (monopoles, dipoles) distribution
along the radiator - so-called acoustic imaging of radiator as well as
in microwave technique.

The development of the near-field technique in acoustics must con-
sist in the following.

In the majority of cases we must operate with the random broad-
band acoustic signals, which sources are the noises of mechanisms,
streaming etc. So, the procedure of the far-field reconstruction or the
acoustic imaging must combine with the estimation of the frequency
spectra. A multielement antenna array must be used for the signal
receiving, unlike the situation when the radiator exites by the known
signal, and the receiving may perform by single receiver which is
moving along the radiator 1.

Then, in most of the practically important cases the size of a radi-
ator along one coordinate excels the other sizes strongly (for example,
a vessel building). In this case the linear antenna array can be used
for the measurements. The far-field reconstruction algorythms and
the imaging algorythms are changing correspondingly (generally, this
case will be consider below).

1Usually the measurements by the moving probe are used in the microwave technique.
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The results of a radiator movement relative the receiving antenna
give two effects. Firstly, it is the complicated transformation of the
frequency spectra if the movement is fast. Secondly, it is the changing
of the visual angle at wich the radiator is observed from the center of
the receiving antenna. The first effect must be taken into-account in
reconstruction algorythms or for its neglecting the above limitations
of the radiator velocity must be formulated. The second effect is
very important for the spectral estimation forming of the far field
or acoustical image for all radiator trajectory because the resolution
interval is changed in the process of radiator movement.

In this paper, at first, the signal processing algorythms are devel-
oped using the integral transform technique. This approach (as it will
be shown below) allows to analyze the possibilities of the near-field
method for the moving broad-band radiators very effectively.

2. Integral transform method: theoretical concept.

We assume that the initial result of near—field measurements is a
set of momentary values of the pressure {p,(t)}, measured by sensors
with numbers n = 1,...V,. The sensors are placed at the points

with coordinates denoted by the vectors r, , The configuration of the
sensor disposition has such a form that the surface S stretched on the

points r, , surrounds the investigated broad-band radiator or closes
at infinity (see Fig. 1).

If the distance between sensors is small enough, we can consider
the measurement results as a function of continuous coordinates r,
on the surface S: {pa(t)} — p(¢,7,). Let us assume that the radiator

is fixed relative to sensors and surrounding medium is homogeneous
free space.

The p(t,r,) transformation into the designed characteristics can
be made in time domain or in frequency domain after Fourier trans-

formation of p(t,,) into spectral components p(f,r,):

+o0 ‘
AL = [ pe e (1)
At the beginning we consider the transformation in frequency do-

main. The method of the p(f,r;) decomposition by a complete set
of the partial solutions of the homogeneous equation orthogonal on
the surface S with the compensation of probe direction pattern [3]
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Fig. 1 The disposition of the radiator and the receiving elements (hydrophones).
The surface S is stretched on the receiving elements, the vector 77 denotes the
normal to the surface, the unit vector % shows the current direction in the far—
field zone, the dashed line separates the “illuminated” part S;; of the surface.
The vector 7. denotes the point of the stationary phase corresponded to the given

vector k and any point on the radiator.

and the integral transformation method using, in particular, a surface
Green’s function [2] have been well devised for the diagnostics of the

microwave antennas. These methods are broadly used for the p(f, ;)
transformation into far-field. Both methods generalized for acoustic
problems give identical result in many acoustic cases because the sen-
sor direction pattern can be considered as isotropic. Below we shall
mainly use the technique of the integral transformations.

If the spectral component of pressure p(f,r,) is known on the sur-

face S, the spectral component p(f, 7) at an arbitrary point ¥ outside
the surface S is given by the integral transformation:

p(f,7) = / / p(f, 7T (7, 7)dS 2)

where T'; is so-called surface Green’s function (see, for instance, Ref.
[2]). For the reconstruction of far field we denote 7= |?| k=r k,

where % is an unit vector (l; = 1) defining the orientation of the
observation point in far zone when r — co. So,

eik,,r

p(f,7) — Ry(k)

r ’
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where Rj(k) is a direction pattern of radiator for frequency f,k, =
27r-5, c is a sound velocity. Thus, we obtain:

Ry(%) = / /S p(f,7)v; (E,73)dS (3)

where v;(k, 7,) = lime o (re~ T T s (kr, 7))

The kernel of the transformation (3) y; can be constructed as
the decomposition by the complete set of functions which are par-
tial solutions of the homogeneous Helmholtz equation for the plane,
cylindrical or spherical surface S (see Ref. [3}).

For the plane surface we have:

Yk, Te) = —im—* ; (4)
where 7 is a normal vector to the surface S, = ¢/f is a wave length.
For the cylindrical surface of radius « this function is:

e—tkoT,sind i e—in(qp—zp,—0,57r)
7f (0190;-73 7(p3)=_——_~_— Y2 YN
: 2in2a e H,(,l)(w)
w = koacos? (5)

where z,,p, are the current coordinates of the point on a cylinder,
the angle ¢, defined in a plane perpendicular to the cylinder axis, z,
is an coordinate along the cylinder axis, dS = adp,dz,. Angles ¥, ¢
are angles of far-field observation point. The angle ¢ is defined the

same way as the angle ¢,, ¥ is an angle between the vector ¥ and

the plane perpendicular to the cylinder axis. HS is the Hankel’s
function of the first kind and order n.

For an arbitrary smooth surface S the function v; is a result of
the solution of the following integral equation:

zk (kire) — a // s k,‘!‘s)

where 2 is a derivation along normal to the surface S.
If the curvative radius of the surface S is much more th2n the wave
length, we can use a high frequency approximation of the solution of
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equation (6):

— .y —_— . 7{’; _iko ;1;: —
1k m) = (kT) = { —i )e ( ), rs€ Sin
0 77;6 Sshade

: : R
where S;; is the part of the surface S with a bound determined by
the equation (7{, k) = 0 (Fig. 1), S;pade is an additional part to
the surface S;;. The estimate of the limits of the applicability of
expression (7) have been given in Ref. [2].

We would like to notice that the procedure (3) using (4)-(5) is
accurate and doesn’t depend on the radiator disposition inside the
area bounded by the surface S, on the radiator sizes and the type of
elementary sources (monopoles, dipoles, etc.) describing the radiator.

However, other way is possible too [7]. In this case the radiator
field is wholly determined by some a priori unknown function of the
distribution of the elementary sources of the given type m;(r) (for
instance, monopoles) concentrated on the given finite surface S, (see

Fig. 1), where T is a position-vector of current point on the surface
S,. All elements of the surface S, lie inside the volume bounded by
the surface S. In this case we have:

iko|rs—7
o|Ts l
€

o7 = [ /S (e ds:, (8)

— e
rs —

R (F) = [ [ e (%) s, ©)

Substituting (8) and (9) in (3), we can obtain that the function
v¢ must satisfy to the following integral equation:

-~ [ [ (57 Tf;—;ds (10)

Ts— T

where 7€ S, and any unit vector % which is a parameter in equation
(10). For instance, if S and S, are two parallel planes, it can be
shown that the solutions of the equations (6) and (10) are the same

for coinciding coordinate axes of the vectors r, and 7.
In the real situation the sensors can be disposed on the finite part
of the surface S forming the receiving aperture S, of finite sizes. The
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correspondence among the receiving aperture sizes S,, the radiator

sizes S, and the set of unit vectors £ in the far zone where the far field
can be correctly reconstructed for any distribution of m;(7) can be
obtained from equation (10). Substituting (7) in (10), we can show
that the main term of the asymptotical decomposition of integral (10)
relative to a large parameter k, (this term is defined by a point of
the stationary phase r; of the integral) coincides with the left side of
expression (10). Thus, the point of the stationary phase must belong
to the receiving aperture S,: 7€ S,. The location of the point r;

is deduced from simple geometrical construction. The point r; is a
point of the intersection of the surface S and a ray from the current

point 7 in the direction % (see Fig. 1):

e - |-

Ty —T=|r, — _'l 7;, Te S, (11)

The condition 17;6 S, should be true for all 7€ S,. The angular

sector where r;€ S, can be obtained by geometrical construction for
the concrete mutual disposition S, and S.. Within this sector the
radiation pattern can be correctly reconstructed with an error ter-
mined by next terms of asymptotical decomposition of equation (10)
(see Ref. [2]). Notice that the real angular sector is more narrow

than at constructed in accordance with (11), because r; must belong
to the surface S, together with its Fresnel’s zone. The sizes of the
Fresnel’s zone are determined by the second derivatives of phase in
un([ie]r—integral expression (10). This problem has been investigated
in [2].

Expression (8) can be also considered as an integral equation for
the determination of the distribution of the elementary sources of
definite type (in our case - monopolar sources) on a radiator. Unlike
the problem of far field reconstruction which can be solved exactly,
the problem of source distribution reconstruction is non-correct and
its solution depends on the choice of the surface S, and the type of
elementary sources. The corollary of non-correct statement problem

is a determination of smoothed estimate instead of function ;(7):

y (7) = //5 my(7)Fy (7.7°) dS; (12)

where F; is a function with well-outlined global maximum in the en-
viroment of the point r: l? -7m| <A, A> )2 A linear integral
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transformation of the spectral component of near-field data corre-

sponds to equation (12):
// frs Gf T ra) ds, (13)

- -
xk,, r—r,

?;‘ //Gfrr, e ] (14)
rv—r,

The type of the kernel G; is set in from the obvious requirements
to the function F;. These ones are a minimum width of the main
maximum and low level of sidelobes. Besides that, the normalization
condition should be satisfied, for instance:

// Fy (‘F,F) dS. =1 forallT€ S, (15)
S,

Consider the plane surface S(z = 0) in the Cartesian coordinate
system (z,y, z) as an example. Assume that all sources of the monopo-
lar type are concentrated in the semi-infinite space z > 2z,. The
Fourier transformation of the pressure p; (z,y) measured on the plane
z =0 can be presented as:

xzoK

+o00
// (z,y)e " *e=tbsVdrdy = 2r My (kg, by, — K)
k3+k§<k§ (16)

where K = (k2 - k2 - k2) Yisa positive branch of the root, My (ks, ky, k)
is a three-dimensional Fourier transformation of the three-dimensional
distribution of the sources in the semi-infinite space. As it follows
from (16), inside the circle k2 +kZ < k2 the measured data contain the
information only about the values of M; on the sphere k2+k2+k2 = k2.
Thus, the three-dimensional distribution of sources can’t be recon-
structed by a single way. Outside the circle (k2 + k2 > £2) the Fourier
transformation of p; decreases exponentially if | M, | is finite. It means
that for k,z, > | the measured data don’t contain the information
about the m; components which oscillate with a period less than .
Then the external sources of acoustic field can be both the scalar
sources (mass sources in the Euler equation) and the external forces

fs . Having been composed the Fourier image of monopolar sources
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and a scalar product (I 1.*, (-1;)) (where F‘f (;) is a Fourier-image

of the three-dimensional distribution of the external forces), M P

can’t be separated into four components. Thus, the additional a pri-
ori information about the surface S,, where elementary sources are
disposed, and about the types of elementary sources must be used
for the acoustic image reconstruction.

Choose a plane : = :, as a surface S.. In this case this function
M; doesn’t depend ou k,: M; (ke ky, k,) — My (kz, ky) and the Fourier
image Pj (kg,ky) of the function M; (k;,ky) can be considered as a
estimate my :

1, k2 + k2 < k2
Pf (k:; k!l) = e—2z°,/}:f_+k§'—k2 k2 + k2 > k‘2 (17)
) z y 0

Then,

- - 1 &2 e‘ik°;:_7
Gf(r,r,):—mg:-{—z—{—_’ —

rs — T
z=2z,
2 —ikolr, =T
ko 22 e
- 47{2 - 4 —_ ~ )
ry — I Ts —
kozo > 1 (18)

and Fy (? - 177) which is a Fourier transformation of the function
Py (kz, ky) correspond to this estimate. For k,z, > 1 we have:

- — k2 J, (v
P (7F) = ge v=k

—_ —

r—p (19)

where J; (v) is a Bessel function of the first order. The main lobe
width of the function [, (for the level half as much as maximum
value) is A =0,7A.

For arbitrary smooth surfaces S and S, Gy can be choosen as:

Gy (7.7) =k.B(7.7) C_T ::?I, (20)
re— T
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where the function B is a smoothly changing function depending on
the coordinates 7,7,. The required type of smoothing function F;
can be synthemzed from the function B. Notice that formula (20)

presents a well-known principle of focusing on source displaced near
receiving aperture (see Ref. F

The above-mentioned measured data processing procedure in the
frcquency domain can be transformed into the time domain. For
instance, for the plane surface S the following equation can be used
instead of the equations (1), (3) with substituting (4) (see Ref. [8]):

27rc dt// ( —tt o (k "s),F.:)dS,

R, (E) = / at, & )e2m It dt, (21)

where ¢, is some constant time delay. The analogous transformation
can be deduced for the approximation (18) or for the estimate of time

distribution of the monopolar sources on a radiator m (t, 7):

f'fl(t,—;) =

) i) Bl @)

T —Ts

at, k)

1 r t Y77
271'c"’dt2 r’ B °+Z(r_r’

The estimate m (t, _r') can be decomposed into the spectral compo-

nents fiy (?) (12) by the Fourier transformation. However, the esti-

mate M (t, 7) has independent scientific interest for the investigation

of non-stationary processes, such as the process of short duration.

The transformations (21) and (3), (1),(4) are equivalent but the
structure of the signal processor rea.hzrng (21) differs from realizing
§1) (3). Thus, the choice of the transformation type can be made
rom the ava.habrhty of hardware and software. Besides that, we shall
show below that in the time domain the signal processing procedures
can be generalized for moving radiators more easily.

In general case, for instance, for cylindrical surface the transforma-
tions in time domain do not correspond to the procedures with time
delays (as in (21) or (22)) because of complex frequency dependence
of (5). In similar cases we do not need to in time domain.
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In many practical situation the received acoustic signals are ran-
dom and stationary. So the second statistical moment must be de-
termined as:

o)== {m (O} 5 (F7) = () ()} 0

where E {..} is a expectation operator (we assume that E{R;} =
E{m;} = 0). We also assume that the processes are ergodic so that
we can average in time domain. Expression (1) is replaced by:

P; (f,;';) :/Tp(t+jT1,R)e2"‘f’dt, i=0,1,..0-1 (24)
0

where T defines a resolution in frequency domain, 73 =~ (0,5...1)7.

—

Then, the functions Ry ; (lc), my (?) are estimated and averaged:
J-1
9(0)= 15 (B
i=

K (7.7) = 3‘5 mgs (7) a3 (7) (25)
j=0

We would like to add that the resolution for the estimates @, K in
frequency domain is determined by not only the time interval T but
also receiving system sizes, distance between radiator and antenna
and so on.

3. The case of an essentially oblong radiator

Consider a radiator which is essentially oblong along one of the
coordinate axes and sensors which are disposed on a streight line.
In this case the exact solution is possible if the radiator field has an
axial symmetry or if elementary sources of known type are disposed,
for example, on a segment of the streight line.

Assume that the radiator field has an axial symmetry relative to
axis which is parallel to a line of sensor disposition and is y, distant
away from sensors. The field spectral components on the line of sensor
disposition p(f,z) can be connected with the far field Ry (J) by the
relation analogous to (3):

Ry (9) = / p(f,2) 7 (9,2)dz (26)
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where z is a coordinate on the sensor line, the angle ¥ is measured
from a normal to the field symmetry axis. The function v; is defined
by (5) because the field can be continued on the cylindrical surface S
of radius y, through the axial symmetry: p(f,z) — p(f, z, ¢s), where
p(f,z,p,) doesn’t depend on the angle ¢,. Substituting (5) in (3) and
integrating over y,, we obtain [8]:

v (9, 2) = e'““’”m"/ (ingl) (w)) , w=koy,cos?d (27)

For the perpendicular disposition of symmetry axis and sensor
line, cutting at the point = = 0, the field p; can be continued on the
plane S which is perpendicular to the symmetry axis: p; — p(z, ¢s),
where z > 0, ¢, is an angle in a polar coordinate system. Substituting
(4) in (3) and integrating over ¢,, we have:

v1 (9, 2) = ikox |sin (9)| J, (ko cosd), >0 (28)

where J,(z) is a Bessel function of the zero order. Notice that an
additional field symmetry relative to the anfle ¥ = 0 follows from (28).
The kernel of the transformation (26) can be changed if it is assumed
that all elementary sources are concentrated on the symmetry line on
the same side from the cutting point z = 0.

Expressions (26), (27) can be used when the radiator field has
no circular symmetry. In this case the calculated function R (9) is a
radiation pattern section by the plane where radiator axis and parallel
sensor line lie. For the radiators with sizes L, x L, (where L, is a
size along sensor line, L, is a size across sensor line, L, > L, ) R (9)
is a direction pattern section if the following condition is satisfied:

2LL/A< vo (29)

It means that sensors are in far zone relative to cross radiator size.
If the small cross size radiator has multipole sources, for low-order
multipoles the condition A < y, must be satisfied instead. In particu-
lar, if radiator is a dipole oriented perpendicularly to the sensor line,
it may be shown that the calculated section:

2
| Ry (9))" = Py oos? 8 |H(" (@) /HV ()| (30)
where P; is a constant proportional to the radiation power for the

frequency f, differs from the exact section of the dipole radiation
2
pattern |R§d) (0)! = Py cos?d. For w > 2...3 we have:

,Hg”(w)/Hgl)(w) = 1+—2‘1:§+o (;1;) (31)
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Fig.2 The radiation pattern of the dipole: reconstructed (— ) and exact (— —

—-).

and can neglect a difference between |R; (9)| and IR&") (z9)|. Figure 2

2
shows the functions |R; (9)|* and IR(fd) (19)| as functions of the angle
¥ for y,/A = 1. We can see a good coincidence.

The analogous relations can be easily deduced for multipoles of
any orders. The analysis of quadropole relations has shown that the
good reconstruction accuracy is reached for y, > (0,6...1) A. See Fig.
3 5or quadropole with the axis perpendicular to the sensor line and
Yo A= 0, 4.

Apparently, the cases of parallel and perpendicular dispositions of
sensor line and symmetry axis exhaust the possibilities of the deduc-
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Fig.3 The radiation pattern of the quadropoie with the axis perpendicular to
the sensor line: reconstructed (

) and exact (— — ——).

tion of the exact formulae for v;. However, for practical goals it is
important that the function y; be known for an arbitrary disposition
of radiator and the sensor line. Consider the analogy of Eq. (10)

for a priori unknown distribution of monopole sources on the streight
line: '

/ (9, z) Rl e = emikeysing (32)
7f 3 p (Z’, y) ]
where y is a current coordinate along the source disposition line,
p(z,y) is a distance between the point with the coordinate z on the
sensor line and the point with the coordinate y on the source line.
Introduce two parallel planes P, (where the source line L; is dis-
posed) and P, (where the sensor line L, is disposed) which are Ah
apart. Introduce also the Cartesian coordinate system (z,y) in the
plane P;. The axis z coincides with the line L, (see Fig. 4). Then,
the distance p(z,y) is:

, ) 1/2
plz,y) = [Ah +(y —w) +22] ,
w=1=rcosa — (Yosina + z,cos ),
z=zsina+ (y,cos a — z,sina)

(33)

where « is an inclination angle of the projection of line L, into the
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L2 A X

Fig.4 The mutual disposition of the radiator R and antenna A: general view (a)
and the projection on the plane Ps.

plane P; to the line L,. The angle ¢ is measured from the normal to
the line L; in the plane which is parallel to the plane P,.

Using the method of the approximate solution of the integral equa-
tion (32) (see Ref.[6]), we obtain:

19’1" —i z)—i7
11 0,2) 2 970 = LD mivo.er-i, (34)

where

(z sindJ sin o — cos ¥ cos av/z2 + Ah2 )2 (35)
cos 9vz2 + Ah? ’

[(9,2) = wsind + cos I/ 22 + Ah? (36)

B(d,z) =
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Note the following prorerties of the obtained solution. Function

534; is not changed and independent on z item appears in function
34) if the substitution z, — z,+rcosa, yo — yo+rsine (i.e. the slip

of coordinate beginning along the line L) occurs. Thus, if |R; (9))?
is determined, the transformation (26), (34) doesn’t depend on the
position of coordinate beginning on the line L. For o = 0° the
expression (34) and (27) are the same, if the Hankel’s function in
(27) g (w) = /2/rwexp (iw — in/4), y, is replaced by vz2 + Ah?2
and z, = 0. The property allow to estimate the applicability limits
for (34). Using (34) and (32), we can find an angular sector where
the direction pattern is correctly reconstructed for finite number of
Sensors.

Assume that the sensors are disposed on a segment [-L,/2, L,/2] of
the line L,, where L, is a receiving antenna length. Also assume that
the elementary sources are disposed on a segment of the line L, with
length L, (L, is a radiator length). The radiator center is displaced
for the distance d relative to the coordinate beginning. Realizing the
geometrical construction described in the Section 2, we obtain that
Y1 (d) < 9 < ¥, (d), where:

tands (d) = (r} — 13, + L2) /y/2r}, (v} + L2) — rf, — (r} — L)’
tan 9 (d) = (}, — r3 — L2) //2r3, (] + L2) — v, — (3 — L2)?
r2 = Ah? + (2o + (d — Ly /2) cos a + Lg/2)* + (¥o + (d — L, /2) sin @)”
r2 = Ah? + (z, + (d + L, /2) cos @ + La/2)® + (yo + (d + L, /2)sin )’
12 = AR2 + (2o + (d + Ly /2) cosa — Lo /2) + (yo + (d + L, /2) sin @)’
r3, = Ah? 4 (2, + (d — L, /2) cos & — La/2)* + (o + (d — Lr/2) sina)”
(37)
If 9, > 9,, the point of the stationary phase does not belong

to the interval [—L,/2, Ls/2], so that the direction pattern can not
be reconstructed. Formula (37) is essentially simplified for o = 0.

Substituting z, = 0 and y, = \/y2 + Ah?, we obtain:
tant?lyg = (d:F(L,- —La) /2)/y1 (38)

Angles 9,,9; are shown in Fig. 5. It follows from (37) and Fig. 5,
that the receiving antenna must be longer than the radiator: Ly > L,
(in the opposite case the condition ¥; < 9, is not satisfied). The area
of the plane (d,9) limited by curves ¥ = ¥, (d) and ¥ = 92 (d) is shown
in Fig. 5. Let us assume that the radiator moves along the line L,.
We can conclude from Fig. 5 that the angular sector [¢;, ¥,] displaces
such a way that it overlaps almost all angular sector [-90°,90°] for
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ample length of radiator trajectory. On the other hand, some interval
[d1, d2] of the radiator center positions within the line L;, for which the
direction pattern R, (dJ) can be correctly reconstructed, corresponds
to each angle v. If the radiator moves with a constant velocity v, a
time interval (d, - d;) /v can be divided into a time windows T (see
(24)) for the spectral analysis and calculation of |R;; (9)° (j is a
number of the time windows) can be averaged over j.

In Section 2 we have remarked that the angular sector where the
direction pattern is reconstructed with a small error is more narrow
than that determined by the geometrical construction, because the
point of the stationary phase for the integral (10) and its enviroment
must belong to the integration region {—L,/2,L./2]. More precise
definition of the angular sectors has been fulfilled by numerical sim-
ulation. Integral (26) has been replaced by a sum:

2

Ry D) = ]?f @7 (39)

where py= |lp; (za)lIT, 77 (9) = Aallvs (2, 9)||T are column-vectors
with length N,, superscript 7' denotes transpose, z, is a coordinate
of sensor n,” A, is a sensor distance (in our numerical simulation
A; = 0,5)). The vector E' has been calculated for a set of dis-
crete monopole sources Witfl complex amplitudes my, disposed at
the points y, of the line L;, where n = 1,...N,, a distance between
point yn41 and ys is A, < A. Then, py= G; my, my= |lmsal”, Gy =
llexp (¢kop (2n,yn)) /0 (zn, yn)|l is @ N4 x N.-matrix and p(z,y) is deter-
mined by (33). The calculations have been fulfilled for the following
types of the covariance matrixes of complex amplitudes:

I (a)
M=< _ _H (40)

m, m, (b)
where I is an identical matrix, m,= ||exp (—ik,y sin 9)||T, superscript
H denotes conjugate-transpose. The case (a) corresponds to the spa-
tially non-coherent radiator, the case (b) corresponds to spatially
coherent radiator phased relative to the angle ¥. Obviously, the ex-

act value |R; (9)|” is a constant: N, for the case (a) and N2 for the
case (b). The areas of the plane (J,d) where the difference between
reconstructed and actual |R; (9)]? is less than 10% are shown in Fig.5.

It can be shown that these areas practically coincide for the models
(a) and (b) and slightly differs from the limits obtained from geomet-
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Fig.5 The dependence of the angles ¥; (left curve) and 92 (right curve) on the
current position of the radiator center d: a = 0° (a), @ = 45° (b), and & = 90°
(c). The difference between Y3 and ¥; representes the angular sector in which
the far—field pattern are reconstructed correctly. The areas where the difference
between reconstructed and actual farfield pattern is less then 10% are shown in
a dark color.
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rical expantions (37) even for L, < 3. The difference decreases if the
tatio L./A increases.

Finally, the method of the direction pattern measurement by a
linear array for the moving radiator with an arbitrary frequency spec-
trum is realized by the following way. For each angle ¥ in far zone the
interval of radiator center dispositions [d), d2] relative to the receiving
antenna is found (see Fig. 5). The time interval corresponding to
[dy,d>] is divided into the analysis windows T'. Each spectral compo-
nent of the near field is transformed in Ry ; (¥) (where j is a number
of time window) by (24), then |R;; (9)|° is averaged over j.

The estimation of the intensity J.istribution of the monopole sources
can be obtained by analogy with (18). It has been shown in the case
of o = 0 (see Ref. [4]) that the spatial resolution interval Az, is
estimated as \

Az, =

"7 Isin ¥, — sin ¥, (41)

wheresin ¥, 5 = (Ls/2 F d)/\/yf + (La/2 ¥ d)?. This result is in a good
agreement with (38) because if the harmonic component in the spatial

monopol distribution on the radiator is unresolved then the contri-

but;liﬁn of this component in the reconstructed far-field is negligible .
small.

Conclusion

The integral transform methods were developed for the far—field
reconstruction and source distribution determining from the near—
field measurements in the case of broadband acoustic radiator. It
has been shown that the developed technique is highly effective when
various limitations of the near-field method are investigated. The de-
pendence of the reconstruction quality on the kernel approximations
and finite length of the receiving array was considered. The radiator
movement was allowed as the mutual displacement of the receiving
array and radiator only: the frequency spectra transformation was
not taken into account but this effect can be considered using the
same integral transform technique. Some experimental results see,
for example, in Ref. [9].

Finally, by ending the paper, one remarks, that the other approach
of the near-field—far-field transform exists. The integral equation
(8) connects the source distribution and the near—field data can be
rewritten into a linear equation system which solvs by the various
statistic methods [6,7]. The results of the reconstruction must be in a
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good agreement but an arbitrary form of the linear equations permits
the more realistic propagation model as the free space. However
the analysis of the method limitations is not obvious in comparison
with the integral transform technique. So, the both approaches can
supplement each other.
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